1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
%global _empty_manifest_terminate_build 0
Name: python-vectorhub
Version: 1.8.3
Release: 1
Summary: One liner to encode data into vectors with state-of-the-art models using tensorflow, pytorch and other open source libraries. Word2Vec, Image2Vec, BERT, etc
License: Apache
URL: https://github.com/vector-ai/vectorhub
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/20/d5/03f2cf02eddd67439aef3e08bd54ca36f6d663c3ed092093b07998337411/vectorhub-1.8.3.tar.gz
BuildArch: noarch
Requires: python3-PyYAML
Requires: python3-requests
Requires: python3-document-utils
Requires: python3-numpy
Requires: python3-Pillow
Requires: python3-PyYAML
Requires: python3-imageio
Requires: python3-soundfile
Requires: python3-tensorflow
Requires: python3-sphinx-rtd-theme
Requires: python3-requests
Requires: python3-sentence-transformers
Requires: python3-moviepy
Requires: python3-document-utils
Requires: python3-scikit-image
Requires: python3-PyYAML
Requires: python3-torch
Requires: python3-transformers
Requires: python3-fastai
Requires: python3-pytest
Requires: python3-torch
Requires: python3-appdirs
Requires: python3-mtcnn
Requires: python3-tf-models-official
Requires: python3-opencv-python
Requires: python3-tensorflow-text
Requires: python3-Pillow
Requires: python3-librosa
Requires: python3-tensorflow-hub
Requires: python3-fairseq
Requires: python3-numpy
Requires: python3-clip-by-openai
Requires: python3-bert-for-tf2
Requires: python3-appdirs
Requires: python3-librosa
Requires: python3-bert-for-tf2
Requires: python3-Pillow
Requires: python3-imageio
Requires: python3-scikit-image
Requires: python3-torch
Requires: python3-clip-by-openai
Requires: python3-opencv-python
Requires: python3-clip-by-openai
Requires: python3-PyYAML
Requires: python3-requests
Requires: python3-document-utils
Requires: python3-numpy
Requires: python3-document-utils
Requires: python3-fairseq
Requires: python3-torch
Requires: python3-tensorflow-hub
Requires: python3-soundfile
Requires: python3-tensorflow
Requires: python3-librosa
Requires: python3-transformers
Requires: python3-torch
Requires: python3-imageio
Requires: python3-scikit-image
Requires: python3-opencv-python
Requires: python3-fastai
Requires: python3-torch
Requires: python3-Pillow
Requires: python3-tensorflow
Requires: python3-appdirs
Requires: python3-mtcnn
Requires: python3-opencv-python
Requires: python3-imageio
Requires: python3-scikit-image
Requires: python3-tensorflow
Requires: python3-tensorflow-hub
Requires: python3-torch
Requires: python3-sentence-transformers
Requires: python3-transformers
Requires: python3-tensorflow
Requires: python3-tensorflow-text
Requires: python3-tensorflow
Requires: python3-tensorflow-hub
Requires: python3-tf-models-official
Requires: python3-bert-for-tf2
Requires: python3-tf-models-official
Requires: python3-tensorflow-hub
Requires: python3-tensorflow
Requires: python3-bert-for-tf2
Requires: python3-transformers
Requires: python3-torch
Requires: python3-moviepy
Requires: python3-opencv-python
Requires: python3-fairseq
Requires: python3-fastai
Requires: python3-imageio
Requires: python3-librosa
Requires: python3-moviepy
Requires: python3-mtcnn
Requires: python3-numpy
Requires: python3-opencv-python
Requires: python3-pytest
Requires: python3-requests
Requires: python3-scikit-image
Requires: python3-sentence-transformers
Requires: python3-soundfile
Requires: python3-sphinx-rtd-theme
Requires: python3-tensorflow-hub
Requires: python3-tensorflow-text
Requires: python3-tensorflow
Requires: python3-sphinx-rtd-theme
Requires: python3-pytest
Requires: python3-tf-models-official
Requires: python3-torch
Requires: python3-torch
Requires: python3-transformers
%description
<p align="center">
<a href="https://hub.getvectorai.com">
<img align="center" src="https://getvectorai.com/assets/vectorhub-goal.png" width="800"/>
</a>
</p>
<br>
There are many ways to extract vectors from data. This library aims to bring in all the state of the art models in a simple manner to vectorise your data easily.
Vector Hub provides:
- A low barrier of entry for practitioners (using common methods)
- Vectorise rich and complex data types like: text, image, audio, etc in 3 lines of code
- Retrieve and find information about a model
- An easy way to handle dependencies easily for different models
- Universal format of installation and encoding (using a simple `encode` method).
In order to provide an easy way for practitioners to quickly experiment, research and build new models and feature vectors, we provide a streamlined way to obtain vectors through our universal `encode` API.
Every model has the following:
- `encode` allows you to turn raw data into a vector
- `bulk_encode` allows you to turn multiple objects into multiple vectors
- `encode_documents` returns a list of dictionaries with with an encoded field
For bi-modal models:
Question Answering encoders will have:
- `encode_question`
- `encode_answer`
- `bulk_encode_question`
- `bulk_encode_answer`
Text Image Bi-encoders will have:
- `encode_image`
- `encode_text`
- `bulk_encode_image`
- `bulk_encode_text`
%package -n python3-vectorhub
Summary: One liner to encode data into vectors with state-of-the-art models using tensorflow, pytorch and other open source libraries. Word2Vec, Image2Vec, BERT, etc
Provides: python-vectorhub
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-vectorhub
<p align="center">
<a href="https://hub.getvectorai.com">
<img align="center" src="https://getvectorai.com/assets/vectorhub-goal.png" width="800"/>
</a>
</p>
<br>
There are many ways to extract vectors from data. This library aims to bring in all the state of the art models in a simple manner to vectorise your data easily.
Vector Hub provides:
- A low barrier of entry for practitioners (using common methods)
- Vectorise rich and complex data types like: text, image, audio, etc in 3 lines of code
- Retrieve and find information about a model
- An easy way to handle dependencies easily for different models
- Universal format of installation and encoding (using a simple `encode` method).
In order to provide an easy way for practitioners to quickly experiment, research and build new models and feature vectors, we provide a streamlined way to obtain vectors through our universal `encode` API.
Every model has the following:
- `encode` allows you to turn raw data into a vector
- `bulk_encode` allows you to turn multiple objects into multiple vectors
- `encode_documents` returns a list of dictionaries with with an encoded field
For bi-modal models:
Question Answering encoders will have:
- `encode_question`
- `encode_answer`
- `bulk_encode_question`
- `bulk_encode_answer`
Text Image Bi-encoders will have:
- `encode_image`
- `encode_text`
- `bulk_encode_image`
- `bulk_encode_text`
%package help
Summary: Development documents and examples for vectorhub
Provides: python3-vectorhub-doc
%description help
<p align="center">
<a href="https://hub.getvectorai.com">
<img align="center" src="https://getvectorai.com/assets/vectorhub-goal.png" width="800"/>
</a>
</p>
<br>
There are many ways to extract vectors from data. This library aims to bring in all the state of the art models in a simple manner to vectorise your data easily.
Vector Hub provides:
- A low barrier of entry for practitioners (using common methods)
- Vectorise rich and complex data types like: text, image, audio, etc in 3 lines of code
- Retrieve and find information about a model
- An easy way to handle dependencies easily for different models
- Universal format of installation and encoding (using a simple `encode` method).
In order to provide an easy way for practitioners to quickly experiment, research and build new models and feature vectors, we provide a streamlined way to obtain vectors through our universal `encode` API.
Every model has the following:
- `encode` allows you to turn raw data into a vector
- `bulk_encode` allows you to turn multiple objects into multiple vectors
- `encode_documents` returns a list of dictionaries with with an encoded field
For bi-modal models:
Question Answering encoders will have:
- `encode_question`
- `encode_answer`
- `bulk_encode_question`
- `bulk_encode_answer`
Text Image Bi-encoders will have:
- `encode_image`
- `encode_text`
- `bulk_encode_image`
- `bulk_encode_text`
%prep
%autosetup -n vectorhub-1.8.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-vectorhub -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 1.8.3-1
- Package Spec generated
|