1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
%global _empty_manifest_terminate_build 0
Name: python-wandb
Version: 0.15.0
Release: 1
Summary: A CLI and library for interacting with the Weights and Biases API.
License: MIT license
URL: https://github.com/wandb/wandb
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b4/d2/7fd1b3e353cff0f80df40d1226af902472185e515aeb609a65e7309a40d1/wandb-0.15.0.tar.gz
BuildArch: noarch
Requires: python3-Click
Requires: python3-GitPython
Requires: python3-requests
Requires: python3-psutil
Requires: python3-sentry-sdk
Requires: python3-docker-pycreds
Requires: python3-PyYAML
Requires: python3-pathtools
Requires: python3-setproctitle
Requires: python3-setuptools
Requires: python3-appdirs
Requires: python3-typing-extensions
Requires: python3-dataclasses
Requires: python3-protobuf
Requires: python3-protobuf
Requires: python3-protobuf
Requires: python3-protobuf
Requires: python3-httpx
Requires: python3-boto3
Requires: python3-azure-storage-blob
Requires: python3-google-cloud-storage
Requires: python3-grpcio
Requires: python3-kubernetes
Requires: python3-minio
Requires: python3-google-cloud-storage
Requires: python3-sh
Requires: python3-awscli
Requires: python3-nbconvert
Requires: python3-nbformat
Requires: python3-chardet
Requires: python3-iso8601
Requires: python3-typing-extensions
Requires: python3-boto3
Requires: python3-botocore
Requires: python3-google-auth
Requires: python3-google-cloud-compute
Requires: python3-google-cloud-storage
Requires: python3-google-cloud-artifact-registry
Requires: python3-kubernetes
Requires: python3-numpy
Requires: python3-moviepy
Requires: python3-pillow
Requires: python3-bokeh
Requires: python3-soundfile
Requires: python3-plotly
Requires: python3-rdkit-pypi
Requires: python3-cloudpickle
Requires: python3-sweeps
%description
<div align="center">
<img src="https://i.imgur.com/RUtiVzH.png" width="600" /><br><br>
</div>
# Weights and Biases [](https://pypi.python.org/pypi/wandb) [](https://anaconda.org/conda-forge/wandb) [](https://circleci.com/gh/wandb/wandb) [](https://codecov.io/gh/wandb/wandb)
Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production models.
- Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard.
- Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files.
- Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models.
- Reproduce any model, with saved code, hyperparameters, launch commands, input data, and resulting model weights.
[Sign up for a free account →](https://wandb.ai/login?signup=true)
## Features
- Store hyper-parameters used in a training run
- Search, compare, and visualize training runs
- Analyze system usage metrics alongside runs
- Collaborate with team members
- Replicate historic results
- Run parameter sweeps
- Keep records of experiments available forever
[Documentation →](https://docs.wandb.com)
## Quickstart
```shell
pip install wandb
```
In your training script:
```python
import wandb
# Your custom arguments defined here
args = ...
wandb.init(config=args, project="my-project")
wandb.config["more"] = "custom"
def training_loop():
while True:
# Do some machine learning
epoch, loss, val_loss = ...
# Framework agnostic / custom metrics
wandb.log({"epoch": epoch, "loss": loss, "val_loss": val_loss})
```
If you're already using Tensorboard or [TensorboardX](https://github.com/lanpa/tensorboardX), you can integrate with one line:
```python
wandb.init(sync_tensorboard=True)
```
## Running your script
Run `wandb login` from your terminal to signup or authenticate your machine (we store your api key in ~/.netrc). You can also set the `WANDB_API_KEY` environment variable with a key from your [settings](https://app.wandb.ai/settings).
Run your script with `python my_script.py` and all metadata will be synced to the cloud. You will see a url in your terminal logs when your script starts and finishes. Data is staged locally in a directory named _wandb_ relative to your script. If you want to test your script without syncing to the cloud you can set the environment variable `WANDB_MODE=dryrun`.
If you are using [docker](https://docker.com) to run your code, we provide a wrapper command `wandb docker` that mounts your current directory, sets environment variables, and ensures the wandb library is installed. Training your models in docker gives you the ability to restore the exact code and environment with the `wandb restore` command.
## Web Interface
[Sign up for a free account →](https://wandb.com)
[](https://youtu.be/EeqhOSvNX-A)
[Introduction video →](https://youtu.be/EeqhOSvNX-A)
## Detailed Usage
Framework specific and detailed usage can be found in our [documentation](http://docs.wandb.com/).
## Testing
To run basic test use `make test`. More detailed information can be found at CONTRIBUTING.md.
We use [circleci](https://circleci.com) for CI.
# Academic Researchers
If you'd like a free academic account for your research group, [reach out to us →](https://www.wandb.com/academic)
We make it easy to cite W&B in your published paper. [Learn more →](https://www.wandb.com/academic)
[](https://www.wandb.com/academic)
## Community
Got questions, feedback or want to join a community of ML engineers working on exciting projects?
<a href="https://bit.ly/wb-slack"><img src="https://svgshare.com/i/M93.svg" alt="slack" width="55"/></a> Join our [slack](https://bit.ly/wb-slack) community.
[](https://twitter.com/weights_biases) Follow us on [Twitter](https://twitter.com/weights_biases).
%package -n python3-wandb
Summary: A CLI and library for interacting with the Weights and Biases API.
Provides: python-wandb
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-wandb
<div align="center">
<img src="https://i.imgur.com/RUtiVzH.png" width="600" /><br><br>
</div>
# Weights and Biases [](https://pypi.python.org/pypi/wandb) [](https://anaconda.org/conda-forge/wandb) [](https://circleci.com/gh/wandb/wandb) [](https://codecov.io/gh/wandb/wandb)
Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production models.
- Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard.
- Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files.
- Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models.
- Reproduce any model, with saved code, hyperparameters, launch commands, input data, and resulting model weights.
[Sign up for a free account →](https://wandb.ai/login?signup=true)
## Features
- Store hyper-parameters used in a training run
- Search, compare, and visualize training runs
- Analyze system usage metrics alongside runs
- Collaborate with team members
- Replicate historic results
- Run parameter sweeps
- Keep records of experiments available forever
[Documentation →](https://docs.wandb.com)
## Quickstart
```shell
pip install wandb
```
In your training script:
```python
import wandb
# Your custom arguments defined here
args = ...
wandb.init(config=args, project="my-project")
wandb.config["more"] = "custom"
def training_loop():
while True:
# Do some machine learning
epoch, loss, val_loss = ...
# Framework agnostic / custom metrics
wandb.log({"epoch": epoch, "loss": loss, "val_loss": val_loss})
```
If you're already using Tensorboard or [TensorboardX](https://github.com/lanpa/tensorboardX), you can integrate with one line:
```python
wandb.init(sync_tensorboard=True)
```
## Running your script
Run `wandb login` from your terminal to signup or authenticate your machine (we store your api key in ~/.netrc). You can also set the `WANDB_API_KEY` environment variable with a key from your [settings](https://app.wandb.ai/settings).
Run your script with `python my_script.py` and all metadata will be synced to the cloud. You will see a url in your terminal logs when your script starts and finishes. Data is staged locally in a directory named _wandb_ relative to your script. If you want to test your script without syncing to the cloud you can set the environment variable `WANDB_MODE=dryrun`.
If you are using [docker](https://docker.com) to run your code, we provide a wrapper command `wandb docker` that mounts your current directory, sets environment variables, and ensures the wandb library is installed. Training your models in docker gives you the ability to restore the exact code and environment with the `wandb restore` command.
## Web Interface
[Sign up for a free account →](https://wandb.com)
[](https://youtu.be/EeqhOSvNX-A)
[Introduction video →](https://youtu.be/EeqhOSvNX-A)
## Detailed Usage
Framework specific and detailed usage can be found in our [documentation](http://docs.wandb.com/).
## Testing
To run basic test use `make test`. More detailed information can be found at CONTRIBUTING.md.
We use [circleci](https://circleci.com) for CI.
# Academic Researchers
If you'd like a free academic account for your research group, [reach out to us →](https://www.wandb.com/academic)
We make it easy to cite W&B in your published paper. [Learn more →](https://www.wandb.com/academic)
[](https://www.wandb.com/academic)
## Community
Got questions, feedback or want to join a community of ML engineers working on exciting projects?
<a href="https://bit.ly/wb-slack"><img src="https://svgshare.com/i/M93.svg" alt="slack" width="55"/></a> Join our [slack](https://bit.ly/wb-slack) community.
[](https://twitter.com/weights_biases) Follow us on [Twitter](https://twitter.com/weights_biases).
%package help
Summary: Development documents and examples for wandb
Provides: python3-wandb-doc
%description help
<div align="center">
<img src="https://i.imgur.com/RUtiVzH.png" width="600" /><br><br>
</div>
# Weights and Biases [](https://pypi.python.org/pypi/wandb) [](https://anaconda.org/conda-forge/wandb) [](https://circleci.com/gh/wandb/wandb) [](https://codecov.io/gh/wandb/wandb)
Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production models.
- Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard.
- Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files.
- Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models.
- Reproduce any model, with saved code, hyperparameters, launch commands, input data, and resulting model weights.
[Sign up for a free account →](https://wandb.ai/login?signup=true)
## Features
- Store hyper-parameters used in a training run
- Search, compare, and visualize training runs
- Analyze system usage metrics alongside runs
- Collaborate with team members
- Replicate historic results
- Run parameter sweeps
- Keep records of experiments available forever
[Documentation →](https://docs.wandb.com)
## Quickstart
```shell
pip install wandb
```
In your training script:
```python
import wandb
# Your custom arguments defined here
args = ...
wandb.init(config=args, project="my-project")
wandb.config["more"] = "custom"
def training_loop():
while True:
# Do some machine learning
epoch, loss, val_loss = ...
# Framework agnostic / custom metrics
wandb.log({"epoch": epoch, "loss": loss, "val_loss": val_loss})
```
If you're already using Tensorboard or [TensorboardX](https://github.com/lanpa/tensorboardX), you can integrate with one line:
```python
wandb.init(sync_tensorboard=True)
```
## Running your script
Run `wandb login` from your terminal to signup or authenticate your machine (we store your api key in ~/.netrc). You can also set the `WANDB_API_KEY` environment variable with a key from your [settings](https://app.wandb.ai/settings).
Run your script with `python my_script.py` and all metadata will be synced to the cloud. You will see a url in your terminal logs when your script starts and finishes. Data is staged locally in a directory named _wandb_ relative to your script. If you want to test your script without syncing to the cloud you can set the environment variable `WANDB_MODE=dryrun`.
If you are using [docker](https://docker.com) to run your code, we provide a wrapper command `wandb docker` that mounts your current directory, sets environment variables, and ensures the wandb library is installed. Training your models in docker gives you the ability to restore the exact code and environment with the `wandb restore` command.
## Web Interface
[Sign up for a free account →](https://wandb.com)
[](https://youtu.be/EeqhOSvNX-A)
[Introduction video →](https://youtu.be/EeqhOSvNX-A)
## Detailed Usage
Framework specific and detailed usage can be found in our [documentation](http://docs.wandb.com/).
## Testing
To run basic test use `make test`. More detailed information can be found at CONTRIBUTING.md.
We use [circleci](https://circleci.com) for CI.
# Academic Researchers
If you'd like a free academic account for your research group, [reach out to us →](https://www.wandb.com/academic)
We make it easy to cite W&B in your published paper. [Learn more →](https://www.wandb.com/academic)
[](https://www.wandb.com/academic)
## Community
Got questions, feedback or want to join a community of ML engineers working on exciting projects?
<a href="https://bit.ly/wb-slack"><img src="https://svgshare.com/i/M93.svg" alt="slack" width="55"/></a> Join our [slack](https://bit.ly/wb-slack) community.
[](https://twitter.com/weights_biases) Follow us on [Twitter](https://twitter.com/weights_biases).
%prep
%autosetup -n wandb-0.15.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-wandb -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 0.15.0-1
- Package Spec generated
|