summaryrefslogtreecommitdiff
path: root/python-visualkeras.spec
blob: 73e04141f3d66c1f86294c7a96017ceefc159ebc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
%global _empty_manifest_terminate_build 0
Name:		python-visualkeras
Version:	0.0.2
Release:	1
Summary:	Architecture visualization of Keras models
License:	MIT License
URL:		https://github.com/paulgavrikov/visualkeras
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/e5/e6/ae948673eaed8515e4c1dd24d8ca40df85f14493914fc5d2e9c09b82fa33/visualkeras-0.0.2.tar.gz
BuildArch:	noarch

Requires:	python3-pillow
Requires:	python3-numpy
Requires:	python3-aggdraw

%description
# visualkeras for Keras / TensorFlow

[![Wheel Status](https://pypip.in/wheel/visualkeras/badge.svg?style=flat)](https://pypi.python.org/pypi/visualkeras)
[![Latest Version](https://pypip.in/version/visualkeras/badge.svg?style=flat)](https://pypi.python.org/pypi/visualkeras)
[![Build Status](https://travis-ci.org/paulgavrikov/visualkeras.svg?branch=master)](https://travis-ci.org/paulgavrikov/visualkeras)

## Introduction
Visualkeras is a Python package to help visualize Keras (either standalone or included in tensorflow) neural network architectures. It allows easy styling to fit most 
needs. This module supports layered style architecture generation which is great for CNNs (Convolutional Neural 
Networks), and a graph style architecture, which works great for most models including plain feed-forward networks.

## Model Support

|  Mode | Sequential  |  Functional |  Subclassed models |
|---|---|---|---|
| `visualkeras.layered_view()` | yes<sup>(1)</sup> | partially<sup>(1,2)</sup> |  not tested |
| `visualkeras.graph_view()` | yes | yes |  not tested |

<sup>1</sup>: Any tensor with more than 3 dimensions will be rendered as 3D tensor with elongated z-axis.

<sup>2</sup>: Only linear models where each layer has no more than one in or output. Non-linear models will be shown in sequential order.

## Installation
To install published releases from PyPi execute:
```bash
pip install visualkeras
```
To update visualkeras to the latest version, add the `--upgrade` flag to the above commands.

If you want the latest (potentially unstable) features you can also directly install from the github master branch:
```bash
pip install git+https://github.com/paulgavrikov/visualkeras
```

## Usage

Generating neural network architectures is easy:
```python
import visualkeras

model = ...

visualkeras.layered_view(model).show() # display using your system viewer
visualkeras.layered_view(model, to_file='output.png') # write to disk
visualkeras.layered_view(model, to_file='output.png').show() # write and show
```

To help understand some of the most important parameters we are going to use a VGG16 CNN architecture (see [example.py](examples/example.py)).

###### Default
```python
visualkeras.layered_view(model)
```
![Default view of a VGG16 CNN](figures/vgg16.png)

###### Legend

You can set the legend parameter to describe the relationship between color and layer types. It is also possible to pass
a custom `PIL.ImageFont` to use (or just leave it out and visualkeras will use the default PIL font). Please note that 
you may need to provide the full path of the desired font depending on your OS.

```python
from PIL import ImageFont

font = ImageFont.truetype("arial.ttf", 32)  # using comic sans is strictly prohibited!
visualkeras.layered_view(model, legend=True, font=font)  # font is optional!
```
![Layered view of a VGG16 CNN with legend](figures/vgg16_legend.png)

###### Flat Style
```python
visualkeras.layered_view(model, draw_volume=False)
```
![Flat view of a VGG16 CNN](figures/vgg16_flat.png)

###### Spacing and logic grouping
The global distance between two layers can be controlled with `spacing`. To generate logical groups a special dummy 
keras layer `visualkeras.SpacingDummyLayer()` can be added.
```python

model = ...
...
model.add(visualkeras.SpacingDummyLayer(spacing=100))
...

visualkeras.layered_view(model, spacing=0)
```
![Spaced and grouped view of a VGG16 CNN](figures/vgg16_spacing_layers.png)


###### Custom color map
It is possible to provide a custom color map for fill and outline per layer type.
```python
from tensorflow.python.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D, ZeroPadding2D
from collections import defaultdict

color_map = defaultdict(dict)
color_map[Conv2D]['fill'] = 'orange'
color_map[ZeroPadding2D]['fill'] = 'gray'
color_map[Dropout]['fill'] = 'pink'
color_map[MaxPooling2D]['fill'] = 'red'
color_map[Dense]['fill'] = 'green'
color_map[Flatten]['fill'] = 'teal'

visualkeras.layered_view(model, color_map=color_map)
```
![Custom colored view of a VGG16 CNN](figures/vgg16_color_map.png)

###### Hiding layers
Some models may consist of too many layers to visualize or to comprehend the model. In this case it can be helpful to 
hide (ignore) certain layers of the keras model without modifying it. Visualkeras allows ignoring layers by their type
 (`type_ignore`) or index in the keras layer sequence (`index_ignore`).
```python
visualkeras.layered_view(model, type_ignore=[ZeroPadding2D, Dropout, Flatten])
```
![Simplified view of a VGG16 CNN](figures/vgg16_type_ignore.png)

###### Scaling dimensions
Visualkeras computes the size of each layer by the output shape. Values are transformed into pixels. Then, scaling is 
applied. By default visualkeras will enlarge the x and y dimension and reduce the size of the z dimensions as this has 
deemed visually most appealing. However, it is possible to control scaling using `scale_xy` and `scale_z`. Additionally, 
to prevent to small or large options minimum and maximum values can be set (`min_xy`, `min_z`, `max_xy`, `max_z`).  
```python
visualkeras.layered_view(model, scale_xy=1, scale_z=1, max_z=1000)
```
![True scale view of a VGG16 CNN](figures/vgg16_scaling.png)
_Note: Scaled models may hide the true complexity of a layer, but are visually more appealing._





%package -n python3-visualkeras
Summary:	Architecture visualization of Keras models
Provides:	python-visualkeras
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-visualkeras
# visualkeras for Keras / TensorFlow

[![Wheel Status](https://pypip.in/wheel/visualkeras/badge.svg?style=flat)](https://pypi.python.org/pypi/visualkeras)
[![Latest Version](https://pypip.in/version/visualkeras/badge.svg?style=flat)](https://pypi.python.org/pypi/visualkeras)
[![Build Status](https://travis-ci.org/paulgavrikov/visualkeras.svg?branch=master)](https://travis-ci.org/paulgavrikov/visualkeras)

## Introduction
Visualkeras is a Python package to help visualize Keras (either standalone or included in tensorflow) neural network architectures. It allows easy styling to fit most 
needs. This module supports layered style architecture generation which is great for CNNs (Convolutional Neural 
Networks), and a graph style architecture, which works great for most models including plain feed-forward networks.

## Model Support

|  Mode | Sequential  |  Functional |  Subclassed models |
|---|---|---|---|
| `visualkeras.layered_view()` | yes<sup>(1)</sup> | partially<sup>(1,2)</sup> |  not tested |
| `visualkeras.graph_view()` | yes | yes |  not tested |

<sup>1</sup>: Any tensor with more than 3 dimensions will be rendered as 3D tensor with elongated z-axis.

<sup>2</sup>: Only linear models where each layer has no more than one in or output. Non-linear models will be shown in sequential order.

## Installation
To install published releases from PyPi execute:
```bash
pip install visualkeras
```
To update visualkeras to the latest version, add the `--upgrade` flag to the above commands.

If you want the latest (potentially unstable) features you can also directly install from the github master branch:
```bash
pip install git+https://github.com/paulgavrikov/visualkeras
```

## Usage

Generating neural network architectures is easy:
```python
import visualkeras

model = ...

visualkeras.layered_view(model).show() # display using your system viewer
visualkeras.layered_view(model, to_file='output.png') # write to disk
visualkeras.layered_view(model, to_file='output.png').show() # write and show
```

To help understand some of the most important parameters we are going to use a VGG16 CNN architecture (see [example.py](examples/example.py)).

###### Default
```python
visualkeras.layered_view(model)
```
![Default view of a VGG16 CNN](figures/vgg16.png)

###### Legend

You can set the legend parameter to describe the relationship between color and layer types. It is also possible to pass
a custom `PIL.ImageFont` to use (or just leave it out and visualkeras will use the default PIL font). Please note that 
you may need to provide the full path of the desired font depending on your OS.

```python
from PIL import ImageFont

font = ImageFont.truetype("arial.ttf", 32)  # using comic sans is strictly prohibited!
visualkeras.layered_view(model, legend=True, font=font)  # font is optional!
```
![Layered view of a VGG16 CNN with legend](figures/vgg16_legend.png)

###### Flat Style
```python
visualkeras.layered_view(model, draw_volume=False)
```
![Flat view of a VGG16 CNN](figures/vgg16_flat.png)

###### Spacing and logic grouping
The global distance between two layers can be controlled with `spacing`. To generate logical groups a special dummy 
keras layer `visualkeras.SpacingDummyLayer()` can be added.
```python

model = ...
...
model.add(visualkeras.SpacingDummyLayer(spacing=100))
...

visualkeras.layered_view(model, spacing=0)
```
![Spaced and grouped view of a VGG16 CNN](figures/vgg16_spacing_layers.png)


###### Custom color map
It is possible to provide a custom color map for fill and outline per layer type.
```python
from tensorflow.python.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D, ZeroPadding2D
from collections import defaultdict

color_map = defaultdict(dict)
color_map[Conv2D]['fill'] = 'orange'
color_map[ZeroPadding2D]['fill'] = 'gray'
color_map[Dropout]['fill'] = 'pink'
color_map[MaxPooling2D]['fill'] = 'red'
color_map[Dense]['fill'] = 'green'
color_map[Flatten]['fill'] = 'teal'

visualkeras.layered_view(model, color_map=color_map)
```
![Custom colored view of a VGG16 CNN](figures/vgg16_color_map.png)

###### Hiding layers
Some models may consist of too many layers to visualize or to comprehend the model. In this case it can be helpful to 
hide (ignore) certain layers of the keras model without modifying it. Visualkeras allows ignoring layers by their type
 (`type_ignore`) or index in the keras layer sequence (`index_ignore`).
```python
visualkeras.layered_view(model, type_ignore=[ZeroPadding2D, Dropout, Flatten])
```
![Simplified view of a VGG16 CNN](figures/vgg16_type_ignore.png)

###### Scaling dimensions
Visualkeras computes the size of each layer by the output shape. Values are transformed into pixels. Then, scaling is 
applied. By default visualkeras will enlarge the x and y dimension and reduce the size of the z dimensions as this has 
deemed visually most appealing. However, it is possible to control scaling using `scale_xy` and `scale_z`. Additionally, 
to prevent to small or large options minimum and maximum values can be set (`min_xy`, `min_z`, `max_xy`, `max_z`).  
```python
visualkeras.layered_view(model, scale_xy=1, scale_z=1, max_z=1000)
```
![True scale view of a VGG16 CNN](figures/vgg16_scaling.png)
_Note: Scaled models may hide the true complexity of a layer, but are visually more appealing._





%package help
Summary:	Development documents and examples for visualkeras
Provides:	python3-visualkeras-doc
%description help
# visualkeras for Keras / TensorFlow

[![Wheel Status](https://pypip.in/wheel/visualkeras/badge.svg?style=flat)](https://pypi.python.org/pypi/visualkeras)
[![Latest Version](https://pypip.in/version/visualkeras/badge.svg?style=flat)](https://pypi.python.org/pypi/visualkeras)
[![Build Status](https://travis-ci.org/paulgavrikov/visualkeras.svg?branch=master)](https://travis-ci.org/paulgavrikov/visualkeras)

## Introduction
Visualkeras is a Python package to help visualize Keras (either standalone or included in tensorflow) neural network architectures. It allows easy styling to fit most 
needs. This module supports layered style architecture generation which is great for CNNs (Convolutional Neural 
Networks), and a graph style architecture, which works great for most models including plain feed-forward networks.

## Model Support

|  Mode | Sequential  |  Functional |  Subclassed models |
|---|---|---|---|
| `visualkeras.layered_view()` | yes<sup>(1)</sup> | partially<sup>(1,2)</sup> |  not tested |
| `visualkeras.graph_view()` | yes | yes |  not tested |

<sup>1</sup>: Any tensor with more than 3 dimensions will be rendered as 3D tensor with elongated z-axis.

<sup>2</sup>: Only linear models where each layer has no more than one in or output. Non-linear models will be shown in sequential order.

## Installation
To install published releases from PyPi execute:
```bash
pip install visualkeras
```
To update visualkeras to the latest version, add the `--upgrade` flag to the above commands.

If you want the latest (potentially unstable) features you can also directly install from the github master branch:
```bash
pip install git+https://github.com/paulgavrikov/visualkeras
```

## Usage

Generating neural network architectures is easy:
```python
import visualkeras

model = ...

visualkeras.layered_view(model).show() # display using your system viewer
visualkeras.layered_view(model, to_file='output.png') # write to disk
visualkeras.layered_view(model, to_file='output.png').show() # write and show
```

To help understand some of the most important parameters we are going to use a VGG16 CNN architecture (see [example.py](examples/example.py)).

###### Default
```python
visualkeras.layered_view(model)
```
![Default view of a VGG16 CNN](figures/vgg16.png)

###### Legend

You can set the legend parameter to describe the relationship between color and layer types. It is also possible to pass
a custom `PIL.ImageFont` to use (or just leave it out and visualkeras will use the default PIL font). Please note that 
you may need to provide the full path of the desired font depending on your OS.

```python
from PIL import ImageFont

font = ImageFont.truetype("arial.ttf", 32)  # using comic sans is strictly prohibited!
visualkeras.layered_view(model, legend=True, font=font)  # font is optional!
```
![Layered view of a VGG16 CNN with legend](figures/vgg16_legend.png)

###### Flat Style
```python
visualkeras.layered_view(model, draw_volume=False)
```
![Flat view of a VGG16 CNN](figures/vgg16_flat.png)

###### Spacing and logic grouping
The global distance between two layers can be controlled with `spacing`. To generate logical groups a special dummy 
keras layer `visualkeras.SpacingDummyLayer()` can be added.
```python

model = ...
...
model.add(visualkeras.SpacingDummyLayer(spacing=100))
...

visualkeras.layered_view(model, spacing=0)
```
![Spaced and grouped view of a VGG16 CNN](figures/vgg16_spacing_layers.png)


###### Custom color map
It is possible to provide a custom color map for fill and outline per layer type.
```python
from tensorflow.python.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D, ZeroPadding2D
from collections import defaultdict

color_map = defaultdict(dict)
color_map[Conv2D]['fill'] = 'orange'
color_map[ZeroPadding2D]['fill'] = 'gray'
color_map[Dropout]['fill'] = 'pink'
color_map[MaxPooling2D]['fill'] = 'red'
color_map[Dense]['fill'] = 'green'
color_map[Flatten]['fill'] = 'teal'

visualkeras.layered_view(model, color_map=color_map)
```
![Custom colored view of a VGG16 CNN](figures/vgg16_color_map.png)

###### Hiding layers
Some models may consist of too many layers to visualize or to comprehend the model. In this case it can be helpful to 
hide (ignore) certain layers of the keras model without modifying it. Visualkeras allows ignoring layers by their type
 (`type_ignore`) or index in the keras layer sequence (`index_ignore`).
```python
visualkeras.layered_view(model, type_ignore=[ZeroPadding2D, Dropout, Flatten])
```
![Simplified view of a VGG16 CNN](figures/vgg16_type_ignore.png)

###### Scaling dimensions
Visualkeras computes the size of each layer by the output shape. Values are transformed into pixels. Then, scaling is 
applied. By default visualkeras will enlarge the x and y dimension and reduce the size of the z dimensions as this has 
deemed visually most appealing. However, it is possible to control scaling using `scale_xy` and `scale_z`. Additionally, 
to prevent to small or large options minimum and maximum values can be set (`min_xy`, `min_z`, `max_xy`, `max_z`).  
```python
visualkeras.layered_view(model, scale_xy=1, scale_z=1, max_z=1000)
```
![True scale view of a VGG16 CNN](figures/vgg16_scaling.png)
_Note: Scaled models may hide the true complexity of a layer, but are visually more appealing._





%prep
%autosetup -n visualkeras-0.0.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-visualkeras -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.2-1
- Package Spec generated