summaryrefslogtreecommitdiff
path: root/python-veroku.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-veroku.spec')
-rw-r--r--python-veroku.spec348
1 files changed, 348 insertions, 0 deletions
diff --git a/python-veroku.spec b/python-veroku.spec
new file mode 100644
index 0000000..ea42be9
--- /dev/null
+++ b/python-veroku.spec
@@ -0,0 +1,348 @@
+%global _empty_manifest_terminate_build 0
+Name: python-veroku
+Version: 1.0.171
+Release: 1
+Summary: An open source library for building and performing inference with probabilistic graphical models.
+License: BSD 3-Clause License
+URL: https://github.com/ejlouw/veroku
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/82/55/ea160d2b13cc3179e6b3443d143b58bd4d815fc924229dfe7070c9849aea/veroku-1.0.171.tar.gz
+BuildArch: noarch
+
+Requires: python3-numdifftools
+Requires: python3-scipy
+Requires: python3-matplotlib
+Requires: python3-seaborn
+Requires: python3-graphviz
+Requires: python3-Pillow
+Requires: python3-ipython
+Requires: python3-pandas
+Requires: python3-tqdm
+Requires: python3-ipympl
+Requires: python3-numpy
+Requires: python3-networkx
+
+%description
+<div align="center">
+ <img src="logo.svg">
+</div>
+
+[comment]: # (doc-start)
+
+![Build Status](https://github.com/ejlouw/veroku/workflows/CI_PIPELINE/badge.svg?branch=master)
+
+### Installation
+For installing through pip:
+```bash
+pip install veroku
+```
+
+To clone this git repo:
+```
+git clone https://github.com/ejlouw/veroku.git
+cd veroku/
+pip install -r requirements.txt
+```
+It is recommended to use a separate conda virtual environment when installing the dependencies, to avoid interfering
+with existing packages. To get started with conda environments, see the
+[installation guide](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html).
+For more information on using conda environments see
+[managing environments guide](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)
+
+### Overview
+<div style="text-align: justify">
+Veroku is an open source library for building and performing inference with probabilistic graphical models (PGMs) in
+python. PGMs provide a framework for performing efficient probabilistic inference with very high dimensional
+distributions. A typical example of a well-known type of PGM is the Kalman filter that can be used to obtain
+probabilistic estimates of a hidden state of a process or system, given noisy measurements. PGMs can in principle be
+used for any problem that involves uncertainty and is therefore applicable to many problems.</div>
+
+Veroku currently supports the following probability distributions:
+* Categorical (sparse and dense implementations)
+* Gaussian
+* Gaussian mixture<sup>1</sup>
+* Linear Gaussian<sup>2</sup>
+* Non-linear Gaussian<sup>3</sup>
+
+<sup>1</sup> This class still has some experimental functionality (specifically the Gaussian mixture division methods)
+and is, therefore, still in the factors.experimental sub-package.
+<sup>2</sup> Using the Gaussian class - see the Kalman filter example notebook.<br/>
+<sup>3</sup>This implementation is still experimental (see the factors.experimental sub-package).
+
+
+<div style="text-align: justify">
+These distributions can be used as factors to represent a factorised distribution. These factors can be used, together
+with the <code>cluster_graph</code> module to automatically create valid cluster graphs. Inference can be performed in these graphs
+using message passing algorithms. Currently only the LBU (Loopy Belief Update) message-passing algorithm is supported.
+</div>
+
+<br/>
+Example notebooks:
+
+* [Toy example](https://github.com/ejlouw/veroku/blob/master/examples/slip_on_grass.ipynb)
+* [Kalman filter](https://github.com/ejlouw/veroku/blob/master/examples/Kalman_filter.ipynb)
+* [Sudoku](https://github.com/ejlouw/veroku/blob/master/examples/sudoku.ipynb)
+
+
+
+### On the Roadmap
+The following distributions, models and features are on the roadmap to be added to veroku:
+* Conditional Gaussian
+* Dirichlet distribution
+* Wishart distribution
+* Normal-Wishart distribution
+* Plate models
+* Structure Learning
+* Causal Inference
+
+### Dependencies
+For the python dependencies see the [requirements](https://github.com/ejlouw/veroku/blob/master/requirements.txt) file.
+The following additional dependencies are also required for some functionality (these are not installed automatically
+ with the `pip install`):
+
+##### Graphviz
+See https://graphviz.org/download/ for installation instructions.
+
+### Contributing
+If you would like to contribute to veroku, please see the [contributing guide](https://github.com/ejlouw/veroku/blob/master/contributing.md).
+
+### License
+Veroku is released under a 3-Clause BSD license. You can view the license
+[here](https://github.com/ejlouw/veroku/blob/master/LICENSE).
+
+
+
+
+%package -n python3-veroku
+Summary: An open source library for building and performing inference with probabilistic graphical models.
+Provides: python-veroku
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-veroku
+<div align="center">
+ <img src="logo.svg">
+</div>
+
+[comment]: # (doc-start)
+
+![Build Status](https://github.com/ejlouw/veroku/workflows/CI_PIPELINE/badge.svg?branch=master)
+
+### Installation
+For installing through pip:
+```bash
+pip install veroku
+```
+
+To clone this git repo:
+```
+git clone https://github.com/ejlouw/veroku.git
+cd veroku/
+pip install -r requirements.txt
+```
+It is recommended to use a separate conda virtual environment when installing the dependencies, to avoid interfering
+with existing packages. To get started with conda environments, see the
+[installation guide](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html).
+For more information on using conda environments see
+[managing environments guide](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)
+
+### Overview
+<div style="text-align: justify">
+Veroku is an open source library for building and performing inference with probabilistic graphical models (PGMs) in
+python. PGMs provide a framework for performing efficient probabilistic inference with very high dimensional
+distributions. A typical example of a well-known type of PGM is the Kalman filter that can be used to obtain
+probabilistic estimates of a hidden state of a process or system, given noisy measurements. PGMs can in principle be
+used for any problem that involves uncertainty and is therefore applicable to many problems.</div>
+
+Veroku currently supports the following probability distributions:
+* Categorical (sparse and dense implementations)
+* Gaussian
+* Gaussian mixture<sup>1</sup>
+* Linear Gaussian<sup>2</sup>
+* Non-linear Gaussian<sup>3</sup>
+
+<sup>1</sup> This class still has some experimental functionality (specifically the Gaussian mixture division methods)
+and is, therefore, still in the factors.experimental sub-package.
+<sup>2</sup> Using the Gaussian class - see the Kalman filter example notebook.<br/>
+<sup>3</sup>This implementation is still experimental (see the factors.experimental sub-package).
+
+
+<div style="text-align: justify">
+These distributions can be used as factors to represent a factorised distribution. These factors can be used, together
+with the <code>cluster_graph</code> module to automatically create valid cluster graphs. Inference can be performed in these graphs
+using message passing algorithms. Currently only the LBU (Loopy Belief Update) message-passing algorithm is supported.
+</div>
+
+<br/>
+Example notebooks:
+
+* [Toy example](https://github.com/ejlouw/veroku/blob/master/examples/slip_on_grass.ipynb)
+* [Kalman filter](https://github.com/ejlouw/veroku/blob/master/examples/Kalman_filter.ipynb)
+* [Sudoku](https://github.com/ejlouw/veroku/blob/master/examples/sudoku.ipynb)
+
+
+
+### On the Roadmap
+The following distributions, models and features are on the roadmap to be added to veroku:
+* Conditional Gaussian
+* Dirichlet distribution
+* Wishart distribution
+* Normal-Wishart distribution
+* Plate models
+* Structure Learning
+* Causal Inference
+
+### Dependencies
+For the python dependencies see the [requirements](https://github.com/ejlouw/veroku/blob/master/requirements.txt) file.
+The following additional dependencies are also required for some functionality (these are not installed automatically
+ with the `pip install`):
+
+##### Graphviz
+See https://graphviz.org/download/ for installation instructions.
+
+### Contributing
+If you would like to contribute to veroku, please see the [contributing guide](https://github.com/ejlouw/veroku/blob/master/contributing.md).
+
+### License
+Veroku is released under a 3-Clause BSD license. You can view the license
+[here](https://github.com/ejlouw/veroku/blob/master/LICENSE).
+
+
+
+
+%package help
+Summary: Development documents and examples for veroku
+Provides: python3-veroku-doc
+%description help
+<div align="center">
+ <img src="logo.svg">
+</div>
+
+[comment]: # (doc-start)
+
+![Build Status](https://github.com/ejlouw/veroku/workflows/CI_PIPELINE/badge.svg?branch=master)
+
+### Installation
+For installing through pip:
+```bash
+pip install veroku
+```
+
+To clone this git repo:
+```
+git clone https://github.com/ejlouw/veroku.git
+cd veroku/
+pip install -r requirements.txt
+```
+It is recommended to use a separate conda virtual environment when installing the dependencies, to avoid interfering
+with existing packages. To get started with conda environments, see the
+[installation guide](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html).
+For more information on using conda environments see
+[managing environments guide](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)
+
+### Overview
+<div style="text-align: justify">
+Veroku is an open source library for building and performing inference with probabilistic graphical models (PGMs) in
+python. PGMs provide a framework for performing efficient probabilistic inference with very high dimensional
+distributions. A typical example of a well-known type of PGM is the Kalman filter that can be used to obtain
+probabilistic estimates of a hidden state of a process or system, given noisy measurements. PGMs can in principle be
+used for any problem that involves uncertainty and is therefore applicable to many problems.</div>
+
+Veroku currently supports the following probability distributions:
+* Categorical (sparse and dense implementations)
+* Gaussian
+* Gaussian mixture<sup>1</sup>
+* Linear Gaussian<sup>2</sup>
+* Non-linear Gaussian<sup>3</sup>
+
+<sup>1</sup> This class still has some experimental functionality (specifically the Gaussian mixture division methods)
+and is, therefore, still in the factors.experimental sub-package.
+<sup>2</sup> Using the Gaussian class - see the Kalman filter example notebook.<br/>
+<sup>3</sup>This implementation is still experimental (see the factors.experimental sub-package).
+
+
+<div style="text-align: justify">
+These distributions can be used as factors to represent a factorised distribution. These factors can be used, together
+with the <code>cluster_graph</code> module to automatically create valid cluster graphs. Inference can be performed in these graphs
+using message passing algorithms. Currently only the LBU (Loopy Belief Update) message-passing algorithm is supported.
+</div>
+
+<br/>
+Example notebooks:
+
+* [Toy example](https://github.com/ejlouw/veroku/blob/master/examples/slip_on_grass.ipynb)
+* [Kalman filter](https://github.com/ejlouw/veroku/blob/master/examples/Kalman_filter.ipynb)
+* [Sudoku](https://github.com/ejlouw/veroku/blob/master/examples/sudoku.ipynb)
+
+
+
+### On the Roadmap
+The following distributions, models and features are on the roadmap to be added to veroku:
+* Conditional Gaussian
+* Dirichlet distribution
+* Wishart distribution
+* Normal-Wishart distribution
+* Plate models
+* Structure Learning
+* Causal Inference
+
+### Dependencies
+For the python dependencies see the [requirements](https://github.com/ejlouw/veroku/blob/master/requirements.txt) file.
+The following additional dependencies are also required for some functionality (these are not installed automatically
+ with the `pip install`):
+
+##### Graphviz
+See https://graphviz.org/download/ for installation instructions.
+
+### Contributing
+If you would like to contribute to veroku, please see the [contributing guide](https://github.com/ejlouw/veroku/blob/master/contributing.md).
+
+### License
+Veroku is released under a 3-Clause BSD license. You can view the license
+[here](https://github.com/ejlouw/veroku/blob/master/LICENSE).
+
+
+
+
+%prep
+%autosetup -n veroku-1.0.171
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-veroku -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Thu May 18 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.171-1
+- Package Spec generated