summaryrefslogtreecommitdiff
path: root/python-varclushi.spec
blob: eeb7e5e580d3e12e78fda52594e1638199f635dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
%global _empty_manifest_terminate_build 0
Name:		python-varclushi
Version:	0.1.0
Release:	1
Summary:	A package for variable clustering
License:	GNU General Public License v3 (GPLv3)
URL:		https://github.com/jingtt/varclushi
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/96/7e/3e7c36c542b6927d563bead838b2a8672210fadba58842c12273f7a22baa/varclushi-0.1.0.tar.gz
BuildArch:	noarch

Requires:	python3-pandas
Requires:	python3-numpy
Requires:	python3-factor-analyzer

%description
# VarClusHi

This is a Python module to perform variable clustering (varclus) with a hierarchical structure. Varclus is a nice dimension reduction algorithm. Here is a short description:

1. A cluster is chosen for splitting.
2. The chosen cluster is split into two clusters by finding the first two principal components, performing an orthoblique rotation, and assigning each variable to the rotated component with which it has the higher squared correlation.
3. Variables are iteratively reassigned to clusters to maximize the variance accounted for by the cluster components.


## Indented Audience:
- Those who are familar with the usage of varclus algorithm in other analytical software like SAS, but always feel distressed when trying to find a RIGHT python module.
- Pythoners who are new to varclus algorithm. The source code could help you gain a deep understanding of the math behind this algorithm.

## INSIGHTS & HIGHLIGHTS:
- (this is a pure theoretical part, ignore this bullet point does not affect the usage of this package) Existing literatures always mention we need principal components (refer step 2-3 above). Actually, implementing this algorithm DOES NOT require principle components to be calulated, correlation matrix and its eigenvectors are enough to get the squared correlation between component and variable (this can be proved by math). If our dataset has millions of observations and hundreds of variables, not using principal components will save time and memory.
- Python package VarClusHi can produce very similar results, if we use SAS VARCLUS Procedure as a benchmark. This gurantees the correctness of the code.:)


# Example








## See [demo.ipynb](https://github.com/jingtt/varclushi/blob/master/demo.ipynb) for more details.

```python
import pandas as pd
from varclushi import VarClusHi
```

Create a VarClusHi object and pass the dataframe (df) to be analyzed as a parameter, you can also specify 
- a feature list (feat_list, default all columns of df)
- max second eigenvalue (maxeigval2, default 1)
- max clusters (maxclus, default None)

Then call method varclus(), which performs hierachical variable clustering algorithm

```python
demo1_df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv', sep=';')
demo1_df.drop('quality',axis=1,inplace=True)
demo1_vc = VarClusHi(demo1_df,maxeigval2=1,maxclus=None)
demo1_vc.varclus()
```
```
<varclushi.varclushi.VarClusHi at 0x15f96e35e10>
```
Call info, you can get the number of clusters, number of variables in each cluster (N_vars), variance explained by each cluster (Eigval1), etc.

```python
demo1_vc.info
```
```python
  Cluster N_Vars   Eigval1   Eigval2   VarProp
0       0      3  2.141357  0.658413  0.713786
1       1      3  1.766885  0.900991  0.588962
2       2      2  1.371260  0.628740  0.685630
3       3      2  1.552496  0.447504  0.776248
4       4      1  1.000000  0.000000  1.000000
```

Call rsquare, you can get the (1 - rsquare) ratio of each variable

```python
demo1_vc.rsquare
```

```python
   Cluster              Variable    RS_Own     RS_NC  RS_Ratio
0        0         fixed acidity  0.882210  0.277256  0.162976
1        0               density  0.622070  0.246194  0.501362
2        0                    pH  0.637076  0.194359  0.450478
3        1   free sulfur dioxide  0.777796  0.010358  0.224530
4        1  total sulfur dioxide  0.786660  0.042294  0.222761
5        1        residual sugar  0.202428  0.045424  0.835525
6        2             sulphates  0.685630  0.106022  0.351653
7        2             chlorides  0.685630  0.048903  0.330534
8        3           citric acid  0.776248  0.398208  0.371810
9        3      volatile acidity  0.776248  0.040920  0.233299
10       4               alcohol  1.000000  0.082055  0.000000
```



# Installation

- Requirements: Python 3.4+

- Install by pip:

```
pip install varclushi
```

# Other Comments:
- The parameters controlling this algorithm only include second eigenvalues and max number of clusters. I do not develop other functions because it is enough for my use. If you have a need for more flexibility, you can reach out to me via xuanjing@hotmail.com.

- Comments for source code will be added once I have time.

# Thanks

Thank my former manager ***, I first heard of this method from him. Thank my current manager Mr. Mingsong Li, who gave me enough encouragement and support to complete this project.



%package -n python3-varclushi
Summary:	A package for variable clustering
Provides:	python-varclushi
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-varclushi
# VarClusHi

This is a Python module to perform variable clustering (varclus) with a hierarchical structure. Varclus is a nice dimension reduction algorithm. Here is a short description:

1. A cluster is chosen for splitting.
2. The chosen cluster is split into two clusters by finding the first two principal components, performing an orthoblique rotation, and assigning each variable to the rotated component with which it has the higher squared correlation.
3. Variables are iteratively reassigned to clusters to maximize the variance accounted for by the cluster components.


## Indented Audience:
- Those who are familar with the usage of varclus algorithm in other analytical software like SAS, but always feel distressed when trying to find a RIGHT python module.
- Pythoners who are new to varclus algorithm. The source code could help you gain a deep understanding of the math behind this algorithm.

## INSIGHTS & HIGHLIGHTS:
- (this is a pure theoretical part, ignore this bullet point does not affect the usage of this package) Existing literatures always mention we need principal components (refer step 2-3 above). Actually, implementing this algorithm DOES NOT require principle components to be calulated, correlation matrix and its eigenvectors are enough to get the squared correlation between component and variable (this can be proved by math). If our dataset has millions of observations and hundreds of variables, not using principal components will save time and memory.
- Python package VarClusHi can produce very similar results, if we use SAS VARCLUS Procedure as a benchmark. This gurantees the correctness of the code.:)


# Example








## See [demo.ipynb](https://github.com/jingtt/varclushi/blob/master/demo.ipynb) for more details.

```python
import pandas as pd
from varclushi import VarClusHi
```

Create a VarClusHi object and pass the dataframe (df) to be analyzed as a parameter, you can also specify 
- a feature list (feat_list, default all columns of df)
- max second eigenvalue (maxeigval2, default 1)
- max clusters (maxclus, default None)

Then call method varclus(), which performs hierachical variable clustering algorithm

```python
demo1_df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv', sep=';')
demo1_df.drop('quality',axis=1,inplace=True)
demo1_vc = VarClusHi(demo1_df,maxeigval2=1,maxclus=None)
demo1_vc.varclus()
```
```
<varclushi.varclushi.VarClusHi at 0x15f96e35e10>
```
Call info, you can get the number of clusters, number of variables in each cluster (N_vars), variance explained by each cluster (Eigval1), etc.

```python
demo1_vc.info
```
```python
  Cluster N_Vars   Eigval1   Eigval2   VarProp
0       0      3  2.141357  0.658413  0.713786
1       1      3  1.766885  0.900991  0.588962
2       2      2  1.371260  0.628740  0.685630
3       3      2  1.552496  0.447504  0.776248
4       4      1  1.000000  0.000000  1.000000
```

Call rsquare, you can get the (1 - rsquare) ratio of each variable

```python
demo1_vc.rsquare
```

```python
   Cluster              Variable    RS_Own     RS_NC  RS_Ratio
0        0         fixed acidity  0.882210  0.277256  0.162976
1        0               density  0.622070  0.246194  0.501362
2        0                    pH  0.637076  0.194359  0.450478
3        1   free sulfur dioxide  0.777796  0.010358  0.224530
4        1  total sulfur dioxide  0.786660  0.042294  0.222761
5        1        residual sugar  0.202428  0.045424  0.835525
6        2             sulphates  0.685630  0.106022  0.351653
7        2             chlorides  0.685630  0.048903  0.330534
8        3           citric acid  0.776248  0.398208  0.371810
9        3      volatile acidity  0.776248  0.040920  0.233299
10       4               alcohol  1.000000  0.082055  0.000000
```



# Installation

- Requirements: Python 3.4+

- Install by pip:

```
pip install varclushi
```

# Other Comments:
- The parameters controlling this algorithm only include second eigenvalues and max number of clusters. I do not develop other functions because it is enough for my use. If you have a need for more flexibility, you can reach out to me via xuanjing@hotmail.com.

- Comments for source code will be added once I have time.

# Thanks

Thank my former manager ***, I first heard of this method from him. Thank my current manager Mr. Mingsong Li, who gave me enough encouragement and support to complete this project.



%package help
Summary:	Development documents and examples for varclushi
Provides:	python3-varclushi-doc
%description help
# VarClusHi

This is a Python module to perform variable clustering (varclus) with a hierarchical structure. Varclus is a nice dimension reduction algorithm. Here is a short description:

1. A cluster is chosen for splitting.
2. The chosen cluster is split into two clusters by finding the first two principal components, performing an orthoblique rotation, and assigning each variable to the rotated component with which it has the higher squared correlation.
3. Variables are iteratively reassigned to clusters to maximize the variance accounted for by the cluster components.


## Indented Audience:
- Those who are familar with the usage of varclus algorithm in other analytical software like SAS, but always feel distressed when trying to find a RIGHT python module.
- Pythoners who are new to varclus algorithm. The source code could help you gain a deep understanding of the math behind this algorithm.

## INSIGHTS & HIGHLIGHTS:
- (this is a pure theoretical part, ignore this bullet point does not affect the usage of this package) Existing literatures always mention we need principal components (refer step 2-3 above). Actually, implementing this algorithm DOES NOT require principle components to be calulated, correlation matrix and its eigenvectors are enough to get the squared correlation between component and variable (this can be proved by math). If our dataset has millions of observations and hundreds of variables, not using principal components will save time and memory.
- Python package VarClusHi can produce very similar results, if we use SAS VARCLUS Procedure as a benchmark. This gurantees the correctness of the code.:)


# Example








## See [demo.ipynb](https://github.com/jingtt/varclushi/blob/master/demo.ipynb) for more details.

```python
import pandas as pd
from varclushi import VarClusHi
```

Create a VarClusHi object and pass the dataframe (df) to be analyzed as a parameter, you can also specify 
- a feature list (feat_list, default all columns of df)
- max second eigenvalue (maxeigval2, default 1)
- max clusters (maxclus, default None)

Then call method varclus(), which performs hierachical variable clustering algorithm

```python
demo1_df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv', sep=';')
demo1_df.drop('quality',axis=1,inplace=True)
demo1_vc = VarClusHi(demo1_df,maxeigval2=1,maxclus=None)
demo1_vc.varclus()
```
```
<varclushi.varclushi.VarClusHi at 0x15f96e35e10>
```
Call info, you can get the number of clusters, number of variables in each cluster (N_vars), variance explained by each cluster (Eigval1), etc.

```python
demo1_vc.info
```
```python
  Cluster N_Vars   Eigval1   Eigval2   VarProp
0       0      3  2.141357  0.658413  0.713786
1       1      3  1.766885  0.900991  0.588962
2       2      2  1.371260  0.628740  0.685630
3       3      2  1.552496  0.447504  0.776248
4       4      1  1.000000  0.000000  1.000000
```

Call rsquare, you can get the (1 - rsquare) ratio of each variable

```python
demo1_vc.rsquare
```

```python
   Cluster              Variable    RS_Own     RS_NC  RS_Ratio
0        0         fixed acidity  0.882210  0.277256  0.162976
1        0               density  0.622070  0.246194  0.501362
2        0                    pH  0.637076  0.194359  0.450478
3        1   free sulfur dioxide  0.777796  0.010358  0.224530
4        1  total sulfur dioxide  0.786660  0.042294  0.222761
5        1        residual sugar  0.202428  0.045424  0.835525
6        2             sulphates  0.685630  0.106022  0.351653
7        2             chlorides  0.685630  0.048903  0.330534
8        3           citric acid  0.776248  0.398208  0.371810
9        3      volatile acidity  0.776248  0.040920  0.233299
10       4               alcohol  1.000000  0.082055  0.000000
```



# Installation

- Requirements: Python 3.4+

- Install by pip:

```
pip install varclushi
```

# Other Comments:
- The parameters controlling this algorithm only include second eigenvalues and max number of clusters. I do not develop other functions because it is enough for my use. If you have a need for more flexibility, you can reach out to me via xuanjing@hotmail.com.

- Comments for source code will be added once I have time.

# Thanks

Thank my former manager ***, I first heard of this method from him. Thank my current manager Mr. Mingsong Li, who gave me enough encouragement and support to complete this project.



%prep
%autosetup -n varclushi-0.1.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-varclushi -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.0-1
- Package Spec generated