1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
|
%global _empty_manifest_terminate_build 0
Name: python-watchtower
Version: 3.0.1
Release: 1
Summary: Python CloudWatch Logging
License: Apache Software License
URL: https://github.com/kislyuk/watchtower
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/4f/6e/5a0fbc27d40421ad7c82b6b14ba963e53877f59b2fe73d50fc14d55fc588/watchtower-3.0.1.tar.gz
BuildArch: noarch
Requires: python3-boto3
Requires: python3-pyyaml
Requires: python3-flake8
Requires: python3-coverage
Requires: python3-build
Requires: python3-wheel
Requires: python3-mypy
%description
Watchtower is a log handler for `Amazon Web Services CloudWatch Logs
<https://aws.amazon.com/blogs/aws/cloudwatch-log-service/>`_.
CloudWatch Logs is a log management service built into AWS. It is conceptually similar to services like Splunk, Datadog,
and Loggly, but is more lightweight, cheaper, and tightly integrated with the rest of AWS.
Watchtower, in turn, is a lightweight adapter between the `Python logging system
<https://docs.python.org/library/logging.html>`_ and CloudWatch Logs. It uses the `boto3 AWS SDK
<https://github.com/boto/boto3>`_, and lets you plug your application logging directly into CloudWatch without the need
to install a system-wide log collector like `awscli-cwlogs <https://pypi.python.org/pypi/awscli-cwlogs>`_ and round-trip
your logs through the instance's syslog. It aggregates logs into batches to avoid sending an API request per each log
message, while guaranteeing a delivery deadline (60 seconds by default).
Installation
~~~~~~~~~~~~
pip install watchtower
Synopsis
~~~~~~~~
Install `awscli <https://pypi.python.org/pypi/awscli>`_ and set your AWS credentials (run ``aws configure``).
import watchtower, logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.addHandler(watchtower.CloudWatchLogHandler())
logger.info("Hi")
logger.info(dict(foo="bar", details={}))
After running the example, you can see the log output in your `AWS console
<https://console.aws.amazon.com/cloudwatch/home>`_ under the **watchtower** log group.
IAM permissions
~~~~~~~~~~~~~~~
The process running watchtower needs to have access to IAM credentials to call the CloudWatch Logs API. The standard
procedure for loading and configuring credentials is described in the
`Boto3 Credentials documentation <https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html>`_.
When running Watchtower on an EC2 instance or other AWS compute resource, boto3 automatically loads credentials from
`instance metadata <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html>`_ (IMDS) or
container credentials provider (AWS_WEB_IDENTITY_TOKEN_FILE or AWS_CONTAINER_CREDENTIALS_FULL_URI). The easiest way to
grant the right permissions to the IAM role associated with these credentials is by attaching an AWS
`managed IAM policy <https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html>`_ to the
role. While AWS provides no generic managed CloudWatch Logs writer policy, we recommend that you use the
``arn:aws:iam::aws:policy/AWSOpsWorksCloudWatchLogs`` managed policy, which has just the right permissions without being
overly broad.
Example: Flask logging with Watchtower
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Use the following configuration to send Flask logs to a CloudWatch Logs stream called "loggable":
import watchtower, flask, logging
logging.basicConfig(level=logging.INFO)
app = flask.Flask("loggable")
handler = watchtower.CloudWatchLogHandler(log_group_name=app.name)
app.logger.addHandler(handler)
logging.getLogger("werkzeug").addHandler(handler)
@app.route('/')
def hello_world():
return 'Hello World!'
if __name__ == '__main__':
app.run()
(See also `http://flask.pocoo.org/docs/errorhandling/ <http://flask.pocoo.org/docs/errorhandling/>`_.)
Example: Django logging with Watchtower
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is an example of Watchtower integration with Django. In your Django project, add the following to ``settings.py``:
import boto3
AWS_REGION_NAME = "us-west-2"
boto3_logs_client = boto3.client("logs", region_name=AWS_REGION_NAME)
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'root': {
'level': 'DEBUG',
# Adding the watchtower handler here causes all loggers in the project that
# have propagate=True (the default) to send messages to watchtower. If you
# wish to send only from specific loggers instead, remove "watchtower" here
# and configure individual loggers below.
'handlers': ['watchtower', 'console'],
},
'handlers': {
'console': {
'class': 'logging.StreamHandler',
},
'watchtower': {
'class': 'watchtower.CloudWatchLogHandler',
'boto3_client': boto3_logs_client,
'log_group_name': 'YOUR_DJANGO_PROJECT_NAME',
# Decrease the verbosity level here to send only those logs to watchtower,
# but still see more verbose logs in the console. See the watchtower
# documentation for other parameters that can be set here.
'level': 'DEBUG'
}
},
'loggers': {
# In the debug server (`manage.py runserver`), several Django system loggers cause
# deadlocks when using threading in the logging handler, and are not supported by
# watchtower. This limitation does not apply when running on production WSGI servers
# (gunicorn, uwsgi, etc.), so we recommend that you set `propagate=True` below in your
# production-specific Django settings file to receive Django system logs in CloudWatch.
'django': {
'level': 'DEBUG',
'handlers': ['console'],
'propagate': False
}
# Add any other logger-specific configuration here.
}
}
Using this configuration, logs from Django will be sent to Cloudwatch in the log group ``YOUR_DJANGO_PROJECT_NAME``.
To supply AWS credentials to this configuration in development, set your
`AWS CLI profile settings <https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html>`_ with
``aws configure``. To supply credentials in production or when running on an EC2 instance,
assign an IAM role to your instance, which will cause boto3 to automatically ingest IAM role credentials from
`instance metadata <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html>`_.
(See also the `Django logging documentation <https://docs.djangoproject.com/en/dev/topics/logging/>`_.)
Examples: Querying CloudWatch logs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This section is not specific to Watchtower. It demonstrates the use of awscli and jq to read and search CloudWatch logs
on the command line.
For the Flask example above, you can retrieve your application logs with the following two commands::
aws logs get-log-events --log-group-name watchtower --log-stream-name loggable | jq '.events[].message'
aws logs get-log-events --log-group-name watchtower --log-stream-name werkzeug | jq '.events[].message'
In addition to the raw get-log-events API, CloudWatch Logs supports
`extraction of your logs into an S3 bucket <https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3Export.html>`_,
`log analysis with a query language <https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html>`_,
and alerting and dashboards based on `metric filters
<http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/FilterAndPatternSyntax.html>`_, which are pattern
rules that extract information from your logs and feed it to alarms and dashboard graphs. If you want to make use of
these features on the command line, the author of Watchtower has published an open source CLI toolkit called
`aegea <https://github.com/kislyuk/aegea>`_ that includes the commands ``aegea logs`` and ``aegea grep`` to easily
access the S3 Export and Insights features.
Examples: Python Logging Config
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Python ``logging.config`` module has the ability to provide a configuration file that can be loaded in order to
separate the logging configuration from the code.
The following are two example YAML configuration files that can be loaded using PyYAML. The resulting ``dict`` object
can then be loaded into ``logging.config.dictConfig``. The first example is a basic example that relies on the default
configuration provided by ``boto3``:
# Default AWS Config
version: 1
disable_existing_loggers: False
formatters:
json:
format: "[%(asctime)s] %(process)d %(levelname)s %(name)s:%(funcName)s:%(lineno)s - %(message)s"
plaintext:
format: "[%(asctime)s] %(process)d %(levelname)s %(name)s:%(funcName)s:%(lineno)s - %(message)s"
handlers:
console:
class: logging.StreamHandler
formatter: plaintext
level: DEBUG
stream: ext://sys.stdout
logfile:
class: logging.handlers.RotatingFileHandler
formatter: plaintext
level: DEBUG
filename: watchtower.log
maxBytes: 1000000
backupCount: 3
watchtower:
class: watchtower.CloudWatchLogHandler
formatter: json
level: DEBUG
log_group_name: watchtower
log_stream_name: "{logger_name}-{strftime:%y-%m-%d}"
send_interval: 10
create_log_group: False
root:
level: DEBUG
propagate: True
handlers: [console, logfile, watchtower]
loggers:
botocore:
level: INFO
urllib3:
level: INFO
The above works well if you can use the default boto3 credential configuration, or rely on environment variables.
However, sometimes one may want to use different credentials for logging than used for other functionality;
in this case the ``boto3_profile_name`` option to Watchtower can be used to provide a boto3 profile name:
# AWS Config Profile
version: 1
handlers:
watchtower:
boto3_profile_name: watchtowerlogger
Finally, the following shows how to load the configuration into the working application:
import logging.config
import flask
import yaml
app = flask.Flask("loggable")
@app.route('/')
def hello_world():
return 'Hello World!'
if __name__ == '__main__':
with open('logging.yml') as log_config:
config_yml = log_config.read()
config_dict = yaml.safe_load(config_yml)
logging.config.dictConfig(config_dict)
app.run()
Log stream naming
~~~~~~~~~~~~~~~~~
For high volume logging applications that utilize process pools, it is recommended that you keep the default log stream
name (``{machine_name}/{program_name}/{logger_name}/{process_id}``) or otherwise make it unique per source using a
combination of these template variables. Because logs must be submitted sequentially to each log stream, independent
processes sending logs to the same log stream will encounter sequence token synchronization errors and spend extra resources
automatically recovering from them. As the number of processes increases, this overhead will grow until logs fail to
deliver and get dropped (causing a warning on stderr). Partitioning logs into streams by source avoids this contention.
Boto3/botocore/urllib3 logs
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because watchtower uses boto3 to send logs, the act of sending them generates a number of DEBUG level log messages
from boto3's dependencies, botocore and urllib3. To avoid generating a self-perpetuating stream of log messages,
``watchtower.CloudWatchLogHandler`` attaches a
`filter <https://docs.python.org/3/library/logging.html#logging.Handler.addFilter>`_ to itself which drops all DEBUG
level messages from these libraries, and drops all messages at all levels from them when shutting down (specifically,
in ``watchtower.CloudWatchLogHandler.flush()`` and ``watchtower.CloudWatchLogHandler.close()``). The filter does not
apply to any other handlers you may have processing your messages, so the following basic configuration will cause
botocore debug logs to print to stderr but not to Cloudwatch:
import watchtower, logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
logger.addHandler(watchtower.CloudWatchLogHandler())
AWS Lambda
~~~~~~~~~~
Watchtower is not suitable or necessary for applications running on AWS Lambda. All AWS Lambda logs (i.e. all lines
printed to stderr by the runtime in the Lambda) are automatically sent to CloudWatch Logs, into
`log groups under the /aws/lambda/ prefix <https://console.aws.amazon.com/cloudwatch/home?#logsV2:log-groups$3FlogGroupNameFilter$3D$252Faws$252Flambda>`_.
AWS Lambda `suspends (freezes) all processes in its execution environment <https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html>`_
once the invocation is complete and until the next invocation, if any. This means any asynchronous background
processes and threads, including watchtower, will be suspended and inoperable, so watchtower cannot function
correctly in this execution model.
Authors
~~~~~~~
* Andrey Kislyuk
Links
~~~~~
* `Project home page (GitHub) <https://github.com/kislyuk/watchtower>`_
* `Documentation <https://kislyuk.github.io/watchtower/>`_
* `Package distribution (PyPI) <https://pypi.python.org/pypi/watchtower>`_
* `AWS CLI CloudWatch Logs plugin <https://pypi.python.org/pypi/awscli-cwlogs>`_
* `Docker awslogs adapter <https://github.com/docker/docker/blob/master/daemon/logger/awslogs/cloudwatchlogs.go>`_
Bugs
~~~~
Please report bugs, issues, feature requests, etc. on `GitHub <https://github.com/kislyuk/watchtower/issues>`_.
License
~~~~~~~
Licensed under the terms of the `Apache License, Version 2.0 <http://www.apache.org/licenses/LICENSE-2.0>`_.
%package -n python3-watchtower
Summary: Python CloudWatch Logging
Provides: python-watchtower
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-watchtower
Watchtower is a log handler for `Amazon Web Services CloudWatch Logs
<https://aws.amazon.com/blogs/aws/cloudwatch-log-service/>`_.
CloudWatch Logs is a log management service built into AWS. It is conceptually similar to services like Splunk, Datadog,
and Loggly, but is more lightweight, cheaper, and tightly integrated with the rest of AWS.
Watchtower, in turn, is a lightweight adapter between the `Python logging system
<https://docs.python.org/library/logging.html>`_ and CloudWatch Logs. It uses the `boto3 AWS SDK
<https://github.com/boto/boto3>`_, and lets you plug your application logging directly into CloudWatch without the need
to install a system-wide log collector like `awscli-cwlogs <https://pypi.python.org/pypi/awscli-cwlogs>`_ and round-trip
your logs through the instance's syslog. It aggregates logs into batches to avoid sending an API request per each log
message, while guaranteeing a delivery deadline (60 seconds by default).
Installation
~~~~~~~~~~~~
pip install watchtower
Synopsis
~~~~~~~~
Install `awscli <https://pypi.python.org/pypi/awscli>`_ and set your AWS credentials (run ``aws configure``).
import watchtower, logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.addHandler(watchtower.CloudWatchLogHandler())
logger.info("Hi")
logger.info(dict(foo="bar", details={}))
After running the example, you can see the log output in your `AWS console
<https://console.aws.amazon.com/cloudwatch/home>`_ under the **watchtower** log group.
IAM permissions
~~~~~~~~~~~~~~~
The process running watchtower needs to have access to IAM credentials to call the CloudWatch Logs API. The standard
procedure for loading and configuring credentials is described in the
`Boto3 Credentials documentation <https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html>`_.
When running Watchtower on an EC2 instance or other AWS compute resource, boto3 automatically loads credentials from
`instance metadata <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html>`_ (IMDS) or
container credentials provider (AWS_WEB_IDENTITY_TOKEN_FILE or AWS_CONTAINER_CREDENTIALS_FULL_URI). The easiest way to
grant the right permissions to the IAM role associated with these credentials is by attaching an AWS
`managed IAM policy <https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html>`_ to the
role. While AWS provides no generic managed CloudWatch Logs writer policy, we recommend that you use the
``arn:aws:iam::aws:policy/AWSOpsWorksCloudWatchLogs`` managed policy, which has just the right permissions without being
overly broad.
Example: Flask logging with Watchtower
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Use the following configuration to send Flask logs to a CloudWatch Logs stream called "loggable":
import watchtower, flask, logging
logging.basicConfig(level=logging.INFO)
app = flask.Flask("loggable")
handler = watchtower.CloudWatchLogHandler(log_group_name=app.name)
app.logger.addHandler(handler)
logging.getLogger("werkzeug").addHandler(handler)
@app.route('/')
def hello_world():
return 'Hello World!'
if __name__ == '__main__':
app.run()
(See also `http://flask.pocoo.org/docs/errorhandling/ <http://flask.pocoo.org/docs/errorhandling/>`_.)
Example: Django logging with Watchtower
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is an example of Watchtower integration with Django. In your Django project, add the following to ``settings.py``:
import boto3
AWS_REGION_NAME = "us-west-2"
boto3_logs_client = boto3.client("logs", region_name=AWS_REGION_NAME)
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'root': {
'level': 'DEBUG',
# Adding the watchtower handler here causes all loggers in the project that
# have propagate=True (the default) to send messages to watchtower. If you
# wish to send only from specific loggers instead, remove "watchtower" here
# and configure individual loggers below.
'handlers': ['watchtower', 'console'],
},
'handlers': {
'console': {
'class': 'logging.StreamHandler',
},
'watchtower': {
'class': 'watchtower.CloudWatchLogHandler',
'boto3_client': boto3_logs_client,
'log_group_name': 'YOUR_DJANGO_PROJECT_NAME',
# Decrease the verbosity level here to send only those logs to watchtower,
# but still see more verbose logs in the console. See the watchtower
# documentation for other parameters that can be set here.
'level': 'DEBUG'
}
},
'loggers': {
# In the debug server (`manage.py runserver`), several Django system loggers cause
# deadlocks when using threading in the logging handler, and are not supported by
# watchtower. This limitation does not apply when running on production WSGI servers
# (gunicorn, uwsgi, etc.), so we recommend that you set `propagate=True` below in your
# production-specific Django settings file to receive Django system logs in CloudWatch.
'django': {
'level': 'DEBUG',
'handlers': ['console'],
'propagate': False
}
# Add any other logger-specific configuration here.
}
}
Using this configuration, logs from Django will be sent to Cloudwatch in the log group ``YOUR_DJANGO_PROJECT_NAME``.
To supply AWS credentials to this configuration in development, set your
`AWS CLI profile settings <https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html>`_ with
``aws configure``. To supply credentials in production or when running on an EC2 instance,
assign an IAM role to your instance, which will cause boto3 to automatically ingest IAM role credentials from
`instance metadata <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html>`_.
(See also the `Django logging documentation <https://docs.djangoproject.com/en/dev/topics/logging/>`_.)
Examples: Querying CloudWatch logs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This section is not specific to Watchtower. It demonstrates the use of awscli and jq to read and search CloudWatch logs
on the command line.
For the Flask example above, you can retrieve your application logs with the following two commands::
aws logs get-log-events --log-group-name watchtower --log-stream-name loggable | jq '.events[].message'
aws logs get-log-events --log-group-name watchtower --log-stream-name werkzeug | jq '.events[].message'
In addition to the raw get-log-events API, CloudWatch Logs supports
`extraction of your logs into an S3 bucket <https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3Export.html>`_,
`log analysis with a query language <https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html>`_,
and alerting and dashboards based on `metric filters
<http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/FilterAndPatternSyntax.html>`_, which are pattern
rules that extract information from your logs and feed it to alarms and dashboard graphs. If you want to make use of
these features on the command line, the author of Watchtower has published an open source CLI toolkit called
`aegea <https://github.com/kislyuk/aegea>`_ that includes the commands ``aegea logs`` and ``aegea grep`` to easily
access the S3 Export and Insights features.
Examples: Python Logging Config
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Python ``logging.config`` module has the ability to provide a configuration file that can be loaded in order to
separate the logging configuration from the code.
The following are two example YAML configuration files that can be loaded using PyYAML. The resulting ``dict`` object
can then be loaded into ``logging.config.dictConfig``. The first example is a basic example that relies on the default
configuration provided by ``boto3``:
# Default AWS Config
version: 1
disable_existing_loggers: False
formatters:
json:
format: "[%(asctime)s] %(process)d %(levelname)s %(name)s:%(funcName)s:%(lineno)s - %(message)s"
plaintext:
format: "[%(asctime)s] %(process)d %(levelname)s %(name)s:%(funcName)s:%(lineno)s - %(message)s"
handlers:
console:
class: logging.StreamHandler
formatter: plaintext
level: DEBUG
stream: ext://sys.stdout
logfile:
class: logging.handlers.RotatingFileHandler
formatter: plaintext
level: DEBUG
filename: watchtower.log
maxBytes: 1000000
backupCount: 3
watchtower:
class: watchtower.CloudWatchLogHandler
formatter: json
level: DEBUG
log_group_name: watchtower
log_stream_name: "{logger_name}-{strftime:%y-%m-%d}"
send_interval: 10
create_log_group: False
root:
level: DEBUG
propagate: True
handlers: [console, logfile, watchtower]
loggers:
botocore:
level: INFO
urllib3:
level: INFO
The above works well if you can use the default boto3 credential configuration, or rely on environment variables.
However, sometimes one may want to use different credentials for logging than used for other functionality;
in this case the ``boto3_profile_name`` option to Watchtower can be used to provide a boto3 profile name:
# AWS Config Profile
version: 1
handlers:
watchtower:
boto3_profile_name: watchtowerlogger
Finally, the following shows how to load the configuration into the working application:
import logging.config
import flask
import yaml
app = flask.Flask("loggable")
@app.route('/')
def hello_world():
return 'Hello World!'
if __name__ == '__main__':
with open('logging.yml') as log_config:
config_yml = log_config.read()
config_dict = yaml.safe_load(config_yml)
logging.config.dictConfig(config_dict)
app.run()
Log stream naming
~~~~~~~~~~~~~~~~~
For high volume logging applications that utilize process pools, it is recommended that you keep the default log stream
name (``{machine_name}/{program_name}/{logger_name}/{process_id}``) or otherwise make it unique per source using a
combination of these template variables. Because logs must be submitted sequentially to each log stream, independent
processes sending logs to the same log stream will encounter sequence token synchronization errors and spend extra resources
automatically recovering from them. As the number of processes increases, this overhead will grow until logs fail to
deliver and get dropped (causing a warning on stderr). Partitioning logs into streams by source avoids this contention.
Boto3/botocore/urllib3 logs
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because watchtower uses boto3 to send logs, the act of sending them generates a number of DEBUG level log messages
from boto3's dependencies, botocore and urllib3. To avoid generating a self-perpetuating stream of log messages,
``watchtower.CloudWatchLogHandler`` attaches a
`filter <https://docs.python.org/3/library/logging.html#logging.Handler.addFilter>`_ to itself which drops all DEBUG
level messages from these libraries, and drops all messages at all levels from them when shutting down (specifically,
in ``watchtower.CloudWatchLogHandler.flush()`` and ``watchtower.CloudWatchLogHandler.close()``). The filter does not
apply to any other handlers you may have processing your messages, so the following basic configuration will cause
botocore debug logs to print to stderr but not to Cloudwatch:
import watchtower, logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
logger.addHandler(watchtower.CloudWatchLogHandler())
AWS Lambda
~~~~~~~~~~
Watchtower is not suitable or necessary for applications running on AWS Lambda. All AWS Lambda logs (i.e. all lines
printed to stderr by the runtime in the Lambda) are automatically sent to CloudWatch Logs, into
`log groups under the /aws/lambda/ prefix <https://console.aws.amazon.com/cloudwatch/home?#logsV2:log-groups$3FlogGroupNameFilter$3D$252Faws$252Flambda>`_.
AWS Lambda `suspends (freezes) all processes in its execution environment <https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html>`_
once the invocation is complete and until the next invocation, if any. This means any asynchronous background
processes and threads, including watchtower, will be suspended and inoperable, so watchtower cannot function
correctly in this execution model.
Authors
~~~~~~~
* Andrey Kislyuk
Links
~~~~~
* `Project home page (GitHub) <https://github.com/kislyuk/watchtower>`_
* `Documentation <https://kislyuk.github.io/watchtower/>`_
* `Package distribution (PyPI) <https://pypi.python.org/pypi/watchtower>`_
* `AWS CLI CloudWatch Logs plugin <https://pypi.python.org/pypi/awscli-cwlogs>`_
* `Docker awslogs adapter <https://github.com/docker/docker/blob/master/daemon/logger/awslogs/cloudwatchlogs.go>`_
Bugs
~~~~
Please report bugs, issues, feature requests, etc. on `GitHub <https://github.com/kislyuk/watchtower/issues>`_.
License
~~~~~~~
Licensed under the terms of the `Apache License, Version 2.0 <http://www.apache.org/licenses/LICENSE-2.0>`_.
%package help
Summary: Development documents and examples for watchtower
Provides: python3-watchtower-doc
%description help
Watchtower is a log handler for `Amazon Web Services CloudWatch Logs
<https://aws.amazon.com/blogs/aws/cloudwatch-log-service/>`_.
CloudWatch Logs is a log management service built into AWS. It is conceptually similar to services like Splunk, Datadog,
and Loggly, but is more lightweight, cheaper, and tightly integrated with the rest of AWS.
Watchtower, in turn, is a lightweight adapter between the `Python logging system
<https://docs.python.org/library/logging.html>`_ and CloudWatch Logs. It uses the `boto3 AWS SDK
<https://github.com/boto/boto3>`_, and lets you plug your application logging directly into CloudWatch without the need
to install a system-wide log collector like `awscli-cwlogs <https://pypi.python.org/pypi/awscli-cwlogs>`_ and round-trip
your logs through the instance's syslog. It aggregates logs into batches to avoid sending an API request per each log
message, while guaranteeing a delivery deadline (60 seconds by default).
Installation
~~~~~~~~~~~~
pip install watchtower
Synopsis
~~~~~~~~
Install `awscli <https://pypi.python.org/pypi/awscli>`_ and set your AWS credentials (run ``aws configure``).
import watchtower, logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.addHandler(watchtower.CloudWatchLogHandler())
logger.info("Hi")
logger.info(dict(foo="bar", details={}))
After running the example, you can see the log output in your `AWS console
<https://console.aws.amazon.com/cloudwatch/home>`_ under the **watchtower** log group.
IAM permissions
~~~~~~~~~~~~~~~
The process running watchtower needs to have access to IAM credentials to call the CloudWatch Logs API. The standard
procedure for loading and configuring credentials is described in the
`Boto3 Credentials documentation <https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html>`_.
When running Watchtower on an EC2 instance or other AWS compute resource, boto3 automatically loads credentials from
`instance metadata <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html>`_ (IMDS) or
container credentials provider (AWS_WEB_IDENTITY_TOKEN_FILE or AWS_CONTAINER_CREDENTIALS_FULL_URI). The easiest way to
grant the right permissions to the IAM role associated with these credentials is by attaching an AWS
`managed IAM policy <https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html>`_ to the
role. While AWS provides no generic managed CloudWatch Logs writer policy, we recommend that you use the
``arn:aws:iam::aws:policy/AWSOpsWorksCloudWatchLogs`` managed policy, which has just the right permissions without being
overly broad.
Example: Flask logging with Watchtower
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Use the following configuration to send Flask logs to a CloudWatch Logs stream called "loggable":
import watchtower, flask, logging
logging.basicConfig(level=logging.INFO)
app = flask.Flask("loggable")
handler = watchtower.CloudWatchLogHandler(log_group_name=app.name)
app.logger.addHandler(handler)
logging.getLogger("werkzeug").addHandler(handler)
@app.route('/')
def hello_world():
return 'Hello World!'
if __name__ == '__main__':
app.run()
(See also `http://flask.pocoo.org/docs/errorhandling/ <http://flask.pocoo.org/docs/errorhandling/>`_.)
Example: Django logging with Watchtower
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is an example of Watchtower integration with Django. In your Django project, add the following to ``settings.py``:
import boto3
AWS_REGION_NAME = "us-west-2"
boto3_logs_client = boto3.client("logs", region_name=AWS_REGION_NAME)
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'root': {
'level': 'DEBUG',
# Adding the watchtower handler here causes all loggers in the project that
# have propagate=True (the default) to send messages to watchtower. If you
# wish to send only from specific loggers instead, remove "watchtower" here
# and configure individual loggers below.
'handlers': ['watchtower', 'console'],
},
'handlers': {
'console': {
'class': 'logging.StreamHandler',
},
'watchtower': {
'class': 'watchtower.CloudWatchLogHandler',
'boto3_client': boto3_logs_client,
'log_group_name': 'YOUR_DJANGO_PROJECT_NAME',
# Decrease the verbosity level here to send only those logs to watchtower,
# but still see more verbose logs in the console. See the watchtower
# documentation for other parameters that can be set here.
'level': 'DEBUG'
}
},
'loggers': {
# In the debug server (`manage.py runserver`), several Django system loggers cause
# deadlocks when using threading in the logging handler, and are not supported by
# watchtower. This limitation does not apply when running on production WSGI servers
# (gunicorn, uwsgi, etc.), so we recommend that you set `propagate=True` below in your
# production-specific Django settings file to receive Django system logs in CloudWatch.
'django': {
'level': 'DEBUG',
'handlers': ['console'],
'propagate': False
}
# Add any other logger-specific configuration here.
}
}
Using this configuration, logs from Django will be sent to Cloudwatch in the log group ``YOUR_DJANGO_PROJECT_NAME``.
To supply AWS credentials to this configuration in development, set your
`AWS CLI profile settings <https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html>`_ with
``aws configure``. To supply credentials in production or when running on an EC2 instance,
assign an IAM role to your instance, which will cause boto3 to automatically ingest IAM role credentials from
`instance metadata <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html>`_.
(See also the `Django logging documentation <https://docs.djangoproject.com/en/dev/topics/logging/>`_.)
Examples: Querying CloudWatch logs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This section is not specific to Watchtower. It demonstrates the use of awscli and jq to read and search CloudWatch logs
on the command line.
For the Flask example above, you can retrieve your application logs with the following two commands::
aws logs get-log-events --log-group-name watchtower --log-stream-name loggable | jq '.events[].message'
aws logs get-log-events --log-group-name watchtower --log-stream-name werkzeug | jq '.events[].message'
In addition to the raw get-log-events API, CloudWatch Logs supports
`extraction of your logs into an S3 bucket <https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3Export.html>`_,
`log analysis with a query language <https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html>`_,
and alerting and dashboards based on `metric filters
<http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/FilterAndPatternSyntax.html>`_, which are pattern
rules that extract information from your logs and feed it to alarms and dashboard graphs. If you want to make use of
these features on the command line, the author of Watchtower has published an open source CLI toolkit called
`aegea <https://github.com/kislyuk/aegea>`_ that includes the commands ``aegea logs`` and ``aegea grep`` to easily
access the S3 Export and Insights features.
Examples: Python Logging Config
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Python ``logging.config`` module has the ability to provide a configuration file that can be loaded in order to
separate the logging configuration from the code.
The following are two example YAML configuration files that can be loaded using PyYAML. The resulting ``dict`` object
can then be loaded into ``logging.config.dictConfig``. The first example is a basic example that relies on the default
configuration provided by ``boto3``:
# Default AWS Config
version: 1
disable_existing_loggers: False
formatters:
json:
format: "[%(asctime)s] %(process)d %(levelname)s %(name)s:%(funcName)s:%(lineno)s - %(message)s"
plaintext:
format: "[%(asctime)s] %(process)d %(levelname)s %(name)s:%(funcName)s:%(lineno)s - %(message)s"
handlers:
console:
class: logging.StreamHandler
formatter: plaintext
level: DEBUG
stream: ext://sys.stdout
logfile:
class: logging.handlers.RotatingFileHandler
formatter: plaintext
level: DEBUG
filename: watchtower.log
maxBytes: 1000000
backupCount: 3
watchtower:
class: watchtower.CloudWatchLogHandler
formatter: json
level: DEBUG
log_group_name: watchtower
log_stream_name: "{logger_name}-{strftime:%y-%m-%d}"
send_interval: 10
create_log_group: False
root:
level: DEBUG
propagate: True
handlers: [console, logfile, watchtower]
loggers:
botocore:
level: INFO
urllib3:
level: INFO
The above works well if you can use the default boto3 credential configuration, or rely on environment variables.
However, sometimes one may want to use different credentials for logging than used for other functionality;
in this case the ``boto3_profile_name`` option to Watchtower can be used to provide a boto3 profile name:
# AWS Config Profile
version: 1
handlers:
watchtower:
boto3_profile_name: watchtowerlogger
Finally, the following shows how to load the configuration into the working application:
import logging.config
import flask
import yaml
app = flask.Flask("loggable")
@app.route('/')
def hello_world():
return 'Hello World!'
if __name__ == '__main__':
with open('logging.yml') as log_config:
config_yml = log_config.read()
config_dict = yaml.safe_load(config_yml)
logging.config.dictConfig(config_dict)
app.run()
Log stream naming
~~~~~~~~~~~~~~~~~
For high volume logging applications that utilize process pools, it is recommended that you keep the default log stream
name (``{machine_name}/{program_name}/{logger_name}/{process_id}``) or otherwise make it unique per source using a
combination of these template variables. Because logs must be submitted sequentially to each log stream, independent
processes sending logs to the same log stream will encounter sequence token synchronization errors and spend extra resources
automatically recovering from them. As the number of processes increases, this overhead will grow until logs fail to
deliver and get dropped (causing a warning on stderr). Partitioning logs into streams by source avoids this contention.
Boto3/botocore/urllib3 logs
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because watchtower uses boto3 to send logs, the act of sending them generates a number of DEBUG level log messages
from boto3's dependencies, botocore and urllib3. To avoid generating a self-perpetuating stream of log messages,
``watchtower.CloudWatchLogHandler`` attaches a
`filter <https://docs.python.org/3/library/logging.html#logging.Handler.addFilter>`_ to itself which drops all DEBUG
level messages from these libraries, and drops all messages at all levels from them when shutting down (specifically,
in ``watchtower.CloudWatchLogHandler.flush()`` and ``watchtower.CloudWatchLogHandler.close()``). The filter does not
apply to any other handlers you may have processing your messages, so the following basic configuration will cause
botocore debug logs to print to stderr but not to Cloudwatch:
import watchtower, logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
logger.addHandler(watchtower.CloudWatchLogHandler())
AWS Lambda
~~~~~~~~~~
Watchtower is not suitable or necessary for applications running on AWS Lambda. All AWS Lambda logs (i.e. all lines
printed to stderr by the runtime in the Lambda) are automatically sent to CloudWatch Logs, into
`log groups under the /aws/lambda/ prefix <https://console.aws.amazon.com/cloudwatch/home?#logsV2:log-groups$3FlogGroupNameFilter$3D$252Faws$252Flambda>`_.
AWS Lambda `suspends (freezes) all processes in its execution environment <https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html>`_
once the invocation is complete and until the next invocation, if any. This means any asynchronous background
processes and threads, including watchtower, will be suspended and inoperable, so watchtower cannot function
correctly in this execution model.
Authors
~~~~~~~
* Andrey Kislyuk
Links
~~~~~
* `Project home page (GitHub) <https://github.com/kislyuk/watchtower>`_
* `Documentation <https://kislyuk.github.io/watchtower/>`_
* `Package distribution (PyPI) <https://pypi.python.org/pypi/watchtower>`_
* `AWS CLI CloudWatch Logs plugin <https://pypi.python.org/pypi/awscli-cwlogs>`_
* `Docker awslogs adapter <https://github.com/docker/docker/blob/master/daemon/logger/awslogs/cloudwatchlogs.go>`_
Bugs
~~~~
Please report bugs, issues, feature requests, etc. on `GitHub <https://github.com/kislyuk/watchtower/issues>`_.
License
~~~~~~~
Licensed under the terms of the `Apache License, Version 2.0 <http://www.apache.org/licenses/LICENSE-2.0>`_.
%prep
%autosetup -n watchtower-3.0.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-watchtower -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 3.0.1-1
- Package Spec generated
|