1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
%global _empty_manifest_terminate_build 0
Name: python-vina
Version: 1.2.3
Release: 1
Summary: Python interface to AutoDock Vina
License: Apache-2.0
URL: https://ccsb.scripps.edu/
Source0: https://mirrors.aliyun.com/pypi/web/packages/1f/14/fa0c505ddc96828a7164c5fa9946afd0f5019a0af135bc1bbd947149b010/vina-1.2.3.tar.gz
BuildArch: noarch
Requires: python3-numpy
%description
# AutoDock Vina - Python API
### Requirements
You need, at a minimum (requirements):
* Python (>=3.5)
* Numpy
* SWIG
* Boost-cpp
* Sphinx (documentation)
* Sphinx_rtd_theme (documentation)
### Installation (from source)
I highly recommand you to install the Anaconda distribution (https://www.continuum.io/downloads) if you want a clean python environnment with nearly all the prerequisites already installed. To install everything properly, you just have to do this:
```bash
$ conda create -n vina python=3
$ conda activate vina
$ conda install -c conda-forge numpy swig boost-cpp sphinx sphinx_rtd_theme
```
Finally, we can install the `Vina` package
```bash
$ git clone https://github.com/ccsb-scripps/AutoDock-Vina
$ cd AutoDock-Vina
$ git checkout boost-python
$ cd build/python
$ python setup.py build install
```
### Quick tutorial
```python
#!/usr/bin/env python
from vina import Vina
v = Vina()
v.set_receptor(rigid_pdbqt_filename="protein.pdbqt")
v.set_ligand_from_file('ligand.pdbqt')
v.compute_vina_maps(center=[0., 0., 0.], box_size=[30, 30, 30])
print(v.score())
print(v.optimize())
v.dock(exhaustiveness=32)
v.write_poses(pdbqt_filename="docking_results.pdbqt")
```
### Full documentation
The installation instructions, documentation and tutorials can be found on [readthedocs.org](https://autodock-vina.readthedocs.io/en/latest/).
### Citations
* Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455-461.
%package -n python3-vina
Summary: Python interface to AutoDock Vina
Provides: python-vina
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-vina
# AutoDock Vina - Python API
### Requirements
You need, at a minimum (requirements):
* Python (>=3.5)
* Numpy
* SWIG
* Boost-cpp
* Sphinx (documentation)
* Sphinx_rtd_theme (documentation)
### Installation (from source)
I highly recommand you to install the Anaconda distribution (https://www.continuum.io/downloads) if you want a clean python environnment with nearly all the prerequisites already installed. To install everything properly, you just have to do this:
```bash
$ conda create -n vina python=3
$ conda activate vina
$ conda install -c conda-forge numpy swig boost-cpp sphinx sphinx_rtd_theme
```
Finally, we can install the `Vina` package
```bash
$ git clone https://github.com/ccsb-scripps/AutoDock-Vina
$ cd AutoDock-Vina
$ git checkout boost-python
$ cd build/python
$ python setup.py build install
```
### Quick tutorial
```python
#!/usr/bin/env python
from vina import Vina
v = Vina()
v.set_receptor(rigid_pdbqt_filename="protein.pdbqt")
v.set_ligand_from_file('ligand.pdbqt')
v.compute_vina_maps(center=[0., 0., 0.], box_size=[30, 30, 30])
print(v.score())
print(v.optimize())
v.dock(exhaustiveness=32)
v.write_poses(pdbqt_filename="docking_results.pdbqt")
```
### Full documentation
The installation instructions, documentation and tutorials can be found on [readthedocs.org](https://autodock-vina.readthedocs.io/en/latest/).
### Citations
* Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455-461.
%package help
Summary: Development documents and examples for vina
Provides: python3-vina-doc
%description help
# AutoDock Vina - Python API
### Requirements
You need, at a minimum (requirements):
* Python (>=3.5)
* Numpy
* SWIG
* Boost-cpp
* Sphinx (documentation)
* Sphinx_rtd_theme (documentation)
### Installation (from source)
I highly recommand you to install the Anaconda distribution (https://www.continuum.io/downloads) if you want a clean python environnment with nearly all the prerequisites already installed. To install everything properly, you just have to do this:
```bash
$ conda create -n vina python=3
$ conda activate vina
$ conda install -c conda-forge numpy swig boost-cpp sphinx sphinx_rtd_theme
```
Finally, we can install the `Vina` package
```bash
$ git clone https://github.com/ccsb-scripps/AutoDock-Vina
$ cd AutoDock-Vina
$ git checkout boost-python
$ cd build/python
$ python setup.py build install
```
### Quick tutorial
```python
#!/usr/bin/env python
from vina import Vina
v = Vina()
v.set_receptor(rigid_pdbqt_filename="protein.pdbqt")
v.set_ligand_from_file('ligand.pdbqt')
v.compute_vina_maps(center=[0., 0., 0.], box_size=[30, 30, 30])
print(v.score())
print(v.optimize())
v.dock(exhaustiveness=32)
v.write_poses(pdbqt_filename="docking_results.pdbqt")
```
### Full documentation
The installation instructions, documentation and tutorials can be found on [readthedocs.org](https://autodock-vina.readthedocs.io/en/latest/).
### Citations
* Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455-461.
%prep
%autosetup -n vina-1.2.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-vina -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.3-1
- Package Spec generated
|