summaryrefslogtreecommitdiff
path: root/python-vizdoom.spec
blob: 2019f4386b3b6a72eae03451adbc305663f8a398 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
%global _empty_manifest_terminate_build 0
Name:		python-vizdoom
Version:	1.2.0
Release:	1
Summary:	ViZDoom is Doom-based AI Research Platform for Reinforcement Learning from Raw Visual Information.
License:	MIT License
URL:		http://vizdoom.cs.put.edu.pl/
Source0:	https://mirrors.aliyun.com/pypi/web/packages/4f/c5/1a173600f519d4d9efff7a3affcd27ccbc50ee42ad653299b6c313091338/vizdoom-1.2.0.tar.gz


%description
[![PyPI version](https://badge.fury.io/py/vizdoom.svg)](https://badge.fury.io/py/vizdoom) ![Build](https://github.com/mwydmuch/ViZDoom/workflows/Build/badge.svg) [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://pre-commit.com/) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

<p align="center">
  <img src="https://raw.githubusercontent.com/Farama-Foundation/ViZDoom/master/vizdoom-text.png" width="500px"/>
</p>

ViZDoom allows developing AI **bots that play Doom using only visual information** (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular.

ViZDoom is based on [ZDoom](https://github.com/rheit/zdoom) to provide the game mechanics.

![vizdoom_deadly_corridor](http://www.cs.put.poznan.pl/mkempka/misc/vizdoom_gifs/vizdoom_corridor_segmentation.gif)


## Features
- Multi-platform (Linux, macOS, Windows),
- API for Python and C++,
- [Gymnasium](https://gymnasium.farama.org/)/[OpenAI Gym](https://www.gymlibrary.dev/) environment wrappers (thanks to [Arjun KG](https://github.com/arjun-kg) [Benjamin Noah Beal](https://github.com/bebeal), [Lawrence Francis](https://github.com/ldfrancis), and [Mark Towers](https://github.com/pseudo-rnd-thoughts)),
- Easy-to-create custom scenarios (visual editors, scripting language, and examples available),
- Async and sync single-player and multiplayer modes,
- Fast (up to 7000 fps in sync mode, single-threaded),
- Lightweight (few MBs),
- Customizable resolution and rendering parameters,
- Access to the depth buffer (3D vision),
- Automatic labeling of game objects visible in the frame,
- Access to the audio buffer (thanks to [Shashank Hegde](https://github.com/hegde95)),
- Access to the list of actors/objects and map geometry,
- Off-screen rendering,
- Episodes recording,
- Time scaling in async mode.

ViZDoom API is **reinforcement learning** friendly (suitable also for learning from demonstration, apprenticeship learning or apprenticeship via inverse reinforcement learning, etc.).

Julia (thanks to [Jun Tian](https://github.com/findmyway)), Lua, and Java bindings are available in other branches but are no longer maintained.


## Cite as
> M Wydmuch, M Kempka & W Jaśkowski, ViZDoom Competitions: Playing Doom from Pixels, IEEE Transactions on Games, vol. 11, no. 3, pp. 248-259, 2019
([arXiv:1809.03470](https://arxiv.org/abs/1809.03470))
```
@article{Wydmuch2019ViZdoom,
  author  = {Marek Wydmuch and Micha{\l} Kempka and Wojciech Ja\'skowski},
  title   = {{ViZDoom} {C}ompetitions: {P}laying {D}oom from {P}ixels},
  journal = {IEEE Transactions on Games},
  year    = {2019},
  volume  = {11},
  number  = {3},
  pages   = {248--259},
  doi     = {10.1109/TG.2018.2877047},
  note    = {The 2022 IEEE Transactions on Games Outstanding Paper Award}
}
```
or

> M. Kempka, M. Wydmuch, G. Runc, J. Toczek & W. Jaśkowski, ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning, IEEE Conference on Computational Intelligence and Games, pp. 341-348, Santorini, Greece, 2016	([arXiv:1605.02097](http://arxiv.org/abs/1605.02097))
```
@inproceedings{Kempka2016ViZDoom,
  author    = {Micha{\l} Kempka and Marek Wydmuch and Grzegorz Runc and Jakub Toczek and Wojciech Ja\'skowski},
  title     = {{ViZDoom}: A {D}oom-based {AI} Research Platform for Visual Reinforcement Learning},
  booktitle = {IEEE Conference on Computational Intelligence and Games},
  year      = {2016},
  address   = {Santorini, Greece},
  month     = {Sep},
  pages     = {341--348},
  publisher = {IEEE},
  doi       = {10.1109/CIG.2016.7860433},
  note      = {The Best Paper Award}
}
```


## Python quick start

### Linux
Both x86-64 and ARM64 architectures are supported.
ViZDoom requires C++11 compiler, CMake 3.4+, Boost 1.65+ SDL2, OpenAL (optional) and Python 3.7+. Below you will find instructrion how to install these dependencies.

#### apt-based distros (Ubuntu, Debian, Linux Mint, etc.)

To install ViZDoom run (may take few minutes):
```
apt install cmake git libboost-all-dev libsdl2-dev libopenal-dev
pip install vizdoom
```
We recommend using at least Ubuntu 18.04+ or Debian 10+ with Python 3.7+.

#### dnf/yum-based distros (Fedora, RHEL, CentOS, Alma/Rocky Linux, etc.)

To install ViZDoom run (may take few minutes):
```
dnf install cmake git boost-devel SDL2-devel openal-soft-devel
pip install vizdoom
```
We recommend using at least Fedora 35+ or RHEL/CentOS/Alma/Rocky Linux 9+ with Python 3.7+. To install openal-soft-devel on RHEL/CentOS/Alma/Rocky Linux 9, one needs to use `dnf --enablerepo=crb install`.

#### Conda-based installation
To install ViZDoom on a conda environment (no system-wide installations required):
```
conda install -c conda-forge boost cmake sdl2
git clone https://github.com/mwydmuch/ViZDoom.git --recurse-submodules
cd ViZDoom
python setup.py build && python setup.py install
```
Note that `pip install vizdoom` won't work with conda install and you have to follow these steps.


### macOS
Both Intel and Apple Silicon CPUs are supported.

To install ViZDoom on run (may take few minutes):
```
brew install cmake git boost openal-soft sdl2
pip install vizdoom
```
We recommend using at least macOS High Sierra 10.13+ with Python 3.7+.
On Apple Silicon (M1 and M2), make sure you are using Python for Apple Silicon.


### Windows
To install pre-build release for Windows 10 or 11 64-bit and Python 3.7+ just run (should take few seconds):
```
pip install vizdoom
```

Please note that the Windows version is not as well-tested as Linux and macOS versions. It can be used for development and testing if you want to conduct experiments on Windows, please consider using [Docker](https://docs.docker.com/docker-for-windows/install/) or [WSL](https://docs.microsoft.com/en-us/windows/wsl/install-win10).


### Gymnasium/Gym wrappers
Gymnasium environments are installed along with ViZDoom.
See [documentation](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Gymnasium.md) and [examples](https://github.com/Farama-Foundation/ViZDoom/blob/master/examples/python/gymnasium_wrapper.py) on the use of Gymnasium API.

OpenAI-Gym wrappers are also available, to install them run:
```
pip install vizdoom[gym]
```
See [documentation](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Gym.md) and [examples](https://github.com/Farama-Foundation/ViZDoom/blob/master/examples/python/gym_wrapper.py) on the use of Gym API.
**OpenAI-Gym wrappers are deprecated and will be removed in future versions in favour of Gymnasium.**


## Examples

- [Python](https://github.com/Farama-Foundation/ViZDoom/blob/master/examples/python) (contain learning examples implemented in PyTorch, TensorFlow and Theano)
- [C++](https://github.com/Farama-Foundation/ViZDoom/blob/master/examples/c%2B%2B)

Python examples are currently the richest, so we recommend to look at them, even if you plan to use other language. The API is almost identical for all languages.

**See also the [tutorial](http://vizdoom.cs.put.edu.pl/tutorial).**


## Original Doom graphics

Unfortunately, we cannot distribute ViZDoom with original Doom graphics.
If you own original Doom or Doom 2 games, you can replace [Freedoom](https://freedoom.github.io/) graphics by placing `doom.wad` or `doom2.wad` into your working directory or `vizdoom` package directory.

Alternatively, any base game WAD (including other Doom engine-based games and custom/community games) can be used by pointing to it with the [`set_doom_game_path/setDoomGamePath`](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/DoomGame.md#-setdoomscenariopath) method.


## Documentation

Detailed description of all types and methods:

- **[DoomGame](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/DoomGame.md)**
- **[Types](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Types.md)**
- [Configuration files](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/ConfigFile.md)
- [Exceptions](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Exceptions.md)
- [Utilities](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Utilities.md)

Additional documents:

- **[FAQ](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/FAQ.md)**
- [Changelog](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Changelog.md) for 1.1.X version.

Full documentation of the Doom engine and ACS scripting language can be found on
[ZDoom Wiki](https://zdoom.org/wiki/).

Useful articles:

- [ZDoom Wiki: ACS (scripting language)](https://zdoom.org/wiki/ACS)
- [ZDoom Wiki: CVARs (console variables)](https://zdoom.org/wiki/CVARs)
- [ZDoom Wiki: CCMD (console commands)](https://zdoom.org/wiki/CCMDs)


## Awesome Doom tools/projects

- [SLADE3](http://slade.mancubus.net/) - great Doom map (scenario) editor for Linux, MacOS and Windows.
- [Doom Builder 2](http://www.doombuilder.com/) - another great Doom map editor for Windows.
- [OBLIGE](http://oblige.sourceforge.net/) - Doom random map generator and [PyOblige](https://github.com/mwydmuch/PyOblige) is a simple Python wrapper for it.
- [Omgifol](https://github.com/devinacker/omgifol) - nice Python library for manipulating Doom maps.
- [NavDoom](https://github.com/agiantwhale/navdoom) - Maze navigation generator for ViZDoom (similar to DeepMind Lab).
- [MazeExplorer](https://github.com/microsoft/MazeExplorer) - More sophisticated maze navigation generator for ViZDoom.
- [Sample Factory](https://github.com/alex-petrenko/sample-factory) - A high performance reinforcement learning framework for ViZDoom.
- [EnvPool](https://github.com/sail-sg/envpool/) - A high performance vectorized environment for ViZDoom.
- [Obsidian](https://github.com/dashodanger/Obsidian) - Doom random map generator, continuation of OBLIGE.


## Contributions

This project is maintained and developed in our free time. All bug fixes, new examples, scenarios and other contributions are welcome! We are also open to features ideas and design suggestions.


## License

Code original to ViZDoom is under MIT license. ZDoom uses code from several sources with [varying licensing schemes](http://zdoom.org/wiki/license).


%package -n python3-vizdoom
Summary:	ViZDoom is Doom-based AI Research Platform for Reinforcement Learning from Raw Visual Information.
Provides:	python-vizdoom
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-vizdoom
[![PyPI version](https://badge.fury.io/py/vizdoom.svg)](https://badge.fury.io/py/vizdoom) ![Build](https://github.com/mwydmuch/ViZDoom/workflows/Build/badge.svg) [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://pre-commit.com/) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

<p align="center">
  <img src="https://raw.githubusercontent.com/Farama-Foundation/ViZDoom/master/vizdoom-text.png" width="500px"/>
</p>

ViZDoom allows developing AI **bots that play Doom using only visual information** (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular.

ViZDoom is based on [ZDoom](https://github.com/rheit/zdoom) to provide the game mechanics.

![vizdoom_deadly_corridor](http://www.cs.put.poznan.pl/mkempka/misc/vizdoom_gifs/vizdoom_corridor_segmentation.gif)


## Features
- Multi-platform (Linux, macOS, Windows),
- API for Python and C++,
- [Gymnasium](https://gymnasium.farama.org/)/[OpenAI Gym](https://www.gymlibrary.dev/) environment wrappers (thanks to [Arjun KG](https://github.com/arjun-kg) [Benjamin Noah Beal](https://github.com/bebeal), [Lawrence Francis](https://github.com/ldfrancis), and [Mark Towers](https://github.com/pseudo-rnd-thoughts)),
- Easy-to-create custom scenarios (visual editors, scripting language, and examples available),
- Async and sync single-player and multiplayer modes,
- Fast (up to 7000 fps in sync mode, single-threaded),
- Lightweight (few MBs),
- Customizable resolution and rendering parameters,
- Access to the depth buffer (3D vision),
- Automatic labeling of game objects visible in the frame,
- Access to the audio buffer (thanks to [Shashank Hegde](https://github.com/hegde95)),
- Access to the list of actors/objects and map geometry,
- Off-screen rendering,
- Episodes recording,
- Time scaling in async mode.

ViZDoom API is **reinforcement learning** friendly (suitable also for learning from demonstration, apprenticeship learning or apprenticeship via inverse reinforcement learning, etc.).

Julia (thanks to [Jun Tian](https://github.com/findmyway)), Lua, and Java bindings are available in other branches but are no longer maintained.


## Cite as
> M Wydmuch, M Kempka & W Jaśkowski, ViZDoom Competitions: Playing Doom from Pixels, IEEE Transactions on Games, vol. 11, no. 3, pp. 248-259, 2019
([arXiv:1809.03470](https://arxiv.org/abs/1809.03470))
```
@article{Wydmuch2019ViZdoom,
  author  = {Marek Wydmuch and Micha{\l} Kempka and Wojciech Ja\'skowski},
  title   = {{ViZDoom} {C}ompetitions: {P}laying {D}oom from {P}ixels},
  journal = {IEEE Transactions on Games},
  year    = {2019},
  volume  = {11},
  number  = {3},
  pages   = {248--259},
  doi     = {10.1109/TG.2018.2877047},
  note    = {The 2022 IEEE Transactions on Games Outstanding Paper Award}
}
```
or

> M. Kempka, M. Wydmuch, G. Runc, J. Toczek & W. Jaśkowski, ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning, IEEE Conference on Computational Intelligence and Games, pp. 341-348, Santorini, Greece, 2016	([arXiv:1605.02097](http://arxiv.org/abs/1605.02097))
```
@inproceedings{Kempka2016ViZDoom,
  author    = {Micha{\l} Kempka and Marek Wydmuch and Grzegorz Runc and Jakub Toczek and Wojciech Ja\'skowski},
  title     = {{ViZDoom}: A {D}oom-based {AI} Research Platform for Visual Reinforcement Learning},
  booktitle = {IEEE Conference on Computational Intelligence and Games},
  year      = {2016},
  address   = {Santorini, Greece},
  month     = {Sep},
  pages     = {341--348},
  publisher = {IEEE},
  doi       = {10.1109/CIG.2016.7860433},
  note      = {The Best Paper Award}
}
```


## Python quick start

### Linux
Both x86-64 and ARM64 architectures are supported.
ViZDoom requires C++11 compiler, CMake 3.4+, Boost 1.65+ SDL2, OpenAL (optional) and Python 3.7+. Below you will find instructrion how to install these dependencies.

#### apt-based distros (Ubuntu, Debian, Linux Mint, etc.)

To install ViZDoom run (may take few minutes):
```
apt install cmake git libboost-all-dev libsdl2-dev libopenal-dev
pip install vizdoom
```
We recommend using at least Ubuntu 18.04+ or Debian 10+ with Python 3.7+.

#### dnf/yum-based distros (Fedora, RHEL, CentOS, Alma/Rocky Linux, etc.)

To install ViZDoom run (may take few minutes):
```
dnf install cmake git boost-devel SDL2-devel openal-soft-devel
pip install vizdoom
```
We recommend using at least Fedora 35+ or RHEL/CentOS/Alma/Rocky Linux 9+ with Python 3.7+. To install openal-soft-devel on RHEL/CentOS/Alma/Rocky Linux 9, one needs to use `dnf --enablerepo=crb install`.

#### Conda-based installation
To install ViZDoom on a conda environment (no system-wide installations required):
```
conda install -c conda-forge boost cmake sdl2
git clone https://github.com/mwydmuch/ViZDoom.git --recurse-submodules
cd ViZDoom
python setup.py build && python setup.py install
```
Note that `pip install vizdoom` won't work with conda install and you have to follow these steps.


### macOS
Both Intel and Apple Silicon CPUs are supported.

To install ViZDoom on run (may take few minutes):
```
brew install cmake git boost openal-soft sdl2
pip install vizdoom
```
We recommend using at least macOS High Sierra 10.13+ with Python 3.7+.
On Apple Silicon (M1 and M2), make sure you are using Python for Apple Silicon.


### Windows
To install pre-build release for Windows 10 or 11 64-bit and Python 3.7+ just run (should take few seconds):
```
pip install vizdoom
```

Please note that the Windows version is not as well-tested as Linux and macOS versions. It can be used for development and testing if you want to conduct experiments on Windows, please consider using [Docker](https://docs.docker.com/docker-for-windows/install/) or [WSL](https://docs.microsoft.com/en-us/windows/wsl/install-win10).


### Gymnasium/Gym wrappers
Gymnasium environments are installed along with ViZDoom.
See [documentation](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Gymnasium.md) and [examples](https://github.com/Farama-Foundation/ViZDoom/blob/master/examples/python/gymnasium_wrapper.py) on the use of Gymnasium API.

OpenAI-Gym wrappers are also available, to install them run:
```
pip install vizdoom[gym]
```
See [documentation](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Gym.md) and [examples](https://github.com/Farama-Foundation/ViZDoom/blob/master/examples/python/gym_wrapper.py) on the use of Gym API.
**OpenAI-Gym wrappers are deprecated and will be removed in future versions in favour of Gymnasium.**


## Examples

- [Python](https://github.com/Farama-Foundation/ViZDoom/blob/master/examples/python) (contain learning examples implemented in PyTorch, TensorFlow and Theano)
- [C++](https://github.com/Farama-Foundation/ViZDoom/blob/master/examples/c%2B%2B)

Python examples are currently the richest, so we recommend to look at them, even if you plan to use other language. The API is almost identical for all languages.

**See also the [tutorial](http://vizdoom.cs.put.edu.pl/tutorial).**


## Original Doom graphics

Unfortunately, we cannot distribute ViZDoom with original Doom graphics.
If you own original Doom or Doom 2 games, you can replace [Freedoom](https://freedoom.github.io/) graphics by placing `doom.wad` or `doom2.wad` into your working directory or `vizdoom` package directory.

Alternatively, any base game WAD (including other Doom engine-based games and custom/community games) can be used by pointing to it with the [`set_doom_game_path/setDoomGamePath`](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/DoomGame.md#-setdoomscenariopath) method.


## Documentation

Detailed description of all types and methods:

- **[DoomGame](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/DoomGame.md)**
- **[Types](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Types.md)**
- [Configuration files](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/ConfigFile.md)
- [Exceptions](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Exceptions.md)
- [Utilities](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Utilities.md)

Additional documents:

- **[FAQ](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/FAQ.md)**
- [Changelog](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Changelog.md) for 1.1.X version.

Full documentation of the Doom engine and ACS scripting language can be found on
[ZDoom Wiki](https://zdoom.org/wiki/).

Useful articles:

- [ZDoom Wiki: ACS (scripting language)](https://zdoom.org/wiki/ACS)
- [ZDoom Wiki: CVARs (console variables)](https://zdoom.org/wiki/CVARs)
- [ZDoom Wiki: CCMD (console commands)](https://zdoom.org/wiki/CCMDs)


## Awesome Doom tools/projects

- [SLADE3](http://slade.mancubus.net/) - great Doom map (scenario) editor for Linux, MacOS and Windows.
- [Doom Builder 2](http://www.doombuilder.com/) - another great Doom map editor for Windows.
- [OBLIGE](http://oblige.sourceforge.net/) - Doom random map generator and [PyOblige](https://github.com/mwydmuch/PyOblige) is a simple Python wrapper for it.
- [Omgifol](https://github.com/devinacker/omgifol) - nice Python library for manipulating Doom maps.
- [NavDoom](https://github.com/agiantwhale/navdoom) - Maze navigation generator for ViZDoom (similar to DeepMind Lab).
- [MazeExplorer](https://github.com/microsoft/MazeExplorer) - More sophisticated maze navigation generator for ViZDoom.
- [Sample Factory](https://github.com/alex-petrenko/sample-factory) - A high performance reinforcement learning framework for ViZDoom.
- [EnvPool](https://github.com/sail-sg/envpool/) - A high performance vectorized environment for ViZDoom.
- [Obsidian](https://github.com/dashodanger/Obsidian) - Doom random map generator, continuation of OBLIGE.


## Contributions

This project is maintained and developed in our free time. All bug fixes, new examples, scenarios and other contributions are welcome! We are also open to features ideas and design suggestions.


## License

Code original to ViZDoom is under MIT license. ZDoom uses code from several sources with [varying licensing schemes](http://zdoom.org/wiki/license).


%package help
Summary:	Development documents and examples for vizdoom
Provides:	python3-vizdoom-doc
%description help
[![PyPI version](https://badge.fury.io/py/vizdoom.svg)](https://badge.fury.io/py/vizdoom) ![Build](https://github.com/mwydmuch/ViZDoom/workflows/Build/badge.svg) [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://pre-commit.com/) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

<p align="center">
  <img src="https://raw.githubusercontent.com/Farama-Foundation/ViZDoom/master/vizdoom-text.png" width="500px"/>
</p>

ViZDoom allows developing AI **bots that play Doom using only visual information** (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular.

ViZDoom is based on [ZDoom](https://github.com/rheit/zdoom) to provide the game mechanics.

![vizdoom_deadly_corridor](http://www.cs.put.poznan.pl/mkempka/misc/vizdoom_gifs/vizdoom_corridor_segmentation.gif)


## Features
- Multi-platform (Linux, macOS, Windows),
- API for Python and C++,
- [Gymnasium](https://gymnasium.farama.org/)/[OpenAI Gym](https://www.gymlibrary.dev/) environment wrappers (thanks to [Arjun KG](https://github.com/arjun-kg) [Benjamin Noah Beal](https://github.com/bebeal), [Lawrence Francis](https://github.com/ldfrancis), and [Mark Towers](https://github.com/pseudo-rnd-thoughts)),
- Easy-to-create custom scenarios (visual editors, scripting language, and examples available),
- Async and sync single-player and multiplayer modes,
- Fast (up to 7000 fps in sync mode, single-threaded),
- Lightweight (few MBs),
- Customizable resolution and rendering parameters,
- Access to the depth buffer (3D vision),
- Automatic labeling of game objects visible in the frame,
- Access to the audio buffer (thanks to [Shashank Hegde](https://github.com/hegde95)),
- Access to the list of actors/objects and map geometry,
- Off-screen rendering,
- Episodes recording,
- Time scaling in async mode.

ViZDoom API is **reinforcement learning** friendly (suitable also for learning from demonstration, apprenticeship learning or apprenticeship via inverse reinforcement learning, etc.).

Julia (thanks to [Jun Tian](https://github.com/findmyway)), Lua, and Java bindings are available in other branches but are no longer maintained.


## Cite as
> M Wydmuch, M Kempka & W Jaśkowski, ViZDoom Competitions: Playing Doom from Pixels, IEEE Transactions on Games, vol. 11, no. 3, pp. 248-259, 2019
([arXiv:1809.03470](https://arxiv.org/abs/1809.03470))
```
@article{Wydmuch2019ViZdoom,
  author  = {Marek Wydmuch and Micha{\l} Kempka and Wojciech Ja\'skowski},
  title   = {{ViZDoom} {C}ompetitions: {P}laying {D}oom from {P}ixels},
  journal = {IEEE Transactions on Games},
  year    = {2019},
  volume  = {11},
  number  = {3},
  pages   = {248--259},
  doi     = {10.1109/TG.2018.2877047},
  note    = {The 2022 IEEE Transactions on Games Outstanding Paper Award}
}
```
or

> M. Kempka, M. Wydmuch, G. Runc, J. Toczek & W. Jaśkowski, ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning, IEEE Conference on Computational Intelligence and Games, pp. 341-348, Santorini, Greece, 2016	([arXiv:1605.02097](http://arxiv.org/abs/1605.02097))
```
@inproceedings{Kempka2016ViZDoom,
  author    = {Micha{\l} Kempka and Marek Wydmuch and Grzegorz Runc and Jakub Toczek and Wojciech Ja\'skowski},
  title     = {{ViZDoom}: A {D}oom-based {AI} Research Platform for Visual Reinforcement Learning},
  booktitle = {IEEE Conference on Computational Intelligence and Games},
  year      = {2016},
  address   = {Santorini, Greece},
  month     = {Sep},
  pages     = {341--348},
  publisher = {IEEE},
  doi       = {10.1109/CIG.2016.7860433},
  note      = {The Best Paper Award}
}
```


## Python quick start

### Linux
Both x86-64 and ARM64 architectures are supported.
ViZDoom requires C++11 compiler, CMake 3.4+, Boost 1.65+ SDL2, OpenAL (optional) and Python 3.7+. Below you will find instructrion how to install these dependencies.

#### apt-based distros (Ubuntu, Debian, Linux Mint, etc.)

To install ViZDoom run (may take few minutes):
```
apt install cmake git libboost-all-dev libsdl2-dev libopenal-dev
pip install vizdoom
```
We recommend using at least Ubuntu 18.04+ or Debian 10+ with Python 3.7+.

#### dnf/yum-based distros (Fedora, RHEL, CentOS, Alma/Rocky Linux, etc.)

To install ViZDoom run (may take few minutes):
```
dnf install cmake git boost-devel SDL2-devel openal-soft-devel
pip install vizdoom
```
We recommend using at least Fedora 35+ or RHEL/CentOS/Alma/Rocky Linux 9+ with Python 3.7+. To install openal-soft-devel on RHEL/CentOS/Alma/Rocky Linux 9, one needs to use `dnf --enablerepo=crb install`.

#### Conda-based installation
To install ViZDoom on a conda environment (no system-wide installations required):
```
conda install -c conda-forge boost cmake sdl2
git clone https://github.com/mwydmuch/ViZDoom.git --recurse-submodules
cd ViZDoom
python setup.py build && python setup.py install
```
Note that `pip install vizdoom` won't work with conda install and you have to follow these steps.


### macOS
Both Intel and Apple Silicon CPUs are supported.

To install ViZDoom on run (may take few minutes):
```
brew install cmake git boost openal-soft sdl2
pip install vizdoom
```
We recommend using at least macOS High Sierra 10.13+ with Python 3.7+.
On Apple Silicon (M1 and M2), make sure you are using Python for Apple Silicon.


### Windows
To install pre-build release for Windows 10 or 11 64-bit and Python 3.7+ just run (should take few seconds):
```
pip install vizdoom
```

Please note that the Windows version is not as well-tested as Linux and macOS versions. It can be used for development and testing if you want to conduct experiments on Windows, please consider using [Docker](https://docs.docker.com/docker-for-windows/install/) or [WSL](https://docs.microsoft.com/en-us/windows/wsl/install-win10).


### Gymnasium/Gym wrappers
Gymnasium environments are installed along with ViZDoom.
See [documentation](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Gymnasium.md) and [examples](https://github.com/Farama-Foundation/ViZDoom/blob/master/examples/python/gymnasium_wrapper.py) on the use of Gymnasium API.

OpenAI-Gym wrappers are also available, to install them run:
```
pip install vizdoom[gym]
```
See [documentation](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Gym.md) and [examples](https://github.com/Farama-Foundation/ViZDoom/blob/master/examples/python/gym_wrapper.py) on the use of Gym API.
**OpenAI-Gym wrappers are deprecated and will be removed in future versions in favour of Gymnasium.**


## Examples

- [Python](https://github.com/Farama-Foundation/ViZDoom/blob/master/examples/python) (contain learning examples implemented in PyTorch, TensorFlow and Theano)
- [C++](https://github.com/Farama-Foundation/ViZDoom/blob/master/examples/c%2B%2B)

Python examples are currently the richest, so we recommend to look at them, even if you plan to use other language. The API is almost identical for all languages.

**See also the [tutorial](http://vizdoom.cs.put.edu.pl/tutorial).**


## Original Doom graphics

Unfortunately, we cannot distribute ViZDoom with original Doom graphics.
If you own original Doom or Doom 2 games, you can replace [Freedoom](https://freedoom.github.io/) graphics by placing `doom.wad` or `doom2.wad` into your working directory or `vizdoom` package directory.

Alternatively, any base game WAD (including other Doom engine-based games and custom/community games) can be used by pointing to it with the [`set_doom_game_path/setDoomGamePath`](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/DoomGame.md#-setdoomscenariopath) method.


## Documentation

Detailed description of all types and methods:

- **[DoomGame](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/DoomGame.md)**
- **[Types](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Types.md)**
- [Configuration files](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/ConfigFile.md)
- [Exceptions](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Exceptions.md)
- [Utilities](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Utilities.md)

Additional documents:

- **[FAQ](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/FAQ.md)**
- [Changelog](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Changelog.md) for 1.1.X version.

Full documentation of the Doom engine and ACS scripting language can be found on
[ZDoom Wiki](https://zdoom.org/wiki/).

Useful articles:

- [ZDoom Wiki: ACS (scripting language)](https://zdoom.org/wiki/ACS)
- [ZDoom Wiki: CVARs (console variables)](https://zdoom.org/wiki/CVARs)
- [ZDoom Wiki: CCMD (console commands)](https://zdoom.org/wiki/CCMDs)


## Awesome Doom tools/projects

- [SLADE3](http://slade.mancubus.net/) - great Doom map (scenario) editor for Linux, MacOS and Windows.
- [Doom Builder 2](http://www.doombuilder.com/) - another great Doom map editor for Windows.
- [OBLIGE](http://oblige.sourceforge.net/) - Doom random map generator and [PyOblige](https://github.com/mwydmuch/PyOblige) is a simple Python wrapper for it.
- [Omgifol](https://github.com/devinacker/omgifol) - nice Python library for manipulating Doom maps.
- [NavDoom](https://github.com/agiantwhale/navdoom) - Maze navigation generator for ViZDoom (similar to DeepMind Lab).
- [MazeExplorer](https://github.com/microsoft/MazeExplorer) - More sophisticated maze navigation generator for ViZDoom.
- [Sample Factory](https://github.com/alex-petrenko/sample-factory) - A high performance reinforcement learning framework for ViZDoom.
- [EnvPool](https://github.com/sail-sg/envpool/) - A high performance vectorized environment for ViZDoom.
- [Obsidian](https://github.com/dashodanger/Obsidian) - Doom random map generator, continuation of OBLIGE.


## Contributions

This project is maintained and developed in our free time. All bug fixes, new examples, scenarios and other contributions are welcome! We are also open to features ideas and design suggestions.


## License

Code original to ViZDoom is under MIT license. ZDoom uses code from several sources with [varying licensing schemes](http://zdoom.org/wiki/license).


%prep
%autosetup -n vizdoom-1.2.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-vizdoom -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.0-1
- Package Spec generated