summaryrefslogtreecommitdiff
path: root/python-vega-datasets.spec
blob: fef02b970d39d736d13a12e7b7bb3acb93da8ae9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
%global _empty_manifest_terminate_build 0
Name:		python-vega-datasets
Version:	0.9.0
Release:	1
Summary:	A Python package for offline access to Vega datasets
License:	MIT
URL:		http://github.com/altair-viz/vega_datasets
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/8f/a0/ce608d9a5b82fce2ebaa2311136b1e1d1dc2807f501bbdfa56bd174fff76/vega_datasets-0.9.0.tar.gz
BuildArch:	noarch

Requires:	python3-pandas

%description
# vega_datasets

[![build status](http://img.shields.io/travis/altair-viz/vega_datasets/master.svg?style=flat)](https://travis-ci.org/altair-viz/vega_datasets)
[![github actions](https://github.com/altair-viz/vega_datasets/workflows/build/badge.svg)](https://github.com/altair-viz/vega_datasets/actions?query=workflow%3Abuild)
[![github actions](https://github.com/altair-viz/vega_datasets/workflows/lint/badge.svg)](https://github.com/altair-viz/vega_datasets/actions?query=workflow%3Alint)
[![code style black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

A Python package for offline access to [vega datasets](https://github.com/vega/vega-datasets).

This package has several goals:

- Provide straightforward access in Python to the datasets made available at [vega-datasets](https://github.com/vega/vega-datasets).
- return the results in the form of a Pandas dataframe.
- wherever dataset size and/or license constraints make it possible, bundle the dataset with the package so that datasets can be loaded in the absence of a web connection.

Currently the package bundles a half-dozen datasets, and falls back to using HTTP requests for the others.

## Installation
``vega_datasets`` is compatible with Python 3.5 or newer. Install with:
```
$ pip install vega_datasets
```

## Usage

The main object in this library is ``data``:

```python
>>> from vega_datasets import data
```

It contains attributes that access all available datasets, locally if
available. For example, here is the well-known iris dataset:

```python
>>> df = data.iris()
>>> df.head()
   petalLength  petalWidth  sepalLength  sepalWidth species
0          1.4         0.2          5.1         3.5  setosa
1          1.4         0.2          4.9         3.0  setosa
2          1.3         0.2          4.7         3.2  setosa
3          1.5         0.2          4.6         3.1  setosa
4          1.4         0.2          5.0         3.6  setosa
```

If you're curious about the source data, you can access the URL for any of the available datasets:

```python
>>> data.iris.url
'https://cdn.jsdelivr.net/npm/vega-datasets@v1.29.0/data/iris.json'
```

For datasets bundled with the package, you can also find their location on disk:

```python
>>> data.iris.filepath
'/lib/python3.6/site-packages/vega_datasets/data/iris.json'
```

## Available Datasets

To list all the available datsets, use ``list_datasets``:

```python
>>> data.list_datasets()
['7zip', 'airports', 'anscombe', 'barley', 'birdstrikes', 'budget', 'budgets', 'burtin', 'cars', 'climate', 'co2-concentration', 'countries', 'crimea', 'disasters', 'driving', 'earthquakes', 'ffox', 'flare', 'flare-dependencies', 'flights-10k', 'flights-200k', 'flights-20k', 'flights-2k', 'flights-3m', 'flights-5k', 'flights-airport', 'gapminder', 'gapminder-health-income', 'gimp', 'github', 'graticule', 'income', 'iris', 'jobs', 'londonBoroughs', 'londonCentroids', 'londonTubeLines', 'lookup_groups', 'lookup_people', 'miserables', 'monarchs', 'movies', 'normal-2d', 'obesity', 'points', 'population', 'population_engineers_hurricanes', 'seattle-temps', 'seattle-weather', 'sf-temps', 'sp500', 'stocks', 'udistrict', 'unemployment', 'unemployment-across-industries', 'us-10m', 'us-employment', 'us-state-capitals', 'weather', 'weball26', 'wheat', 'world-110m', 'zipcodes']
```

To list local datasets (i.e. those that are bundled with the package and can be used without a web connection), use the ``local_data`` object instead:

```python
>>> from vega_datasets import local_data
>>> local_data.list_datasets()

['airports', 'anscombe', 'barley', 'burtin', 'cars', 'crimea', 'driving', 'iowa-electricity', 'iris', 'seattle-temps', 'seattle-weather', 'sf-temps', 'stocks', 'us-employment', "wheat"]
```

We plan to add more local datasets in the future, subject to size and licensing constraints. See the [local datasets issue](https://github.com/altair-viz/vega_datasets/issues/1) if you would like to help with this.

## Dataset Information

If you want more information about any dataset, you can use the ``description`` property:

```python
>>> data.iris.description
'This classic dataset contains lengths and widths of petals and sepals for 150 iris flowers, drawn from three species. It was introduced by R.A. Fisher in 1936 [1]_.'
```

This information is also part of the ``data.iris`` doc string.
Descriptions are not yet included for all the datasets in the package; we hope to add more information on this in the future.




%package -n python3-vega-datasets
Summary:	A Python package for offline access to Vega datasets
Provides:	python-vega-datasets
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-vega-datasets
# vega_datasets

[![build status](http://img.shields.io/travis/altair-viz/vega_datasets/master.svg?style=flat)](https://travis-ci.org/altair-viz/vega_datasets)
[![github actions](https://github.com/altair-viz/vega_datasets/workflows/build/badge.svg)](https://github.com/altair-viz/vega_datasets/actions?query=workflow%3Abuild)
[![github actions](https://github.com/altair-viz/vega_datasets/workflows/lint/badge.svg)](https://github.com/altair-viz/vega_datasets/actions?query=workflow%3Alint)
[![code style black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

A Python package for offline access to [vega datasets](https://github.com/vega/vega-datasets).

This package has several goals:

- Provide straightforward access in Python to the datasets made available at [vega-datasets](https://github.com/vega/vega-datasets).
- return the results in the form of a Pandas dataframe.
- wherever dataset size and/or license constraints make it possible, bundle the dataset with the package so that datasets can be loaded in the absence of a web connection.

Currently the package bundles a half-dozen datasets, and falls back to using HTTP requests for the others.

## Installation
``vega_datasets`` is compatible with Python 3.5 or newer. Install with:
```
$ pip install vega_datasets
```

## Usage

The main object in this library is ``data``:

```python
>>> from vega_datasets import data
```

It contains attributes that access all available datasets, locally if
available. For example, here is the well-known iris dataset:

```python
>>> df = data.iris()
>>> df.head()
   petalLength  petalWidth  sepalLength  sepalWidth species
0          1.4         0.2          5.1         3.5  setosa
1          1.4         0.2          4.9         3.0  setosa
2          1.3         0.2          4.7         3.2  setosa
3          1.5         0.2          4.6         3.1  setosa
4          1.4         0.2          5.0         3.6  setosa
```

If you're curious about the source data, you can access the URL for any of the available datasets:

```python
>>> data.iris.url
'https://cdn.jsdelivr.net/npm/vega-datasets@v1.29.0/data/iris.json'
```

For datasets bundled with the package, you can also find their location on disk:

```python
>>> data.iris.filepath
'/lib/python3.6/site-packages/vega_datasets/data/iris.json'
```

## Available Datasets

To list all the available datsets, use ``list_datasets``:

```python
>>> data.list_datasets()
['7zip', 'airports', 'anscombe', 'barley', 'birdstrikes', 'budget', 'budgets', 'burtin', 'cars', 'climate', 'co2-concentration', 'countries', 'crimea', 'disasters', 'driving', 'earthquakes', 'ffox', 'flare', 'flare-dependencies', 'flights-10k', 'flights-200k', 'flights-20k', 'flights-2k', 'flights-3m', 'flights-5k', 'flights-airport', 'gapminder', 'gapminder-health-income', 'gimp', 'github', 'graticule', 'income', 'iris', 'jobs', 'londonBoroughs', 'londonCentroids', 'londonTubeLines', 'lookup_groups', 'lookup_people', 'miserables', 'monarchs', 'movies', 'normal-2d', 'obesity', 'points', 'population', 'population_engineers_hurricanes', 'seattle-temps', 'seattle-weather', 'sf-temps', 'sp500', 'stocks', 'udistrict', 'unemployment', 'unemployment-across-industries', 'us-10m', 'us-employment', 'us-state-capitals', 'weather', 'weball26', 'wheat', 'world-110m', 'zipcodes']
```

To list local datasets (i.e. those that are bundled with the package and can be used without a web connection), use the ``local_data`` object instead:

```python
>>> from vega_datasets import local_data
>>> local_data.list_datasets()

['airports', 'anscombe', 'barley', 'burtin', 'cars', 'crimea', 'driving', 'iowa-electricity', 'iris', 'seattle-temps', 'seattle-weather', 'sf-temps', 'stocks', 'us-employment', "wheat"]
```

We plan to add more local datasets in the future, subject to size and licensing constraints. See the [local datasets issue](https://github.com/altair-viz/vega_datasets/issues/1) if you would like to help with this.

## Dataset Information

If you want more information about any dataset, you can use the ``description`` property:

```python
>>> data.iris.description
'This classic dataset contains lengths and widths of petals and sepals for 150 iris flowers, drawn from three species. It was introduced by R.A. Fisher in 1936 [1]_.'
```

This information is also part of the ``data.iris`` doc string.
Descriptions are not yet included for all the datasets in the package; we hope to add more information on this in the future.




%package help
Summary:	Development documents and examples for vega-datasets
Provides:	python3-vega-datasets-doc
%description help
# vega_datasets

[![build status](http://img.shields.io/travis/altair-viz/vega_datasets/master.svg?style=flat)](https://travis-ci.org/altair-viz/vega_datasets)
[![github actions](https://github.com/altair-viz/vega_datasets/workflows/build/badge.svg)](https://github.com/altair-viz/vega_datasets/actions?query=workflow%3Abuild)
[![github actions](https://github.com/altair-viz/vega_datasets/workflows/lint/badge.svg)](https://github.com/altair-viz/vega_datasets/actions?query=workflow%3Alint)
[![code style black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

A Python package for offline access to [vega datasets](https://github.com/vega/vega-datasets).

This package has several goals:

- Provide straightforward access in Python to the datasets made available at [vega-datasets](https://github.com/vega/vega-datasets).
- return the results in the form of a Pandas dataframe.
- wherever dataset size and/or license constraints make it possible, bundle the dataset with the package so that datasets can be loaded in the absence of a web connection.

Currently the package bundles a half-dozen datasets, and falls back to using HTTP requests for the others.

## Installation
``vega_datasets`` is compatible with Python 3.5 or newer. Install with:
```
$ pip install vega_datasets
```

## Usage

The main object in this library is ``data``:

```python
>>> from vega_datasets import data
```

It contains attributes that access all available datasets, locally if
available. For example, here is the well-known iris dataset:

```python
>>> df = data.iris()
>>> df.head()
   petalLength  petalWidth  sepalLength  sepalWidth species
0          1.4         0.2          5.1         3.5  setosa
1          1.4         0.2          4.9         3.0  setosa
2          1.3         0.2          4.7         3.2  setosa
3          1.5         0.2          4.6         3.1  setosa
4          1.4         0.2          5.0         3.6  setosa
```

If you're curious about the source data, you can access the URL for any of the available datasets:

```python
>>> data.iris.url
'https://cdn.jsdelivr.net/npm/vega-datasets@v1.29.0/data/iris.json'
```

For datasets bundled with the package, you can also find their location on disk:

```python
>>> data.iris.filepath
'/lib/python3.6/site-packages/vega_datasets/data/iris.json'
```

## Available Datasets

To list all the available datsets, use ``list_datasets``:

```python
>>> data.list_datasets()
['7zip', 'airports', 'anscombe', 'barley', 'birdstrikes', 'budget', 'budgets', 'burtin', 'cars', 'climate', 'co2-concentration', 'countries', 'crimea', 'disasters', 'driving', 'earthquakes', 'ffox', 'flare', 'flare-dependencies', 'flights-10k', 'flights-200k', 'flights-20k', 'flights-2k', 'flights-3m', 'flights-5k', 'flights-airport', 'gapminder', 'gapminder-health-income', 'gimp', 'github', 'graticule', 'income', 'iris', 'jobs', 'londonBoroughs', 'londonCentroids', 'londonTubeLines', 'lookup_groups', 'lookup_people', 'miserables', 'monarchs', 'movies', 'normal-2d', 'obesity', 'points', 'population', 'population_engineers_hurricanes', 'seattle-temps', 'seattle-weather', 'sf-temps', 'sp500', 'stocks', 'udistrict', 'unemployment', 'unemployment-across-industries', 'us-10m', 'us-employment', 'us-state-capitals', 'weather', 'weball26', 'wheat', 'world-110m', 'zipcodes']
```

To list local datasets (i.e. those that are bundled with the package and can be used without a web connection), use the ``local_data`` object instead:

```python
>>> from vega_datasets import local_data
>>> local_data.list_datasets()

['airports', 'anscombe', 'barley', 'burtin', 'cars', 'crimea', 'driving', 'iowa-electricity', 'iris', 'seattle-temps', 'seattle-weather', 'sf-temps', 'stocks', 'us-employment', "wheat"]
```

We plan to add more local datasets in the future, subject to size and licensing constraints. See the [local datasets issue](https://github.com/altair-viz/vega_datasets/issues/1) if you would like to help with this.

## Dataset Information

If you want more information about any dataset, you can use the ``description`` property:

```python
>>> data.iris.description
'This classic dataset contains lengths and widths of petals and sepals for 150 iris flowers, drawn from three species. It was introduced by R.A. Fisher in 1936 [1]_.'
```

This information is also part of the ``data.iris`` doc string.
Descriptions are not yet included for all the datasets in the package; we hope to add more information on this in the future.




%prep
%autosetup -n vega-datasets-0.9.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-vega-datasets -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.9.0-1
- Package Spec generated