1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
|
%global _empty_manifest_terminate_build 0
Name: python-voicefixer
Version: 0.1.2
Release: 1
Summary: This package is written for the restoration of degraded speech
License: MIT
URL: https://github.com/haoheliu/voicefixer
Source0: https://mirrors.aliyun.com/pypi/web/packages/f1/ee/56f925d5aa7827d637f6ff94cd05400c8e5ad63473d6b4eb60206d270f8c/voicefixer-0.1.2.tar.gz
BuildArch: noarch
Requires: python3-librosa
Requires: python3-matplotlib
Requires: python3-torch
Requires: python3-progressbar
Requires: python3-torchlibrosa
Requires: python3-GitPython
Requires: python3-streamlit
%description
[](https://arxiv.org/abs/2109.13731) [](https://colab.research.google.com/drive/1HYYUepIsl2aXsdET6P_AmNVXuWP1MCMf?usp=sharing) [](https://badge.fury.io/py/voicefixer) [](https://haoheliu.github.io/demopage-voicefixer)[](https://huggingface.co/spaces/akhaliq/VoiceFixer)
- [VoiceFixer](#voicefixer)
- [Demo](#demo)
- [Usage](#usage)
- [Desktop App](#desktop-app)
- [Command line](#command-line)
- [Python Examples](#python-examples)
- [Others Features](#others-features)
- [Materials](#materials)
- [Change log](#change-log)
# VoiceFixer
*Voicefixer* aims at the restoration of human speech regardless how serious its degraded. It can handle noise, reveberation, low resolution (2kHz~44.1kHz) and clipping (0.1-1.0 threshold) effect within one model.
This package provides:
- A pretrained *Voicefixer*, which is build based on neural vocoder.
- A pretrained 44.1k universal speaker-independent neural vocoder.

- If you found this repo helpful, please consider citing
```bib
@misc{liu2021voicefixer,
title={VoiceFixer: Toward General Speech Restoration With Neural Vocoder},
author={Haohe Liu and Qiuqiang Kong and Qiao Tian and Yan Zhao and DeLiang Wang and Chuanzeng Huang and Yuxuan Wang},
year={2021},
eprint={2109.13731},
archivePrefix={arXiv},
primaryClass={cs.SD}
}
```
## Demo
Please visit [demo page](https://haoheliu.github.io/demopage-voicefixer/) to view what voicefixer can do.
## Usage
### Desktop App
First, install voicefixer via pip:
```shell script
pip install voicefixer==0.1.2
```
You can test audio samples on your desktop by running website (powered by [streamlit](https://streamlit.io/))
1. Clone the repo first.
```shell script
git clone https://github.com/haoheliu/voicefixer.git
cd voicefixer
```
:warning: **For windows users**, please make sure you have installed [WGET](https://eternallybored.org/misc/wget) and added the wget command to the system path (thanks @justinjohn0306).
1. Initialize and start web page.
```shell script
# Run streamlit
streamlit run test/streamlit.py
```
- If you run for the first time: the web page may leave blank for several minutes for downloading models. You can checkout the terminal for downloading progresses.
- You can use [this low quality speech file](https://github.com/haoheliu/voicefixer/blob/main/test/utterance/original/original.wav) we provided for a test run. The page after processing will look like the following.
<p align="center"><img src="test/streamlit.png" alt="figure" width="400"/></p>
- For users from main land China, if you experience difficulty on downloading checkpoint. You can access them alternatively on [百度网盘](https://pan.baidu.com/s/194ufkUR_PYf1nE1KqkEZjQ) (提取密码: qis6). Please download the two checkpoints inside and place them in the following folder.
- Place **vf.ckpt** inside *~/.cache/voicefixer/analysis_module/checkpoints*. (The "~" represents your home directory)
- Place **model.ckpt-1490000_trimed.pt** inside *~/.cache/voicefixer/synthesis_module/44100*. (The "~" represents your home directory)
### Command line
First, install voicefixer via pip:
```shell
pip install voicefixer==0.1.2
```
Process a file:
```shell
# Specify the input .wav file. Output file is outfile.wav.
voicefixer --infile test/utterance/original/original.wav
# Or specify a output path
voicefixer --infile test/utterance/original/original.wav --outfile test/utterance/original/original_processed.wav
```
Process files in a folder:
```shell
voicefixer --infolder /path/to/input --outfolder /path/to/output
```
Change mode (The default mode is 0):
```shell
voicefixer --infile /path/to/input.wav --outfile /path/to/output.wav --mode 1
```
Run all modes:
```shell
# output file saved to `/path/to/output-modeX.wav`.
voicefixer --infile /path/to/input.wav --outfile /path/to/output.wav --mode all
```
For more helper information please run:
```shell
voicefixer -h
```
### Python Examples
First, install voicefixer via pip:
```shell script
pip install voicefixer==0.1.2
```
Then run the following scripts for a test run:
```shell script
git clone https://github.com/haoheliu/voicefixer.git; cd voicefixer
python3 test/test.py # test script
```
We expect it will give you the following output:
```shell script
Initializing VoiceFixer...
Test voicefixer mode 0, Pass
Test voicefixer mode 1, Pass
Test voicefixer mode 2, Pass
Initializing 44.1kHz speech vocoder...
Test vocoder using groundtruth mel spectrogram...
Pass
```
*test/test.py* mainly contains the test of the following two APIs:
- voicefixer.restore
- vocoder.oracle
```python
...
# TEST VOICEFIXER
## Initialize a voicefixer
print("Initializing VoiceFixer...")
voicefixer = VoiceFixer()
# Mode 0: Original Model (suggested by default)
# Mode 1: Add preprocessing module (remove higher frequency)
# Mode 2: Train mode (might work sometimes on seriously degraded real speech)
for mode in [0,1,2]:
print("Testing mode",mode)
voicefixer.restore(input=os.path.join(git_root,"test/utterance/original/original.flac"), # low quality .wav/.flac file
output=os.path.join(git_root,"test/utterance/output/output_mode_"+str(mode)+".flac"), # save file path
cuda=False, # GPU acceleration
mode=mode)
if(mode != 2):
check("output_mode_"+str(mode)+".flac")
print("Pass")
# TEST VOCODER
## Initialize a vocoder
print("Initializing 44.1kHz speech vocoder...")
vocoder = Vocoder(sample_rate=44100)
### read wave (fpath) -> mel spectrogram -> vocoder -> wave -> save wave (out_path)
print("Test vocoder using groundtruth mel spectrogram...")
vocoder.oracle(fpath=os.path.join(git_root,"test/utterance/original/p360_001_mic1.flac"),
out_path=os.path.join(git_root,"test/utterance/output/oracle.flac"),
cuda=False) # GPU acceleration
...
```
You can clone this repo and try to run test.py inside the *test* folder.
### Others Features
- How to use your own vocoder, like pre-trained HiFi-Gan?
First you need to write a following helper function with your model. Similar to the helper function in this repo: https://github.com/haoheliu/voicefixer/blob/main/voicefixer/vocoder/base.py#L35
```shell script
def convert_mel_to_wav(mel):
"""
:param non normalized mel spectrogram: [batchsize, 1, t-steps, n_mel]
:return: [batchsize, 1, samples]
"""
return wav
```
Then pass this function to *voicefixer.restore*, for example:
```
voicefixer.restore(input="", # input wav file path
output="", # output wav file path
cuda=False, # whether to use gpu acceleration
mode = 0,
your_vocoder_func = convert_mel_to_wav)
```
Note:
- For compatibility, your vocoder should working on 44.1kHz wave with mel frequency bins 128.
- The input mel spectrogram to the helper function should not be normalized by the width of each mel filter.
## Materials
- Voicefixer training: https://github.com/haoheliu/voicefixer_main.git
- Demo page: https://haoheliu.github.io/demopage-voicefixer/
[](https://imgtu.com/i/46dnPO)
[](https://imgtu.com/i/46dMxH)
## Change log
- 2022-09-03: Fix bugs on commandline voicefixer for windows users.
- 2022-08-18: Add commandline voicefixer tool to the pip package.
%package -n python3-voicefixer
Summary: This package is written for the restoration of degraded speech
Provides: python-voicefixer
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-voicefixer
[](https://arxiv.org/abs/2109.13731) [](https://colab.research.google.com/drive/1HYYUepIsl2aXsdET6P_AmNVXuWP1MCMf?usp=sharing) [](https://badge.fury.io/py/voicefixer) [](https://haoheliu.github.io/demopage-voicefixer)[](https://huggingface.co/spaces/akhaliq/VoiceFixer)
- [VoiceFixer](#voicefixer)
- [Demo](#demo)
- [Usage](#usage)
- [Desktop App](#desktop-app)
- [Command line](#command-line)
- [Python Examples](#python-examples)
- [Others Features](#others-features)
- [Materials](#materials)
- [Change log](#change-log)
# VoiceFixer
*Voicefixer* aims at the restoration of human speech regardless how serious its degraded. It can handle noise, reveberation, low resolution (2kHz~44.1kHz) and clipping (0.1-1.0 threshold) effect within one model.
This package provides:
- A pretrained *Voicefixer*, which is build based on neural vocoder.
- A pretrained 44.1k universal speaker-independent neural vocoder.

- If you found this repo helpful, please consider citing
```bib
@misc{liu2021voicefixer,
title={VoiceFixer: Toward General Speech Restoration With Neural Vocoder},
author={Haohe Liu and Qiuqiang Kong and Qiao Tian and Yan Zhao and DeLiang Wang and Chuanzeng Huang and Yuxuan Wang},
year={2021},
eprint={2109.13731},
archivePrefix={arXiv},
primaryClass={cs.SD}
}
```
## Demo
Please visit [demo page](https://haoheliu.github.io/demopage-voicefixer/) to view what voicefixer can do.
## Usage
### Desktop App
First, install voicefixer via pip:
```shell script
pip install voicefixer==0.1.2
```
You can test audio samples on your desktop by running website (powered by [streamlit](https://streamlit.io/))
1. Clone the repo first.
```shell script
git clone https://github.com/haoheliu/voicefixer.git
cd voicefixer
```
:warning: **For windows users**, please make sure you have installed [WGET](https://eternallybored.org/misc/wget) and added the wget command to the system path (thanks @justinjohn0306).
1. Initialize and start web page.
```shell script
# Run streamlit
streamlit run test/streamlit.py
```
- If you run for the first time: the web page may leave blank for several minutes for downloading models. You can checkout the terminal for downloading progresses.
- You can use [this low quality speech file](https://github.com/haoheliu/voicefixer/blob/main/test/utterance/original/original.wav) we provided for a test run. The page after processing will look like the following.
<p align="center"><img src="test/streamlit.png" alt="figure" width="400"/></p>
- For users from main land China, if you experience difficulty on downloading checkpoint. You can access them alternatively on [百度网盘](https://pan.baidu.com/s/194ufkUR_PYf1nE1KqkEZjQ) (提取密码: qis6). Please download the two checkpoints inside and place them in the following folder.
- Place **vf.ckpt** inside *~/.cache/voicefixer/analysis_module/checkpoints*. (The "~" represents your home directory)
- Place **model.ckpt-1490000_trimed.pt** inside *~/.cache/voicefixer/synthesis_module/44100*. (The "~" represents your home directory)
### Command line
First, install voicefixer via pip:
```shell
pip install voicefixer==0.1.2
```
Process a file:
```shell
# Specify the input .wav file. Output file is outfile.wav.
voicefixer --infile test/utterance/original/original.wav
# Or specify a output path
voicefixer --infile test/utterance/original/original.wav --outfile test/utterance/original/original_processed.wav
```
Process files in a folder:
```shell
voicefixer --infolder /path/to/input --outfolder /path/to/output
```
Change mode (The default mode is 0):
```shell
voicefixer --infile /path/to/input.wav --outfile /path/to/output.wav --mode 1
```
Run all modes:
```shell
# output file saved to `/path/to/output-modeX.wav`.
voicefixer --infile /path/to/input.wav --outfile /path/to/output.wav --mode all
```
For more helper information please run:
```shell
voicefixer -h
```
### Python Examples
First, install voicefixer via pip:
```shell script
pip install voicefixer==0.1.2
```
Then run the following scripts for a test run:
```shell script
git clone https://github.com/haoheliu/voicefixer.git; cd voicefixer
python3 test/test.py # test script
```
We expect it will give you the following output:
```shell script
Initializing VoiceFixer...
Test voicefixer mode 0, Pass
Test voicefixer mode 1, Pass
Test voicefixer mode 2, Pass
Initializing 44.1kHz speech vocoder...
Test vocoder using groundtruth mel spectrogram...
Pass
```
*test/test.py* mainly contains the test of the following two APIs:
- voicefixer.restore
- vocoder.oracle
```python
...
# TEST VOICEFIXER
## Initialize a voicefixer
print("Initializing VoiceFixer...")
voicefixer = VoiceFixer()
# Mode 0: Original Model (suggested by default)
# Mode 1: Add preprocessing module (remove higher frequency)
# Mode 2: Train mode (might work sometimes on seriously degraded real speech)
for mode in [0,1,2]:
print("Testing mode",mode)
voicefixer.restore(input=os.path.join(git_root,"test/utterance/original/original.flac"), # low quality .wav/.flac file
output=os.path.join(git_root,"test/utterance/output/output_mode_"+str(mode)+".flac"), # save file path
cuda=False, # GPU acceleration
mode=mode)
if(mode != 2):
check("output_mode_"+str(mode)+".flac")
print("Pass")
# TEST VOCODER
## Initialize a vocoder
print("Initializing 44.1kHz speech vocoder...")
vocoder = Vocoder(sample_rate=44100)
### read wave (fpath) -> mel spectrogram -> vocoder -> wave -> save wave (out_path)
print("Test vocoder using groundtruth mel spectrogram...")
vocoder.oracle(fpath=os.path.join(git_root,"test/utterance/original/p360_001_mic1.flac"),
out_path=os.path.join(git_root,"test/utterance/output/oracle.flac"),
cuda=False) # GPU acceleration
...
```
You can clone this repo and try to run test.py inside the *test* folder.
### Others Features
- How to use your own vocoder, like pre-trained HiFi-Gan?
First you need to write a following helper function with your model. Similar to the helper function in this repo: https://github.com/haoheliu/voicefixer/blob/main/voicefixer/vocoder/base.py#L35
```shell script
def convert_mel_to_wav(mel):
"""
:param non normalized mel spectrogram: [batchsize, 1, t-steps, n_mel]
:return: [batchsize, 1, samples]
"""
return wav
```
Then pass this function to *voicefixer.restore*, for example:
```
voicefixer.restore(input="", # input wav file path
output="", # output wav file path
cuda=False, # whether to use gpu acceleration
mode = 0,
your_vocoder_func = convert_mel_to_wav)
```
Note:
- For compatibility, your vocoder should working on 44.1kHz wave with mel frequency bins 128.
- The input mel spectrogram to the helper function should not be normalized by the width of each mel filter.
## Materials
- Voicefixer training: https://github.com/haoheliu/voicefixer_main.git
- Demo page: https://haoheliu.github.io/demopage-voicefixer/
[](https://imgtu.com/i/46dnPO)
[](https://imgtu.com/i/46dMxH)
## Change log
- 2022-09-03: Fix bugs on commandline voicefixer for windows users.
- 2022-08-18: Add commandline voicefixer tool to the pip package.
%package help
Summary: Development documents and examples for voicefixer
Provides: python3-voicefixer-doc
%description help
[](https://arxiv.org/abs/2109.13731) [](https://colab.research.google.com/drive/1HYYUepIsl2aXsdET6P_AmNVXuWP1MCMf?usp=sharing) [](https://badge.fury.io/py/voicefixer) [](https://haoheliu.github.io/demopage-voicefixer)[](https://huggingface.co/spaces/akhaliq/VoiceFixer)
- [VoiceFixer](#voicefixer)
- [Demo](#demo)
- [Usage](#usage)
- [Desktop App](#desktop-app)
- [Command line](#command-line)
- [Python Examples](#python-examples)
- [Others Features](#others-features)
- [Materials](#materials)
- [Change log](#change-log)
# VoiceFixer
*Voicefixer* aims at the restoration of human speech regardless how serious its degraded. It can handle noise, reveberation, low resolution (2kHz~44.1kHz) and clipping (0.1-1.0 threshold) effect within one model.
This package provides:
- A pretrained *Voicefixer*, which is build based on neural vocoder.
- A pretrained 44.1k universal speaker-independent neural vocoder.

- If you found this repo helpful, please consider citing
```bib
@misc{liu2021voicefixer,
title={VoiceFixer: Toward General Speech Restoration With Neural Vocoder},
author={Haohe Liu and Qiuqiang Kong and Qiao Tian and Yan Zhao and DeLiang Wang and Chuanzeng Huang and Yuxuan Wang},
year={2021},
eprint={2109.13731},
archivePrefix={arXiv},
primaryClass={cs.SD}
}
```
## Demo
Please visit [demo page](https://haoheliu.github.io/demopage-voicefixer/) to view what voicefixer can do.
## Usage
### Desktop App
First, install voicefixer via pip:
```shell script
pip install voicefixer==0.1.2
```
You can test audio samples on your desktop by running website (powered by [streamlit](https://streamlit.io/))
1. Clone the repo first.
```shell script
git clone https://github.com/haoheliu/voicefixer.git
cd voicefixer
```
:warning: **For windows users**, please make sure you have installed [WGET](https://eternallybored.org/misc/wget) and added the wget command to the system path (thanks @justinjohn0306).
1. Initialize and start web page.
```shell script
# Run streamlit
streamlit run test/streamlit.py
```
- If you run for the first time: the web page may leave blank for several minutes for downloading models. You can checkout the terminal for downloading progresses.
- You can use [this low quality speech file](https://github.com/haoheliu/voicefixer/blob/main/test/utterance/original/original.wav) we provided for a test run. The page after processing will look like the following.
<p align="center"><img src="test/streamlit.png" alt="figure" width="400"/></p>
- For users from main land China, if you experience difficulty on downloading checkpoint. You can access them alternatively on [百度网盘](https://pan.baidu.com/s/194ufkUR_PYf1nE1KqkEZjQ) (提取密码: qis6). Please download the two checkpoints inside and place them in the following folder.
- Place **vf.ckpt** inside *~/.cache/voicefixer/analysis_module/checkpoints*. (The "~" represents your home directory)
- Place **model.ckpt-1490000_trimed.pt** inside *~/.cache/voicefixer/synthesis_module/44100*. (The "~" represents your home directory)
### Command line
First, install voicefixer via pip:
```shell
pip install voicefixer==0.1.2
```
Process a file:
```shell
# Specify the input .wav file. Output file is outfile.wav.
voicefixer --infile test/utterance/original/original.wav
# Or specify a output path
voicefixer --infile test/utterance/original/original.wav --outfile test/utterance/original/original_processed.wav
```
Process files in a folder:
```shell
voicefixer --infolder /path/to/input --outfolder /path/to/output
```
Change mode (The default mode is 0):
```shell
voicefixer --infile /path/to/input.wav --outfile /path/to/output.wav --mode 1
```
Run all modes:
```shell
# output file saved to `/path/to/output-modeX.wav`.
voicefixer --infile /path/to/input.wav --outfile /path/to/output.wav --mode all
```
For more helper information please run:
```shell
voicefixer -h
```
### Python Examples
First, install voicefixer via pip:
```shell script
pip install voicefixer==0.1.2
```
Then run the following scripts for a test run:
```shell script
git clone https://github.com/haoheliu/voicefixer.git; cd voicefixer
python3 test/test.py # test script
```
We expect it will give you the following output:
```shell script
Initializing VoiceFixer...
Test voicefixer mode 0, Pass
Test voicefixer mode 1, Pass
Test voicefixer mode 2, Pass
Initializing 44.1kHz speech vocoder...
Test vocoder using groundtruth mel spectrogram...
Pass
```
*test/test.py* mainly contains the test of the following two APIs:
- voicefixer.restore
- vocoder.oracle
```python
...
# TEST VOICEFIXER
## Initialize a voicefixer
print("Initializing VoiceFixer...")
voicefixer = VoiceFixer()
# Mode 0: Original Model (suggested by default)
# Mode 1: Add preprocessing module (remove higher frequency)
# Mode 2: Train mode (might work sometimes on seriously degraded real speech)
for mode in [0,1,2]:
print("Testing mode",mode)
voicefixer.restore(input=os.path.join(git_root,"test/utterance/original/original.flac"), # low quality .wav/.flac file
output=os.path.join(git_root,"test/utterance/output/output_mode_"+str(mode)+".flac"), # save file path
cuda=False, # GPU acceleration
mode=mode)
if(mode != 2):
check("output_mode_"+str(mode)+".flac")
print("Pass")
# TEST VOCODER
## Initialize a vocoder
print("Initializing 44.1kHz speech vocoder...")
vocoder = Vocoder(sample_rate=44100)
### read wave (fpath) -> mel spectrogram -> vocoder -> wave -> save wave (out_path)
print("Test vocoder using groundtruth mel spectrogram...")
vocoder.oracle(fpath=os.path.join(git_root,"test/utterance/original/p360_001_mic1.flac"),
out_path=os.path.join(git_root,"test/utterance/output/oracle.flac"),
cuda=False) # GPU acceleration
...
```
You can clone this repo and try to run test.py inside the *test* folder.
### Others Features
- How to use your own vocoder, like pre-trained HiFi-Gan?
First you need to write a following helper function with your model. Similar to the helper function in this repo: https://github.com/haoheliu/voicefixer/blob/main/voicefixer/vocoder/base.py#L35
```shell script
def convert_mel_to_wav(mel):
"""
:param non normalized mel spectrogram: [batchsize, 1, t-steps, n_mel]
:return: [batchsize, 1, samples]
"""
return wav
```
Then pass this function to *voicefixer.restore*, for example:
```
voicefixer.restore(input="", # input wav file path
output="", # output wav file path
cuda=False, # whether to use gpu acceleration
mode = 0,
your_vocoder_func = convert_mel_to_wav)
```
Note:
- For compatibility, your vocoder should working on 44.1kHz wave with mel frequency bins 128.
- The input mel spectrogram to the helper function should not be normalized by the width of each mel filter.
## Materials
- Voicefixer training: https://github.com/haoheliu/voicefixer_main.git
- Demo page: https://haoheliu.github.io/demopage-voicefixer/
[](https://imgtu.com/i/46dnPO)
[](https://imgtu.com/i/46dMxH)
## Change log
- 2022-09-03: Fix bugs on commandline voicefixer for windows users.
- 2022-08-18: Add commandline voicefixer tool to the pip package.
%prep
%autosetup -n voicefixer-0.1.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-voicefixer -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.2-1
- Package Spec generated
|