summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-04-11 12:50:28 +0000
committerCoprDistGit <infra@openeuler.org>2023-04-11 12:50:28 +0000
commit20308e6b57426e564ffdc451430e3b7147d70399 (patch)
tree52262330c8d21a2ae97d8a130f379c709be63c06
parent95b343ddc8a8bca2ec2f732f0115b69828e83d92 (diff)
automatic import of python-vaex
-rw-r--r--.gitignore1
-rw-r--r--python-vaex.spec388
-rw-r--r--sources1
3 files changed, 390 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..d472224 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/vaex-4.16.0.tar.gz
diff --git a/python-vaex.spec b/python-vaex.spec
new file mode 100644
index 0000000..762c6a7
--- /dev/null
+++ b/python-vaex.spec
@@ -0,0 +1,388 @@
+%global _empty_manifest_terminate_build 0
+Name: python-vaex
+Version: 4.16.0
+Release: 1
+Summary: Out-of-Core DataFrames to visualize and explore big tabular datasets
+License: MIT
+URL: https://www.github.com/vaexio/vaex
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/62/fd/061dcce6ee7211f32b28aa6b49f8a19ece9619535b43ee3171b25c001711/vaex-4.16.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-vaex-core
+Requires: python3-vaex-astro
+Requires: python3-vaex-hdf5
+Requires: python3-vaex-viz
+Requires: python3-vaex-server
+Requires: python3-vaex-jupyter
+Requires: python3-vaex-ml
+
+%description
+
+[![Documentation](https://readthedocs.org/projects/vaex/badge/?version=latest)](https://docs.vaex.io)
+[![Slack](https://img.shields.io/badge/slack-chat-green.svg)](https://join.slack.com/t/vaexio/shared_invite/zt-shhxzf5i-Cf5n2LtkoYgUjOjbB3bGQQ)
+
+# What is Vaex?
+
+Vaex is a high performance Python library for lazy **Out-of-Core DataFrames**
+(similar to Pandas), to visualize and explore big tabular datasets. It
+calculates *statistics* such as mean, sum, count, standard deviation etc, on an
+*N-dimensional grid* for more than **a billion** (`10^9`) samples/rows **per
+second**. Visualization is done using **histograms**, **density plots** and **3d
+volume rendering**, allowing interactive exploration of big data. Vaex uses
+memory mapping, zero memory copy policy and lazy computations for best
+performance (no memory wasted).
+
+# Installing
+With pip:
+```
+$ pip install vaex
+```
+Or conda:
+```
+$ conda install -c conda-forge vaex
+```
+
+[For more details, see the documentation](https://docs.vaex.io/en/latest/installing.html)
+
+# Key features
+## Instant opening of Huge data files (memory mapping)
+[HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format) and [Apache Arrow](https://arrow.apache.org/) supported.
+
+![opening1a](https://user-images.githubusercontent.com/1765949/82818563-31c1e200-9e9f-11ea-9ee0-0a8c1994cdc9.png)
+
+
+![opening1b](https://user-images.githubusercontent.com/1765949/82820352-49e73080-9ea2-11ea-9153-d73aa399d329.png)
+
+[Read the documentation on how to efficiently convert your data](https://docs.vaex.io/en/latest/example_io.html) from CSV files, Pandas DataFrames, or other sources.
+
+
+Lazy streaming from S3 supported in combination with memory mapping.
+
+![opening1c](https://user-images.githubusercontent.com/1765949/82820516-a21e3280-9ea2-11ea-948b-07df26c4b5d3.png)
+
+
+## Expression system
+Don't waste memory or time with feature engineering, we (lazily) transform your data when needed.
+
+
+![expression](https://user-images.githubusercontent.com/1765949/82818733-70f03300-9e9f-11ea-80b0-ab28e7950b5c.png)
+
+
+
+## Out-of-core DataFrame
+Filtering and evaluating expressions will not waste memory by making copies; the data is kept untouched on disk, and will be streamed only when needed. Delay the time before you need a cluster.
+
+
+![occ-animated](https://user-images.githubusercontent.com/1765949/82821111-c6c6da00-9ea3-11ea-9f9e-498de8133cc2.gif)
+
+## Fast groupby / aggregations
+Vaex implements parallelized, highly performant `groupby` operations, especially when using categories (>1 billion/second).
+
+
+![groupby](https://user-images.githubusercontent.com/1765949/82818807-97ae6980-9e9f-11ea-8820-41dd4441057a.png)
+
+
+## Fast and efficient join
+Vaex doesn't copy/materialize the 'right' table when joining, saving gigabytes of memory. With subsecond joining on a billion rows, it's pretty fast!
+
+![join](https://user-images.githubusercontent.com/1765949/82818840-a268fe80-9e9f-11ea-8ba2-6a6d52c4af88.png)
+
+## More features
+
+ * Remote DataFrames (documentation coming soon)
+ * Integration into [Jupyter and Voila for interactive notebooks and dashboards](https://vaex.readthedocs.io/en/latest/tutorial_jupyter.html)
+ * [Machine Learning without (explicit) pipelines](https://vaex.readthedocs.io/en/latest/tutorial_ml.html)
+
+
+## Contributing
+
+See [contributing](CONTRIBUTING.md) page.
+
+## Slack
+
+Join the discussion in our [Slack](https://join.slack.com/t/vaexio/shared_invite/zt-shhxzf5i-Cf5n2LtkoYgUjOjbB3bGQQ) channel!
+
+# Learn more about Vaex
+ * Articles
+ * [Beyond Pandas: Spark, Dask, Vaex and other big data technologies battling head to head](https://towardsdatascience.com/beyond-pandas-spark-dask-vaex-and-other-big-data-technologies-battling-head-to-head-a453a1f8cc13) (includes benchmarks)
+ * [7 reasons why I love Vaex for data science](https://towardsdatascience.com/7-reasons-why-i-love-vaex-for-data-science-99008bc8044b) (tips and trics)
+ * [ML impossible: Train 1 billion samples in 5 minutes on your laptop using Vaex and Scikit-Learn](https://towardsdatascience.com/ml-impossible-train-a-1-billion-sample-model-in-20-minutes-with-vaex-and-scikit-learn-on-your-9e2968e6f385)
+ * [How to analyse 100 GB of data on your laptop with Python](https://towardsdatascience.com/how-to-analyse-100s-of-gbs-of-data-on-your-laptop-with-python-f83363dda94)
+ * [Flying high with Vaex: analysis of over 30 years of flight data in Python](https://towardsdatascience.com/https-medium-com-jovan-veljanoski-flying-high-with-vaex-analysis-of-over-30-years-of-flight-data-in-python-b224825a6d56)
+ * [Vaex: A DataFrame with super strings - Speed up your text processing up to a 1000x
+](https://towardsdatascience.com/vaex-a-dataframe-with-super-strings-789b92e8d861)
+ * [Vaex: Out of Core Dataframes for Python and Fast Visualization - 1 billion row datasets on your laptop](https://towardsdatascience.com/vaex-out-of-core-dataframes-for-python-and-fast-visualization-12c102db044a)
+
+ * [Follow our tutorials](https://docs.vaex.io/en/latest/tutorials.html)
+ * Watch our more recent talks:
+ * [PyData London 2019](https://www.youtube.com/watch?v=2Tt0i823-ec)
+ * [SciPy 2019](https://www.youtube.com/watch?v=ELtjRdPT8is)
+ * Contact us for data science solutions, training, or enterprise support at https://vaex.io/
+
+
+
+
+%package -n python3-vaex
+Summary: Out-of-Core DataFrames to visualize and explore big tabular datasets
+Provides: python-vaex
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-vaex
+
+[![Documentation](https://readthedocs.org/projects/vaex/badge/?version=latest)](https://docs.vaex.io)
+[![Slack](https://img.shields.io/badge/slack-chat-green.svg)](https://join.slack.com/t/vaexio/shared_invite/zt-shhxzf5i-Cf5n2LtkoYgUjOjbB3bGQQ)
+
+# What is Vaex?
+
+Vaex is a high performance Python library for lazy **Out-of-Core DataFrames**
+(similar to Pandas), to visualize and explore big tabular datasets. It
+calculates *statistics* such as mean, sum, count, standard deviation etc, on an
+*N-dimensional grid* for more than **a billion** (`10^9`) samples/rows **per
+second**. Visualization is done using **histograms**, **density plots** and **3d
+volume rendering**, allowing interactive exploration of big data. Vaex uses
+memory mapping, zero memory copy policy and lazy computations for best
+performance (no memory wasted).
+
+# Installing
+With pip:
+```
+$ pip install vaex
+```
+Or conda:
+```
+$ conda install -c conda-forge vaex
+```
+
+[For more details, see the documentation](https://docs.vaex.io/en/latest/installing.html)
+
+# Key features
+## Instant opening of Huge data files (memory mapping)
+[HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format) and [Apache Arrow](https://arrow.apache.org/) supported.
+
+![opening1a](https://user-images.githubusercontent.com/1765949/82818563-31c1e200-9e9f-11ea-9ee0-0a8c1994cdc9.png)
+
+
+![opening1b](https://user-images.githubusercontent.com/1765949/82820352-49e73080-9ea2-11ea-9153-d73aa399d329.png)
+
+[Read the documentation on how to efficiently convert your data](https://docs.vaex.io/en/latest/example_io.html) from CSV files, Pandas DataFrames, or other sources.
+
+
+Lazy streaming from S3 supported in combination with memory mapping.
+
+![opening1c](https://user-images.githubusercontent.com/1765949/82820516-a21e3280-9ea2-11ea-948b-07df26c4b5d3.png)
+
+
+## Expression system
+Don't waste memory or time with feature engineering, we (lazily) transform your data when needed.
+
+
+![expression](https://user-images.githubusercontent.com/1765949/82818733-70f03300-9e9f-11ea-80b0-ab28e7950b5c.png)
+
+
+
+## Out-of-core DataFrame
+Filtering and evaluating expressions will not waste memory by making copies; the data is kept untouched on disk, and will be streamed only when needed. Delay the time before you need a cluster.
+
+
+![occ-animated](https://user-images.githubusercontent.com/1765949/82821111-c6c6da00-9ea3-11ea-9f9e-498de8133cc2.gif)
+
+## Fast groupby / aggregations
+Vaex implements parallelized, highly performant `groupby` operations, especially when using categories (>1 billion/second).
+
+
+![groupby](https://user-images.githubusercontent.com/1765949/82818807-97ae6980-9e9f-11ea-8820-41dd4441057a.png)
+
+
+## Fast and efficient join
+Vaex doesn't copy/materialize the 'right' table when joining, saving gigabytes of memory. With subsecond joining on a billion rows, it's pretty fast!
+
+![join](https://user-images.githubusercontent.com/1765949/82818840-a268fe80-9e9f-11ea-8ba2-6a6d52c4af88.png)
+
+## More features
+
+ * Remote DataFrames (documentation coming soon)
+ * Integration into [Jupyter and Voila for interactive notebooks and dashboards](https://vaex.readthedocs.io/en/latest/tutorial_jupyter.html)
+ * [Machine Learning without (explicit) pipelines](https://vaex.readthedocs.io/en/latest/tutorial_ml.html)
+
+
+## Contributing
+
+See [contributing](CONTRIBUTING.md) page.
+
+## Slack
+
+Join the discussion in our [Slack](https://join.slack.com/t/vaexio/shared_invite/zt-shhxzf5i-Cf5n2LtkoYgUjOjbB3bGQQ) channel!
+
+# Learn more about Vaex
+ * Articles
+ * [Beyond Pandas: Spark, Dask, Vaex and other big data technologies battling head to head](https://towardsdatascience.com/beyond-pandas-spark-dask-vaex-and-other-big-data-technologies-battling-head-to-head-a453a1f8cc13) (includes benchmarks)
+ * [7 reasons why I love Vaex for data science](https://towardsdatascience.com/7-reasons-why-i-love-vaex-for-data-science-99008bc8044b) (tips and trics)
+ * [ML impossible: Train 1 billion samples in 5 minutes on your laptop using Vaex and Scikit-Learn](https://towardsdatascience.com/ml-impossible-train-a-1-billion-sample-model-in-20-minutes-with-vaex-and-scikit-learn-on-your-9e2968e6f385)
+ * [How to analyse 100 GB of data on your laptop with Python](https://towardsdatascience.com/how-to-analyse-100s-of-gbs-of-data-on-your-laptop-with-python-f83363dda94)
+ * [Flying high with Vaex: analysis of over 30 years of flight data in Python](https://towardsdatascience.com/https-medium-com-jovan-veljanoski-flying-high-with-vaex-analysis-of-over-30-years-of-flight-data-in-python-b224825a6d56)
+ * [Vaex: A DataFrame with super strings - Speed up your text processing up to a 1000x
+](https://towardsdatascience.com/vaex-a-dataframe-with-super-strings-789b92e8d861)
+ * [Vaex: Out of Core Dataframes for Python and Fast Visualization - 1 billion row datasets on your laptop](https://towardsdatascience.com/vaex-out-of-core-dataframes-for-python-and-fast-visualization-12c102db044a)
+
+ * [Follow our tutorials](https://docs.vaex.io/en/latest/tutorials.html)
+ * Watch our more recent talks:
+ * [PyData London 2019](https://www.youtube.com/watch?v=2Tt0i823-ec)
+ * [SciPy 2019](https://www.youtube.com/watch?v=ELtjRdPT8is)
+ * Contact us for data science solutions, training, or enterprise support at https://vaex.io/
+
+
+
+
+%package help
+Summary: Development documents and examples for vaex
+Provides: python3-vaex-doc
+%description help
+
+[![Documentation](https://readthedocs.org/projects/vaex/badge/?version=latest)](https://docs.vaex.io)
+[![Slack](https://img.shields.io/badge/slack-chat-green.svg)](https://join.slack.com/t/vaexio/shared_invite/zt-shhxzf5i-Cf5n2LtkoYgUjOjbB3bGQQ)
+
+# What is Vaex?
+
+Vaex is a high performance Python library for lazy **Out-of-Core DataFrames**
+(similar to Pandas), to visualize and explore big tabular datasets. It
+calculates *statistics* such as mean, sum, count, standard deviation etc, on an
+*N-dimensional grid* for more than **a billion** (`10^9`) samples/rows **per
+second**. Visualization is done using **histograms**, **density plots** and **3d
+volume rendering**, allowing interactive exploration of big data. Vaex uses
+memory mapping, zero memory copy policy and lazy computations for best
+performance (no memory wasted).
+
+# Installing
+With pip:
+```
+$ pip install vaex
+```
+Or conda:
+```
+$ conda install -c conda-forge vaex
+```
+
+[For more details, see the documentation](https://docs.vaex.io/en/latest/installing.html)
+
+# Key features
+## Instant opening of Huge data files (memory mapping)
+[HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format) and [Apache Arrow](https://arrow.apache.org/) supported.
+
+![opening1a](https://user-images.githubusercontent.com/1765949/82818563-31c1e200-9e9f-11ea-9ee0-0a8c1994cdc9.png)
+
+
+![opening1b](https://user-images.githubusercontent.com/1765949/82820352-49e73080-9ea2-11ea-9153-d73aa399d329.png)
+
+[Read the documentation on how to efficiently convert your data](https://docs.vaex.io/en/latest/example_io.html) from CSV files, Pandas DataFrames, or other sources.
+
+
+Lazy streaming from S3 supported in combination with memory mapping.
+
+![opening1c](https://user-images.githubusercontent.com/1765949/82820516-a21e3280-9ea2-11ea-948b-07df26c4b5d3.png)
+
+
+## Expression system
+Don't waste memory or time with feature engineering, we (lazily) transform your data when needed.
+
+
+![expression](https://user-images.githubusercontent.com/1765949/82818733-70f03300-9e9f-11ea-80b0-ab28e7950b5c.png)
+
+
+
+## Out-of-core DataFrame
+Filtering and evaluating expressions will not waste memory by making copies; the data is kept untouched on disk, and will be streamed only when needed. Delay the time before you need a cluster.
+
+
+![occ-animated](https://user-images.githubusercontent.com/1765949/82821111-c6c6da00-9ea3-11ea-9f9e-498de8133cc2.gif)
+
+## Fast groupby / aggregations
+Vaex implements parallelized, highly performant `groupby` operations, especially when using categories (>1 billion/second).
+
+
+![groupby](https://user-images.githubusercontent.com/1765949/82818807-97ae6980-9e9f-11ea-8820-41dd4441057a.png)
+
+
+## Fast and efficient join
+Vaex doesn't copy/materialize the 'right' table when joining, saving gigabytes of memory. With subsecond joining on a billion rows, it's pretty fast!
+
+![join](https://user-images.githubusercontent.com/1765949/82818840-a268fe80-9e9f-11ea-8ba2-6a6d52c4af88.png)
+
+## More features
+
+ * Remote DataFrames (documentation coming soon)
+ * Integration into [Jupyter and Voila for interactive notebooks and dashboards](https://vaex.readthedocs.io/en/latest/tutorial_jupyter.html)
+ * [Machine Learning without (explicit) pipelines](https://vaex.readthedocs.io/en/latest/tutorial_ml.html)
+
+
+## Contributing
+
+See [contributing](CONTRIBUTING.md) page.
+
+## Slack
+
+Join the discussion in our [Slack](https://join.slack.com/t/vaexio/shared_invite/zt-shhxzf5i-Cf5n2LtkoYgUjOjbB3bGQQ) channel!
+
+# Learn more about Vaex
+ * Articles
+ * [Beyond Pandas: Spark, Dask, Vaex and other big data technologies battling head to head](https://towardsdatascience.com/beyond-pandas-spark-dask-vaex-and-other-big-data-technologies-battling-head-to-head-a453a1f8cc13) (includes benchmarks)
+ * [7 reasons why I love Vaex for data science](https://towardsdatascience.com/7-reasons-why-i-love-vaex-for-data-science-99008bc8044b) (tips and trics)
+ * [ML impossible: Train 1 billion samples in 5 minutes on your laptop using Vaex and Scikit-Learn](https://towardsdatascience.com/ml-impossible-train-a-1-billion-sample-model-in-20-minutes-with-vaex-and-scikit-learn-on-your-9e2968e6f385)
+ * [How to analyse 100 GB of data on your laptop with Python](https://towardsdatascience.com/how-to-analyse-100s-of-gbs-of-data-on-your-laptop-with-python-f83363dda94)
+ * [Flying high with Vaex: analysis of over 30 years of flight data in Python](https://towardsdatascience.com/https-medium-com-jovan-veljanoski-flying-high-with-vaex-analysis-of-over-30-years-of-flight-data-in-python-b224825a6d56)
+ * [Vaex: A DataFrame with super strings - Speed up your text processing up to a 1000x
+](https://towardsdatascience.com/vaex-a-dataframe-with-super-strings-789b92e8d861)
+ * [Vaex: Out of Core Dataframes for Python and Fast Visualization - 1 billion row datasets on your laptop](https://towardsdatascience.com/vaex-out-of-core-dataframes-for-python-and-fast-visualization-12c102db044a)
+
+ * [Follow our tutorials](https://docs.vaex.io/en/latest/tutorials.html)
+ * Watch our more recent talks:
+ * [PyData London 2019](https://www.youtube.com/watch?v=2Tt0i823-ec)
+ * [SciPy 2019](https://www.youtube.com/watch?v=ELtjRdPT8is)
+ * Contact us for data science solutions, training, or enterprise support at https://vaex.io/
+
+
+
+
+%prep
+%autosetup -n vaex-4.16.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-vaex -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 4.16.0-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..f940516
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+d5dc4ce040babf90ab5a516a3d24094a vaex-4.16.0.tar.gz