summaryrefslogtreecommitdiff
path: root/python-watiba.spec
blob: d0caf12538d29d21c65fa6f2ed324676c280ec4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
%global _empty_manifest_terminate_build 0
Name:		python-watiba
Version:	0.6.59
Release:	1
Summary:	Python syntactical sugar for embedded shell commands
License:	MIT
URL:		https://github.com/Raythonic/watiba
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/74/42/84b3fa7e253b186eca318ed809307624cca7b095901dc5ea741263e83934/watiba-0.6.59.tar.gz
BuildArch:	noarch


%description
# Watiba
#### Version:  **0.6.59**
#### Date: 2021/12/04

Watiba, pronounced wah-TEE-bah, is a lightweight Python pre-compiler for embedding Linux shell 
commands within Python applications.  It is similar to other languages' syntactical enhancements where
XML or HTML is integrated into a language such as JavaScript.  That is the concept applied here but integrating
BASH shell commands with Python.

As you browse this document, you'll find Watiba is rich with features for shell command integration with Python.

Features:
- Shell command integration with Python code
- In-line access to shell command results
- Current directory context maintained across commands throughout your Python code
- Async/promise support for integrated shell commands
- Remote shell command execution
- Remote shell command chaining and piping

## Table of Contents
1. [Usage](#usage)
2. [Directory Context](#directory-context)
3. [Commands as Variables](#commands-as-variables)
4. [Command Results](#command-results)
5. [Asynchronous Spawning and Promises](#async-spawing-and-promises)
    1. [Useful Properties in Promise](#useful-properties-in-promise)
    2. [Spawn Controller](#spawn-controller)
    3. [Join, Wait or Watch](#join-wait-watch)
    4. [The Promise Tree](#promise-tree)
    5. [Threads](#threads)
6. [Remote Execution](#remote-execution)
    1. [Change SSH port for remote execution](#change-ssh-port)
7. [Command Hooks](#command-hooks)
8. [Command Chaining](#command-chaining)
9. [Command Chain Piping (Experimental)](#piping-output)
10. [Installation](#installation)
11. [Pre-compiling](#pre-compiling)
12. [Code Examples](#code-examples)

<div id="usage"/>

## Usage
Watiba files, suffixed with ".wt", are Python programs containing embedded shell commands. 
Shell commands are expressed within backtick characters emulating BASH's original capture syntax.
They can be placed in any Python statement or expression.  Watiba keeps track of the current working directory 
after the execution of any shell command so that all subsequent shell commands keep context.  For example:

Basic example of embedded commands:
```
#!/usr/bin/python3

# Typical Python program

if __name__ == "__main__":

    # Change directory context
    `cd /tmp`
    
    # Directory context maintained
    for file in `ls -lrt`.stdout:  # In-line access to command results
        print(f"File in /tmp: {file}")
```

This loop will display the file list from /tmp. The `ls -lrt` is run in the 
context of previous `cd /tmp`.  

<div id="commands-as-variables"/>

#### Commands Expressed as Variables
Commands within backticks can _be_ a variable, but cannot contain snippets of Python code or Python variables. 
The statement within the backticks _must_ be either a pure shell command or a Python variable containing a pure
shell command.  To execute commands in a Python variable, prefix the variable name between backticks with a dollar sign.

_A command variable is denoted by prepending a dollar sign on the variable name within backticks_:
```
# Set the Python variable to the command
cmdA = 'echo "This is a line of output" > /tmp/blah.txt'
cmdB = 'cat /tmp/blah.txt'

# Execute first command
`$cmdA`  # Execute the command within Python variable cmdA

# Execute second command
for line in `$cmdB`.stdout:
    print(line)
```

_This example demonstrates keeping dir context and executing a command by variable_:
```
#!/usr/bin/python3

if __name__ == "__main__":
    # Change CWD to /tmp
    `cd /tmp`
    
    # Set a command string
    my_cmd = "tar -zxvf tmp.tar.gz"
    
    # Execute that command and save the command results in variable "w"
    w = `$my_cmd`
    if w.exit_code == 0:
        for l in w.stderr:
            print(l)
```

_These constructs are **not** supported_:
 ```
file_name = "blah.txt"

# Python variable within backticks
`touch file_name`  # NOT SUPPORTED!

# Attempting to access Python variable with dollar sign
`touch $file_name` # NOT SUPPORTED!

# Python within backticks is NOT SUPPORTED!
`if x not in l: ls -lrt x`
```
<div id="directory-context"/>

## Directory Context

An important Watiba usage point is directory context is kept for dispersed shell commands.
Any command that changes the shell's CWD is discovered and kept by Watiba.  Watiba achieves 
this by tagging a `&& echo pwd` to the user's command, locating the result in the command's STDOUT, 
and finally setting the Python environment to that CWD with `os.chdir(dir)`.  This is automatic and 
opaque to the user.  The user will not see the results of the generated suffix.  If the `echo` 
suffix presents a problem for the user, it can be eliminated by prefixing the leading backtick with a
dash.  The dash turns off the context tracking by not suffixing the command and so causes Watiba to
lose its context.  However, the context is maintained _within_ the set of commands in the backticks just not
when it returns.  For example, **out = -\`cd /tmp && ls -lrt\`** honors the ```cd``` within the scope
of that execution line, but not for any backticked commands that follow later in your code.

**_Warning!_** The dash will cause Watiba to lose its directory context should the command
cause a CWD change either explicitly or implicitly.

_Example_:
```
`cd /tmp`  # Context will be kept

# This will print from /home/user, but context is NOT kept  
for line in -`cd /home/user && ls -lrt`.stdout:
    print(line) 

# This will print from /tmp, not /home/user
for line in `ls -lrt`.stdout:
    print(line)
```

<div id="command-results"/>

## Command Results
The results of the command issued in backticks are available in the properties
of the object returned by Watiba.  Following are those properties:

<table>
    <th>Property</th><th>Data Type</th><th>Description</th>
    <tr></tr>
    <td valign="top">stdout</td><td valign="top">List</td><td valign="top">STDOUT lines from the command normalized for display</td>
    <tr></tr>
    <td valign="top">stderr</td><td valign="top">List</td><td valign="top">STDERR lines from the command normalized for display</td>
    <tr></tr>
    <td valign="top">exit_code</td><td valign="top">Integer</td><td valign="top">Exit code value from command</td>
    <tr></tr>
    <td valign="top">cwd</td><td valign="top">String</td><td valign="top">Current working directory <i>after</i> command was executed</td>
</table>

Technically, the returned object for any shell command is defined in the WTOutput class.

<div id="async-spawing-and-promises"/>

## Asynchronous Spawning and Promises
Shell commands can be executed asynchronously with a defined resolver callback block.  Each _spawn_ expression creates
and runs a new OS thread. The resolver is a callback block that follows the Watiba _spawn_ expression.  The spawn 
feature is executed when a ```spawn `cmd` args: resolver block``` code block is encountered. The 
resolver is passed the results in the promise object. (The promise structure contains the properties 
defined in section ["Results from Spawned Commands"](#spawn-results)  The _spawn_ expression also returns a _promise_ object 
to the caller of _spawn_.  The promise object is passed to the _resolver block_ in argument _promise_.  The 
outer code can check its state with a call to _resolved()_ on the *returned* promise object.  Output from the command
is found in _promise.output_.  The examples throughout this README and in the _examples.wt_ file make this clear.

<div id="useful-properties-in-promise"/>

##### Useful properties in promise structure 
A promise is either returned in assignment from outermost spawn, or passed to child spawns in argument "promise".

  <table>
      <th>Property</th>
      <th>Data Type</th>
      <th>Description</th>
      <tr></tr>
      <td valign="top">host</td><td valign="top">String</td><td valign="top">Host name on which spawned command ran</td>
      <tr></tr>
      <td valign="top">children</td><td valign="top">List</td><td valign="top">Children promises for this promise node</td>
      <tr></tr>
      <td valign="top">parent</td><td valign="top">Reference</td><td valign="top">Parent promise node of child promise. None if root promise.</td>
      <tr></tr>
      <td valign="top">command</td><td valign="top">String</td><td valign="top">Shell command issued for this promise</td>
      <tr></tr>
      <td valign="top">resolved()</td><td valign="top">Method</td><td valign="top">Call to find out if this promise is resolved</td>
      <tr></tr>
      <td valign="top">resolve_parent()</td><td valign="top">Method</td><td valign="top">Call inside resolver block to resolve parent promise</td>
      <tr></tr>
      <td valign="top">tree_dump()</td><td valign="top">Method</td><td valign="top">Call to show the promise tree.  Takes subtree argument otherwise it defaults to the root promise</td>
      <tr></tr>
      <td valign="top">join()</td><td valign="top">Method</td><td valign="top">Call to wait on on promise and all its children</td>
      <tr></tr>
      <td valign="top">wait()</td><td valign="top">Method</td><td valign="top">Call to wait on just this promise</td>
      <tr></tr>
      <td valign="top">watch()</td><td valign="top">Method</td><td valign="top">Call to create watcher on this promise</td>
      <tr></tr>
      <td valign="top">start_time</td><td valign="top">Time</td><td valign="top">Time that spawned command started</td>
      <tr></tr>
      <td valign="top">end_time</td><td valign="top">Time</td><td valign="top">Time that promise resolved</td>
  </table>

_Example of simple spawn_:
```buildoutcfg
prom = spawn `tar -zcvf big_file.tar.gz some_dir/*`:
    # Resolver block to which "promise" and "args" is passed...
    print(f"{promise.command} completed.")
    return True  # Resolve promise

# Do other things while tar is running
# Finally wait for tar promise to resolve
prom.join()
```

<div id="spawn-controller"/>

#### Spawn Controller
All spawned threads are managed by Watiba's Spawn Controller.  The controller watches for too many threads and
incrementally slows down each thread start when that threshold is exceeded until either all the promises in the tree
resolve, or an expiration count is reached, at which time an exception is thrown on the last spawned command.  
This exception is raised by the default error method. This method as well as other spawn controlling parameters 
can be overridden.  The controller's purpose is to not allow run away threads and provide signaling of possible
hung threads.

_spawn-ctl_ example:
```buildoutcfg
# Only allow 20 spawns max, 
# and increase slowdown by 1/2 second each 3rd cycle
...python code...
spawn-ctl {"max":20, "sleep-increment":.500}  
```

Spawn control parameters:

<table>
    <th>Key Name</th>
    <th>Data Type</th>
    <th>Description</th>
    <th>Default</th>
    <tr></tr>
    <td valign="top">max</td><td valign="top">Integer</td><td valign="top">The maximum number of spawned commands allowed before the controller enters slowdown mode</td><td valign="top">10</td>
    <tr></tr>
    <td valign="top">sleep-floor</td><td valign="top">Integer</td><td valign="top">Seconds of <i>starting</i> 
sleep value when the controller enters slowdown mode</td><td valign="top">.125 (start at 1/8th second pause)</td>
    <tr></tr>
    <td valign="top">sleep-increment</td><td valign="top">Integer</td><td valign="top">Seconds the <i>amount</i> of seconds sleep will increase every 3rd cycle when in slowdown 
      mode</td><td valign="top">.125 (Increase pause 1/8th second every 3rd cycle)</td>
    <tr></tr>
    <td valign="top">sleep-ceiling</td><td valign="top">Integer</td><td valign="top">Seconds the <i>highest</i> length sleep value allowed when in slowdown mode  
      (As slow as it will get)</td><td valign="top">3 (won't get slower than 3 second pauses)</td>
    <tr></tr>
    <td valign="top">expire</td><td valign="top">Integer</td><td valign="top">Total number of slowdown cycles allowed before the error method is called</td><td valign="top">No expiration</td>
    <tr></tr>
    <td valign="top">error</td><td valign="top">Method</td><td valign="top">
    Callback method invoked when slowdown mode expires. Use this to catch hung commands.
            This method is passed 2 arguments:
    
- **promise** - The promise attempting execution at the time of expiration
- **count** - The thread count (unresolved promises) at the time of expiration
    </td><td valign="top">Generic error handler.  Just throws <i>WTSpawnException</i> that hold properties <i>promise</i> and <i>message</i></td></td>
</table>
 <hr>

**_spawn-ctl_** only overrides the values it sets and does not affect values not specified.  _spawn-ctl_ statements can
set whichever values it wants, can be dispersed throughout your code (i.e. multiple _spawn-ctl_ statements) and 
only affects subsequent spawn expressions.

_Notes:_
1. Arguments can be passed to the resolver by specifying a trailing variable after the command.  If the arguments
variable is omitted, an empty dictionary, i.e. {}, is passed to the resolver in _args_.
**_Warning!_** Python threading does not deep copy objects passed as arguments to threads.  What you place in ```args```
of the spawn expression will only be shallow copied so if there are references to other objects, it's not likely to 
   survive the copy.
2. The resolver must return _True_ to set the promise to resolved, or _False_ to leave it unresolved.
3. A resolver can also set the promise to resolved by calling ```promise.set_resolved()```.  This is handy in cases where
a resolver has spawned another command and doesn't want the outer promise resolved until the inner resolvers are done. 
To resolve an outer, i.e. parent, resolver issue _promise.resolve_parent()_.  Then the parent resolver can return
_False_ at the end of its block so it leaves the resolved determination to the inner resolver block.
4. Each promise object holds its OS thread object in property _thread_ and its thread id in property _thread_id_. This
can be useful for controlling the thread directly.  For example, to signal a kill. 
5. _spawn-ctl_ has no affect on _join_, _wait_, or _watch_.  This is because _spawn-ctl_ establishes an upper end
throttle on the overall spawning process.  When the number of spawns hits the max value, throttling (i.e. slowdown 
   mode) takes affect and will expire if none of the promises resolve.  Conversely, the arguments used by _join_, 
   _wait_ and _watch_ control the sleep cycle and expiration of just those calls, not the spawned threads as a whole. When
   an expiration is set for, say, _join_, then that join will expire at that time.  When an expiration is set in
   _spawn-ctl_, then if all the spawned threads as a whole don't resolve in time then an expiration function is called.


**_Spawn Syntax:_**
```
my_promise = spawn `cmd` [args]:
    resolver block (promise, args)
    args passed in args
    return resolved or unresolved (True or False)
 ```
    
_Spawn with resolver arguments omitted_:
```
my_promise = spawn `cmd`:
    resolver block (promise, args)
    return resolved or unresolved (True or False)
```

_Simple spawn example_:
```buildoutcfg
p = spawn `tar -zcvf /tmp/file.tar.gz /home/user/dir`:
    # Resolver block to which "promise" and "args" are passed
    # Resolver block is called when spawned command has completed
    for line in promise.output.stderr:
        print(line)
    
    # This marks the promise resolved
    return True
    
# Wait for spawned command to resolve (not merely complete)
try:
    p.join({"expire": 3})
    print("tar resolved")
except Exception as ex:
    print(ex.args)
```

_Example of file that overrides spawn controller parameters_:
```
#!/usr/bin/python3
def spawn_expired(promise, count):
    print("I do nothing just to demonstrate the error callback.")
    print(f"This command failed {promise.command} at this threshold {count}")
    
    raise Exception("Too many threads.")
    
if __name__ == "__main__":
    # Example showing default values
    parms = {"max": 10, # Max number of threads allowed before slowdown mode
         "sleep-floor": .125,  # Starting sleep value
         "sleep-ceiling": 3,  # Maximum sleep value
         "sleep-increment": .125,  # Incremental sleep value
         "expire": -1,  # Default: no expiration
         "error": spawn_expired  # Method called upon slowdown expiration
    }
     
    # Set spawn controller parameter values
    spawn-ctl parms
```

<div id="join-wait-watch"/>

#### Join, Wait, or Watch

Once commands are spawned, the caller can wait for _all_ promises, including inner or child promises, to complete, or
the caller can wait for just a specific promise to complete.  To wait for all _child_ promises including
the promise on which you're calling this method, call _join()_.  It will wait for that promise and all its children. To 
wait for just one specific promise, call _wait()_ on the promise of interest.  To wait for _all_ promises in 
the promise tree, call _join()_ on the root promise.

_join_ and _wait_ can be controlled through parameters.  Each are iterators paused with a sleep method and will throw
an expiration exception should you set a limit for iterations.  If an expiration value is not set,
no exception will be thrown and the cycle will run only until the promise(s) are resolved.  _join_ and _wait_ are not
affected by _spawn-ctl_.

_watch_ is called to establish a separate asynchronous thread that will call back a function of your choosing should
the command the promise is attached to time out.  This is different than _join_ and _wait_ in that _watch_ is not synchronous 
and does not pause.  This is used to keep an eye on a spawned command and take action should it hang.  Your watcher
function is passed the promise on which the watcher was attached, and the arguments, if any, from the spawn expression.
If your command does not time out (i.e. hangs and expires), the watcher thread will quietly go away when the promise
is resolved.  _watch_ expiration is expressed in **seconds**, unlike _join_ and _wait_ which are expressed as total
_iterations_ paused at the sleep value.  _watch_'s polling cycle pause is .250 seconds, so the expiration value is
multiplied by 4.  The default expiration is 15 seconds.

Examples:
```
# Spawn a thread running this command
p = spawn `ls -lrt`:
    ## resolver block ##
    return True
    
# Wait for promises, pause for 1/4 second each iteration, and throw an exception after 4 iterations 
(1 second)
try:
    p.join({"sleep": .250, "expire": 4})
except Exception as ex:
    print(ex.args)

# Wait for this promise, pause for 1 second each iteration, and throw an exception after 5 iterations 
(5 seconds)
try:
    p.wait({"sleep": 1, "expire": 5})
except Exception as ex:
    print(ex.args)
 
# My watcher function (called if spawned command never resolves by its experation period)
def watcher(promise, args):
    print(f"This promise is likely hung: {promise.command}")
    print(f"and I still have the spawn expression's args: {args}")

p = spawn `echo "hello" && sleep 5` args:
    print(f"Args passed to me: {args}")
    return True

# Attach a watcher to this thread.  It will be called upon experation.
p.watch(watcher)
print("watch() does not pause like join or wait")

# Attach a watcher that will expire in 5 seconds
p.watch(watcher, {"expire": 5})
```

**_join_ syntax**
```
promise.join({optional args})
Where args is a Python dictionary with the following options:
    "sleep" - seconds of sleep for each iteration (fractions such as .5 are honored)
        default: .5 seconds
    "expire" - number of sleep iterations until an excpetions is raised
        default: no expiration
Note: "args" is optional and can be omitted
```

_Example of joining parent and children promises_:
```
p = spawn `ls *.txt`:
    for f in promise.output.stdout:
        cmd = f"tar -zcvf {f}.tar.gz {f}"
        spawn `$cmd` {"file":f}:
            print(f"{f} completed")
            promise.resolve_parent()
            return True
    return False

# Wait for all commands to complete
try:
    p.join({"sleep":1, "expire":20})
except Exception as ex:
    print(ex.args)
```

**_wait_ syntax**
```
promise.wait({optional args})
Where args is a Python dictionary with the following options:
    "sleep" - seconds of sleep for each iteration (fractions such as .5 are honored)
        default: .5 seconds
    "expire" - number of sleep iterations until an excpetions is raised
        default: no expiration
Note: "args" is optional and can be omitted
```

_Example of waiting on just the parent promise_:
```
p = spawn `ls *.txt`:
    for f in promise.output.stdout:
        cmd = f"tar -zcvf {f}.tar.gz {}"
        spawn `$cmd` {"file":f}:
            print(f"{f} completed")
            promise.resolve_parent() # Wait completes here
            return True
    return False

# Wait for just the parent promise to complete
try:
    p.wait({"sleep":1, "expire":20})
except Exception as ex:
    print(ex.args)
```

**_watch_ syntax**
```
promise.watch(callback, {optional args})
Where args is a Python dictionary with the following options:
    "sleep" - seconds of sleep for each iteration (fractions such as .5 are honored)
        default: .5 seconds
    "expire" - number of sleep iterations until an excpetions is raised
        default: no expiration
Note: "args" is optional and can be omitted
```

_Example of creating a watcher_:
```buildoutcfg
# Define watcher method.  Called if command times out (i.e. expires)
def time_out(promise, args):
    print(f"Command {promise.command} timed out.")

# Spawn a thread running some command that hangs
p = spawn `long-running.sh`:
    print("Finally completed.  Watcher method won't be called.")
    return True
 
p.watch(time_out)  # Does not wait.  Calls method "time_out" if this promise expires (i.e. command hangs)
 
# Do other things...
 
```

<div id="promise-tree"/>

#### The Promise Tree
Each _spawn_ issued inserts its promise object into the promise tree.  The outermost _spawn_ will generate the root
promise and each inner _spawn_ will be among its children.  There's no limit to how far it can nest.  _wait_ only applies
to the promise on which it is called and is how it is different than _join_.  _wait_ does not consider any other
promise state but the one it's called for, whereas _join_ considers the one it's called for **and** anything below it
in the tree.

The promise tree can be printed with the ```dump_tree()``` method on the promise.  This method is intended for
diagnostic purposes where it must be determined why spawned commands hung.  ```dump_tree(subtree)``` accepts
a subtree promise as an argument.  If no arguments are passed, ```dump_tree()``` dumps from the root promise on down.
```
# Simple example with no child promises
p = spawn `date`:
    return True
    
p.tree_dump()  # Dump tree from root
# or
p.tree_dump(subtree_promise)  # Dump tree from node in argument
```

Example dumping tree from subtree node:
```buildoutcfg
# Complex example with child and grandchild promises
# Demonstrates how to dump the promise tree from various points within it
p = spawn `date`:
    # Spawn child command (child promise)
    spawn `pwd`:
        # Spawn a grandchild to the parent promise
        spawn `python --version`:
            promise.tree_dump(promise)  # Dump the subtree from this point down
            return False
    # Spawn another child
     spawn `echo "blah"`:
         # Resolve parent promise
         promise.resolve_parent()
         # Resolve child promise
        return True
    # Do NOT resolve parent promise, let child do that
    return False
    
p.join()
p.tree_dump(p.children[0])  # Dump subtree from first child on down
p.tree_dump(p.children[1])  # Dump subtree from the second child
p.tree_dump(p.children[0].children[0]) # Dump subtree from the grandchild 

# Dump all children
for c in p.children:
    p.tree_dump(c)
```

_Parent and child joins shown in these two examples_:

``` 
root_promise = spawn `ls -lr`:
    for file in promise.stdout:
        t = f"touch {file}"
        spawn `$t` {"file" file}:  # This promise is a child of root
            print(f"{file} updated".)
            spawn `echo "done" > /tmp/done"`:  # Another child promise (root's grandchild)
                print("Complete")
                promise.resolve_parent()
                return True
            promise.resolve_parent()
            return False
    return False

root_promise.join()  # Wait on the root promise and all its children.  Thus, waiting for everything.
```

``` 
root_promise = spawn `ls -lr`:
    for file in promise.output.stdout:
        t = f"touch {file}"
        spawn `$t` {"file" file}:  # This promise is a child of root
            print(f"{promise.args['file'])} updated")
            promise.join() # Wait for this promise and its children but not its parent (root)
            spawn `echo "done" > /tmp/done"`:
                print("Complete")
```



_Resolving a parent promise_:
```
p = spawn `ls -lrt`:
    for f in promise.output.stdout:
        cmd = f"touch {f}"
        # Spawn command from this resolver and pass our promise
        spawn `$cmd`:
            print("Resolving all promises")
            promise.resolve_parent() # Resolve parent promise here
            return True # Resolve child promise
        return False # Do NOT resolve parent promise here
p.join()  # Wait for ALL promises to be resolved
```

<div id="spawn-results"/>

### Results from Spawned Commands
Spawned commands return their results in the _promise.output_ property of the _promise_ object passed to
the resolver block, and in the spawn expression if there is an assignment in that spawn expression.

The result properties can then be accessed as followed:

<table>
    <th>Property</th><th>Data Type</th><th>Description</th>
    <tr></tr>
    <td valign="top">promise.output.stdout</td><td valign="top">List</td><td valign="top">STDOUT lines from the command normalized for display</td>
    <tr></tr>
    <td valign="top">promise.output.stderr</td><td valign="top">List</td><td valign="top">STDERR lines from the command normalized for display</td>
    <tr></tr>
    <td valign="top">promise.output.exit_code</td><td valign="top">Integer</td><td valign="top">Exit code value from command</td>
    <tr></tr>
    <td valign="top">promise.output.cwd</td><td valign="top">String</td><td valign="top">Current working directory <i>after</i> command was executed</td>
</table>


_Notes:_
1. Watiba backticked commands can exist within the resolver 
2. Other _spawn_ blocks can be embedded within a resolver (recursion allowed)
3. The command within the _spawn_ definition can be a variable
    (The same rules apply as for all backticked shell commands.  This means the variable must contain
   pure shell commands.)
4. The leading dash to ignore CWD _cannot_ be used in the _spawn_ expression
5. The _promise.output_ object is not available until _promise.resolved()_ returns True

_Simple example with the shell command as a Python variable_:
```
#!/usr/bin/python3

# run "date" command asynchronously 
d = 'date "+%Y/%m/%d"'
spawn `$d`:
    print(promise.output.stdout[0])
    return True

```

_Example with shell commands executed within resolver block_:
```
#!/usr/bin/python3

print("Running Watiba spawn with wait")
`rm /tmp/done`

# run "ls -lrt" command asynchronously 
p = spawn `ls -lrt`:
    print(f"Exit code: {promise.output.exit_code}")
    print(f"CWD: {promise.output.cwd}")
    print(f"STDERR: {promise.output.stderr}")

    # Loop through STDOUT from command
    for l in promise.output.stdout:
        print(l)
    `echo "Done" > /tmp/done`

    # Resolve promise
    return True

# Pause until spawn command is complete
p.wait()
print("complete")

```

<div id="threads"/>

### Threads
Each promise produced from a _spawn_ expression results in one OS thread.  To access the 
number of threads your code has spawned collectively, you can do the following:
``` 
num_of_spawns = promise.spawn_count()  # Returns number of nodes in the promise tree
num_of_resolved_promises = promise.resolved_count() # Returns the number of promises resolved in tree
``` 
<div id="remote-execution"/>

## Remote Execution
Shell commands can be executed remotely.  This is achieved though the SSH command, issued by Watiba, and has the 
following requirements:
- OpenSSH is installed on the local and remote hosts
- The local SSH key is in the remote's _authorized_keys_ file.  _The details of this
  process is beyond the scope of this README.  For those instructions, consult www.ssh.com_
  
- Make sure that SSH'ing to the target host does not cause any prompts.  
  
Test that your SSH environment is setup first by manually entering: 
```
ssh {user}@{host} "ls -lrt"

# For example
ssh rwalk@walkubu "ls -lrt"

# If SSH prompts you, then Watiba remote execution cannot function. 
```

To execute a command remotely, a _@host_ parameter is suffixed to the backticked command.  The host name can be a
literal or a variable.  To employ a variable, prepend a _$_ to the name following _@_ such as _@$var_.

<div id="change-ssh-port"/>

#### Change SSH port for remote execution
To change the default SSH port 22 to a custom value, add to your Watiba code:  ```watiba-ctl {"ssh-port": custom port}```
Example:
```buildoutcfg
watiba-ctl {"ssh-port": 2233}
```
Examples:
```buildoutcfg
p = spawn `ls -lrt`@remoteserver {parms}:
    for line in promise.output.stdout:
        print(line)
    return True
     
```  
```buildoutcfg
remotename = "serverB"
p = spawn `ls -lrt`@$remotename {parms}:
    for line in p.output.stdout:
        print(line)
    return True
```
```buildoutcfg
out = `ls -lrt`@remoteserver
for line in out.stdout:
    print(line)
```
```buildoutcfg
remotename = "serverB"
out = `ls -lrt`@$remotename
for line in out.stdout:
    print(line)
```


<div id="command-hooks"/>

## Command Hooks
Hooks are pre- or -post functions that are attached to a _command_ _pattern_, which is a regular expression (regex).  Anytime Watiba encounters a command
that matches the pattern for the hook, the hook function is called.

All commands, spawned, remote, or local, can have Python functions executed **before** exection, by default, or **post hooks** that are run **after** the command.  (Note: Post hooks are not run for spwaned commands because the resolver function is a post hook itself.)  These functions can be passed arguments, too.

### Command Hook Expressions
```
# Run before commands that match that pattern
hook-cmd "pattern" hook-function parms

# Run before commands that match that pattern, but is non-recursive
hook-cmd-nr "pattern" hook-function parms 

# Run after commands that match that pattern
post-hook-cmd "pattern" hook-function parms

# Run after commands that match that pattern, but is non-recursive
post-hook-cmd-nr "pattern" hook-function parms 
```

### Hook Recursion
Hooks, which are nothing more than Python functions called before or after a command is run, can issue their own commands and, thus, cause the hook
to be recursively called.  However, if the command in the hook block of code matches a command pattern that causes that same hook function to be run again,
an infinte loop can occur.  To prevent that, use the **-nr** suffix on the Watiba hook expression. (-nr stands for non-recursive.)  This will ensure that
the hook cannot be re-invoked for any commands that are within it.

<br>
To attach a hook:
1. Code one or more Python functions that will be the hooks.  At the end of each hook, you must return True if the hook was successful, or False
if something wrong.
2. Use the _hook-cmd_ expression to attach those hooks to a command
pattern, which is a regular expression
3. To remove the hooks, use the _remove-hooks "pattern"_ expression.  If a pattern, i.e. command regex pattern, is omitted, then all command hooks are removed.

**hook-cmd "command pattern" function parms**

The first parameter always passed to the hook function is the Python _match_ object from the command match.  This is provided so the hook has access
to the tokens on the command should it need them.

Example:
```
def my_hook(match, parms):
    print(match.groups())
    print(f'Tar file name is {match.group(1)}')
    print(parms["parmA"])
    print(parms["parmB"])
    return True  # Successful execution

def your_hook(match, parms):
    # This hook doesn't need the match object, so ignores it
    print(parms["something"])
    if parms["something-else"] != "blah":
        return False # Failed execution
    return True # Successful excution


# Add first hook to my tar command
hook-cmd "tar -zcvf (\S.*)" my_hook: {"parmA":"A", "parmB":"B"}

# Add another hook to my tar command
hook-cmd "tar -zcvf (\S.*)" your_hook: {"parmD":1, "parmE":"something"}

# Spawn command, but hooks will be invoked first...
spawn `tar -zcvf files.tar.gz /tmp/files/* `:
    # Resolver code block
    return True  # Resolve promise
```

Your parameters are whatever is valid for Python.  These are simply passed to their attached functions, essentially each one's key is the function name, as specified.


_Where are the hooks run for spawned commands?_  All hooks run under the thread of the issuer on the local host, not the target thread.

_Where are the hooks run for remote commands?_ As with spawned commands, all hooks are issued on the local host, not the remote.  Note that you
can have remote backticked commands in your hook and that will run those remotely.  If your remote command matches a hook(s) pattern, then those hooks will be run.  This means if your command pattern for the first remote call runs a hook that contains another remote command that matches that same command pattern, then the hook is run again.  Since this can lead to infinte hook loops, Watiba offers a non-recursive definition for the command pattern.  Note that this non-recursive setting
only applies to the command pattern and not the hook function itself.  So if _hookA_ is run for two different command patterns, say, "ls -lrt" and "ls -laF" you can
make one non-recusrive and still run the same hook for both commands.  For the recursive command pattern, the hook has no limit to its recursion.  For non-recursive,
it will only be called once during the recursion process.

To set a command pattern as non-recursive, use _hook-cmd-nr_.

Example using a variation on a previous example:

```
def my_hook(match, parms)
    `tar -zcvf /tmp/files`  # my_hook will NOT because for this command even though it matches
    print("Will be called only once!")
    return True

# Note the "-nr" on the expression.  That's for non-recursive
hook-cmd-nr "tar -zcvf (\S.*)" my_hook: {"parmA":"A", "parmB":"B"}

# my_hook will be called before this command runs
` tar -zcvf tarball.tar.gz /home/user/files.*`
```

<div id="command-chaining"/>

## Command Chaining
Watiba extends its remote command execution to chaining commands across multiple remote hosts.  This is achieved
by the _chain_ expression.  This expression will execute the backticked command across a list of hosts, passed by
the user, sequentially, synchronously until the hosts list is exhausted, or the command fails.  _chain_ returns a
Python dictionary where the keys are the host names and the values the WTOutput from the command run on that host.

#### Chain Exception
The _chain_ expression raises a WTChainException on the first failed command.  The exception raised
has the following properties:

_WTChainException_:
<table>
<th>Property</th><th>Data Type</th><th>Description</th>
<tr></tr>
<td valign="top">command</td><td valign="top">String</td><td valign="top">Command that failed</td>
<tr></tr>
<td valign="top">host</td><td valign="top">String</td><td valign="top">Host where command failed</td>
<tr></tr>
<td valign="top">message</td><td valign="top">String</td><td valign="top">Error message</td>
<tr></tr>
<td valign="top">output</td><td valign="top">WTOutput structure:

- stdout
- stderr
- exit_code
- cwd</td><td valign="top">Output from command</td>
</table>

Import this exception to catch it:
```buildoutcfg
from watiba import WTChainException
```


Examples:
```
from watiba import WTChainException

try:
    out = chain `tar -zcvf backup/file.tar.gz dir/*` {"hosts", ["serverA", "serverB"]}
    for host,output in out.items():
        print(f'{host} exit code: {output.exit_code}')
        for line in output.stderr:
            print(line)
 except WTChainException(ex):
    print(f"Error: {ex.message}")
    print(f"  host: {ex.host} exit code: {ex.output.exit_code} command: {ex.command})
            
```

<div id="piping-output"/>

## Command Chain Piping (Experimental)
The _chain_ expression supports piping STDOUT and/or STDERR to other commands executed on remote servers.  Complex
arrangements can be constructed through the Python dictionary passed to the _chain_ expression.  The dictionary
contents function as follows:
- "hosts": [server, server, ...]   This entry instructions _chain_ on which hosts the backticked command will run.
    This is a required entry.
    
- "stdout": {server:command, server:command, ...}
    This is an optional entry.
  
- "stderr": {server:command, server:command, ...}
    This is an optional entry.

Just like a _chain_ expression that does not pipe output, the return object is a dictionary of WTOutput object keyed
by the host name from the _hosts_ list and *not* from the commands recieving the piped output.

If any command fails, a WTChainException is raised.  Import this exception to catch it:
```buildoutcfg
from watiba import WTChainException
```

_Note_: _The piping feature is experimental as of this release, and a better design will eventually
supercede it._

Examples:  
```
from watiba import WTChainException

# This is a simple chain with no piping
try:
    args = {"hosts": ["serverA", "serverB", "serverC"]}
    out = chain `ls -lrt dir/` args
    for host, output in out.items():
        print(f'{host} exit code: {output.exit_code}')
except WTChainException as ex:
    print(f'ERROR: {ex.message}, {ex.host}, {ex.command}, {ex.output.stderr}')
```
```
# This is a more complex chain that runs the "ls -lrt" command on each server listed in "hosts"
# and pipes the STDOUT output from serverC to serverV and serverD, to those commands, and serverB's STDERR
# to serverX and its command
try:
    args = {"hosts": ["serverA", "serverB", "serverC"],
                "stdout": {"serverC":{"serverV": "grep something", "serverD":"grep somethingelse"}},
                "stderr": {"serverB":{"serverX": "cat >> /tmp/serverC.err"}}
           }
    out = chain `ls -lrt dir/` args
    for host, output in out.items():
        print(f'{host} exit code: {output.exit_code}')
except WTChainException as ex:
    print(f'ERROR: {ex.message}, {ex.host}, {ex.command}, {ex.output.stderr}')
```

####How does this work?
Watiba will run the backticked command in the expression on each host listed in _hosts_, in sequence and synchronously.
If there is a "stdout" found in the arguments, then it will name the source host as the key, i.e. the host from which
STDOUT will be read, and fed to each host and command listed under that host.  This is true for STDERR as well.

The method in which Watiba feeds the piped output is through a an _echo_ command shell piped to the command to be run
on that host.  So, "stdout": {"serverC":{"serverV": "grep something"}} causes Watiba to read each line of STDOUT from
serverC and issue ```echo "$line" | grep something``` on serverV.  It is piping from serverC to serverV.

<div id="installation"/>

## Installation
### PIP
If you installed this as a Python package, e.g. pip, then the pre-compiler, _watiba-c_,
will be placed in your system's PATH by PIP.

### GITHUB
If you cloned this from github, you'll still need to install the package with pip, first, for the
watbia module.  Follow these steps to install Watiba locally.
```
# Watiba package required
python3 -m pip install watiba
```


<div id="pre-compiling"/>

## Pre-compiling
Test that the pre-compiler functions in your environment:
```
watiba-c version
```
For example:
```buildoutcfg
rwalk@walkubu:~$ watiba-c version
Watiba 0.3.26
```

To pre-compile a .wt file:
```
watiba-c my_file.wt > my_file.py
chmod +x my_file.py
./my_file.py
```

Where _my_file.wt_ is your Watiba code.

<div id="code-examples"/>

## Code Examples

**my_file.wt**

```
#!/usr/bin/python3

# Stand alone commands.  One with directory context, one without

# This CWD will be active until a subsequent command changes it
`cd /tmp`

# Simple statement utilizing command and results in one statement
print(`cd /tmp`.cwd)

# This will not change the Watiba CWD context, because of the dash prefix, but within 
# the command itself the cd is honored.  file.txt is created in /home/user/blah but
# this does not impact the CWD of any subsequent commands.  They
# are still operating from the previous cd command to /tmp
-`cd /home/user/blah && touch file.txt`

# This will print "/tmp" _not_ /home because of the leading dash on the command
print(f"CWD is not /home: {-`cd /home`.cwd)}"

# This will find text files in /tmp/, not /home/user/blah  (CWD context!)
w=`find . -name '*.txt'`
for l in w.stdout:
    print(f"File: {l}")


# Embedding commands in print expressions that will print the stderr output, which tar writes to
print(`echo "Some textual comment" > /tmp/blah.txt && tar -zcvf /tmp/blah.tar.gz /tmp`).stdout)

# This will print the first line of stdout from the echo
print(`echo "hello!"`.stdout[0])

# Example of more than one command in a statement line
if len(`ls -lrt`.stdout) > 0 or len(-`cd /tmp`.stdout) > 0:
    print("You have stdout or stderr messages")


# Example of a command as a Python varible and
#  receiving a Watiba object
cmd = "tar -zcvf /tmp/watiba_test.tar.gz /mnt/data/git/watiba/src"
cmd_results = `$cmd`
if cmd_results.exit_code == 0:
    for l in cmd_results.stderr:
        print(l)

# Simple reading of command output
#  Iterate on the stdout property
for l in `cat blah.txt`.stdout:
    print(l)

# Example of a failed command to see its exit code
xc = `lsvv -lrt`.exit_code
print(f"Return code: {xc}")

# Example of running a command asynchronously and resolving promise
spawn `cd /tmp && tar -zxvf tarball.tar.gz`:
    for l in promise.output.stderr:
        print(l)
    return True  # Mark promise resolved


# List dirs from CWD, iterate through them, spawn a tar command
# then within the resolver, spawn a move command
# Demonstrates spawns within resolvers
for dir in `ls -d *`.stdout:
    tar = "tar -zcvf {}.tar.gz {}"
    prom = spawn `$tar` {"dir": dir}:
        print(f"{}args['dir'] tar complete")
        mv = f"mv -r {args['dir']}/* /tmp/."
        spawn `$mv`:
            print("Move done")
            # Resolve outer promise
            promise.resolve_parent()
            return True
        # Do not resolve this promise yet.  Let the inner resolver do it
        return False
    prom.join()
```




%package -n python3-watiba
Summary:	Python syntactical sugar for embedded shell commands
Provides:	python-watiba
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-watiba
# Watiba
#### Version:  **0.6.59**
#### Date: 2021/12/04

Watiba, pronounced wah-TEE-bah, is a lightweight Python pre-compiler for embedding Linux shell 
commands within Python applications.  It is similar to other languages' syntactical enhancements where
XML or HTML is integrated into a language such as JavaScript.  That is the concept applied here but integrating
BASH shell commands with Python.

As you browse this document, you'll find Watiba is rich with features for shell command integration with Python.

Features:
- Shell command integration with Python code
- In-line access to shell command results
- Current directory context maintained across commands throughout your Python code
- Async/promise support for integrated shell commands
- Remote shell command execution
- Remote shell command chaining and piping

## Table of Contents
1. [Usage](#usage)
2. [Directory Context](#directory-context)
3. [Commands as Variables](#commands-as-variables)
4. [Command Results](#command-results)
5. [Asynchronous Spawning and Promises](#async-spawing-and-promises)
    1. [Useful Properties in Promise](#useful-properties-in-promise)
    2. [Spawn Controller](#spawn-controller)
    3. [Join, Wait or Watch](#join-wait-watch)
    4. [The Promise Tree](#promise-tree)
    5. [Threads](#threads)
6. [Remote Execution](#remote-execution)
    1. [Change SSH port for remote execution](#change-ssh-port)
7. [Command Hooks](#command-hooks)
8. [Command Chaining](#command-chaining)
9. [Command Chain Piping (Experimental)](#piping-output)
10. [Installation](#installation)
11. [Pre-compiling](#pre-compiling)
12. [Code Examples](#code-examples)

<div id="usage"/>

## Usage
Watiba files, suffixed with ".wt", are Python programs containing embedded shell commands. 
Shell commands are expressed within backtick characters emulating BASH's original capture syntax.
They can be placed in any Python statement or expression.  Watiba keeps track of the current working directory 
after the execution of any shell command so that all subsequent shell commands keep context.  For example:

Basic example of embedded commands:
```
#!/usr/bin/python3

# Typical Python program

if __name__ == "__main__":

    # Change directory context
    `cd /tmp`
    
    # Directory context maintained
    for file in `ls -lrt`.stdout:  # In-line access to command results
        print(f"File in /tmp: {file}")
```

This loop will display the file list from /tmp. The `ls -lrt` is run in the 
context of previous `cd /tmp`.  

<div id="commands-as-variables"/>

#### Commands Expressed as Variables
Commands within backticks can _be_ a variable, but cannot contain snippets of Python code or Python variables. 
The statement within the backticks _must_ be either a pure shell command or a Python variable containing a pure
shell command.  To execute commands in a Python variable, prefix the variable name between backticks with a dollar sign.

_A command variable is denoted by prepending a dollar sign on the variable name within backticks_:
```
# Set the Python variable to the command
cmdA = 'echo "This is a line of output" > /tmp/blah.txt'
cmdB = 'cat /tmp/blah.txt'

# Execute first command
`$cmdA`  # Execute the command within Python variable cmdA

# Execute second command
for line in `$cmdB`.stdout:
    print(line)
```

_This example demonstrates keeping dir context and executing a command by variable_:
```
#!/usr/bin/python3

if __name__ == "__main__":
    # Change CWD to /tmp
    `cd /tmp`
    
    # Set a command string
    my_cmd = "tar -zxvf tmp.tar.gz"
    
    # Execute that command and save the command results in variable "w"
    w = `$my_cmd`
    if w.exit_code == 0:
        for l in w.stderr:
            print(l)
```

_These constructs are **not** supported_:
 ```
file_name = "blah.txt"

# Python variable within backticks
`touch file_name`  # NOT SUPPORTED!

# Attempting to access Python variable with dollar sign
`touch $file_name` # NOT SUPPORTED!

# Python within backticks is NOT SUPPORTED!
`if x not in l: ls -lrt x`
```
<div id="directory-context"/>

## Directory Context

An important Watiba usage point is directory context is kept for dispersed shell commands.
Any command that changes the shell's CWD is discovered and kept by Watiba.  Watiba achieves 
this by tagging a `&& echo pwd` to the user's command, locating the result in the command's STDOUT, 
and finally setting the Python environment to that CWD with `os.chdir(dir)`.  This is automatic and 
opaque to the user.  The user will not see the results of the generated suffix.  If the `echo` 
suffix presents a problem for the user, it can be eliminated by prefixing the leading backtick with a
dash.  The dash turns off the context tracking by not suffixing the command and so causes Watiba to
lose its context.  However, the context is maintained _within_ the set of commands in the backticks just not
when it returns.  For example, **out = -\`cd /tmp && ls -lrt\`** honors the ```cd``` within the scope
of that execution line, but not for any backticked commands that follow later in your code.

**_Warning!_** The dash will cause Watiba to lose its directory context should the command
cause a CWD change either explicitly or implicitly.

_Example_:
```
`cd /tmp`  # Context will be kept

# This will print from /home/user, but context is NOT kept  
for line in -`cd /home/user && ls -lrt`.stdout:
    print(line) 

# This will print from /tmp, not /home/user
for line in `ls -lrt`.stdout:
    print(line)
```

<div id="command-results"/>

## Command Results
The results of the command issued in backticks are available in the properties
of the object returned by Watiba.  Following are those properties:

<table>
    <th>Property</th><th>Data Type</th><th>Description</th>
    <tr></tr>
    <td valign="top">stdout</td><td valign="top">List</td><td valign="top">STDOUT lines from the command normalized for display</td>
    <tr></tr>
    <td valign="top">stderr</td><td valign="top">List</td><td valign="top">STDERR lines from the command normalized for display</td>
    <tr></tr>
    <td valign="top">exit_code</td><td valign="top">Integer</td><td valign="top">Exit code value from command</td>
    <tr></tr>
    <td valign="top">cwd</td><td valign="top">String</td><td valign="top">Current working directory <i>after</i> command was executed</td>
</table>

Technically, the returned object for any shell command is defined in the WTOutput class.

<div id="async-spawing-and-promises"/>

## Asynchronous Spawning and Promises
Shell commands can be executed asynchronously with a defined resolver callback block.  Each _spawn_ expression creates
and runs a new OS thread. The resolver is a callback block that follows the Watiba _spawn_ expression.  The spawn 
feature is executed when a ```spawn `cmd` args: resolver block``` code block is encountered. The 
resolver is passed the results in the promise object. (The promise structure contains the properties 
defined in section ["Results from Spawned Commands"](#spawn-results)  The _spawn_ expression also returns a _promise_ object 
to the caller of _spawn_.  The promise object is passed to the _resolver block_ in argument _promise_.  The 
outer code can check its state with a call to _resolved()_ on the *returned* promise object.  Output from the command
is found in _promise.output_.  The examples throughout this README and in the _examples.wt_ file make this clear.

<div id="useful-properties-in-promise"/>

##### Useful properties in promise structure 
A promise is either returned in assignment from outermost spawn, or passed to child spawns in argument "promise".

  <table>
      <th>Property</th>
      <th>Data Type</th>
      <th>Description</th>
      <tr></tr>
      <td valign="top">host</td><td valign="top">String</td><td valign="top">Host name on which spawned command ran</td>
      <tr></tr>
      <td valign="top">children</td><td valign="top">List</td><td valign="top">Children promises for this promise node</td>
      <tr></tr>
      <td valign="top">parent</td><td valign="top">Reference</td><td valign="top">Parent promise node of child promise. None if root promise.</td>
      <tr></tr>
      <td valign="top">command</td><td valign="top">String</td><td valign="top">Shell command issued for this promise</td>
      <tr></tr>
      <td valign="top">resolved()</td><td valign="top">Method</td><td valign="top">Call to find out if this promise is resolved</td>
      <tr></tr>
      <td valign="top">resolve_parent()</td><td valign="top">Method</td><td valign="top">Call inside resolver block to resolve parent promise</td>
      <tr></tr>
      <td valign="top">tree_dump()</td><td valign="top">Method</td><td valign="top">Call to show the promise tree.  Takes subtree argument otherwise it defaults to the root promise</td>
      <tr></tr>
      <td valign="top">join()</td><td valign="top">Method</td><td valign="top">Call to wait on on promise and all its children</td>
      <tr></tr>
      <td valign="top">wait()</td><td valign="top">Method</td><td valign="top">Call to wait on just this promise</td>
      <tr></tr>
      <td valign="top">watch()</td><td valign="top">Method</td><td valign="top">Call to create watcher on this promise</td>
      <tr></tr>
      <td valign="top">start_time</td><td valign="top">Time</td><td valign="top">Time that spawned command started</td>
      <tr></tr>
      <td valign="top">end_time</td><td valign="top">Time</td><td valign="top">Time that promise resolved</td>
  </table>

_Example of simple spawn_:
```buildoutcfg
prom = spawn `tar -zcvf big_file.tar.gz some_dir/*`:
    # Resolver block to which "promise" and "args" is passed...
    print(f"{promise.command} completed.")
    return True  # Resolve promise

# Do other things while tar is running
# Finally wait for tar promise to resolve
prom.join()
```

<div id="spawn-controller"/>

#### Spawn Controller
All spawned threads are managed by Watiba's Spawn Controller.  The controller watches for too many threads and
incrementally slows down each thread start when that threshold is exceeded until either all the promises in the tree
resolve, or an expiration count is reached, at which time an exception is thrown on the last spawned command.  
This exception is raised by the default error method. This method as well as other spawn controlling parameters 
can be overridden.  The controller's purpose is to not allow run away threads and provide signaling of possible
hung threads.

_spawn-ctl_ example:
```buildoutcfg
# Only allow 20 spawns max, 
# and increase slowdown by 1/2 second each 3rd cycle
...python code...
spawn-ctl {"max":20, "sleep-increment":.500}  
```

Spawn control parameters:

<table>
    <th>Key Name</th>
    <th>Data Type</th>
    <th>Description</th>
    <th>Default</th>
    <tr></tr>
    <td valign="top">max</td><td valign="top">Integer</td><td valign="top">The maximum number of spawned commands allowed before the controller enters slowdown mode</td><td valign="top">10</td>
    <tr></tr>
    <td valign="top">sleep-floor</td><td valign="top">Integer</td><td valign="top">Seconds of <i>starting</i> 
sleep value when the controller enters slowdown mode</td><td valign="top">.125 (start at 1/8th second pause)</td>
    <tr></tr>
    <td valign="top">sleep-increment</td><td valign="top">Integer</td><td valign="top">Seconds the <i>amount</i> of seconds sleep will increase every 3rd cycle when in slowdown 
      mode</td><td valign="top">.125 (Increase pause 1/8th second every 3rd cycle)</td>
    <tr></tr>
    <td valign="top">sleep-ceiling</td><td valign="top">Integer</td><td valign="top">Seconds the <i>highest</i> length sleep value allowed when in slowdown mode  
      (As slow as it will get)</td><td valign="top">3 (won't get slower than 3 second pauses)</td>
    <tr></tr>
    <td valign="top">expire</td><td valign="top">Integer</td><td valign="top">Total number of slowdown cycles allowed before the error method is called</td><td valign="top">No expiration</td>
    <tr></tr>
    <td valign="top">error</td><td valign="top">Method</td><td valign="top">
    Callback method invoked when slowdown mode expires. Use this to catch hung commands.
            This method is passed 2 arguments:
    
- **promise** - The promise attempting execution at the time of expiration
- **count** - The thread count (unresolved promises) at the time of expiration
    </td><td valign="top">Generic error handler.  Just throws <i>WTSpawnException</i> that hold properties <i>promise</i> and <i>message</i></td></td>
</table>
 <hr>

**_spawn-ctl_** only overrides the values it sets and does not affect values not specified.  _spawn-ctl_ statements can
set whichever values it wants, can be dispersed throughout your code (i.e. multiple _spawn-ctl_ statements) and 
only affects subsequent spawn expressions.

_Notes:_
1. Arguments can be passed to the resolver by specifying a trailing variable after the command.  If the arguments
variable is omitted, an empty dictionary, i.e. {}, is passed to the resolver in _args_.
**_Warning!_** Python threading does not deep copy objects passed as arguments to threads.  What you place in ```args```
of the spawn expression will only be shallow copied so if there are references to other objects, it's not likely to 
   survive the copy.
2. The resolver must return _True_ to set the promise to resolved, or _False_ to leave it unresolved.
3. A resolver can also set the promise to resolved by calling ```promise.set_resolved()```.  This is handy in cases where
a resolver has spawned another command and doesn't want the outer promise resolved until the inner resolvers are done. 
To resolve an outer, i.e. parent, resolver issue _promise.resolve_parent()_.  Then the parent resolver can return
_False_ at the end of its block so it leaves the resolved determination to the inner resolver block.
4. Each promise object holds its OS thread object in property _thread_ and its thread id in property _thread_id_. This
can be useful for controlling the thread directly.  For example, to signal a kill. 
5. _spawn-ctl_ has no affect on _join_, _wait_, or _watch_.  This is because _spawn-ctl_ establishes an upper end
throttle on the overall spawning process.  When the number of spawns hits the max value, throttling (i.e. slowdown 
   mode) takes affect and will expire if none of the promises resolve.  Conversely, the arguments used by _join_, 
   _wait_ and _watch_ control the sleep cycle and expiration of just those calls, not the spawned threads as a whole. When
   an expiration is set for, say, _join_, then that join will expire at that time.  When an expiration is set in
   _spawn-ctl_, then if all the spawned threads as a whole don't resolve in time then an expiration function is called.


**_Spawn Syntax:_**
```
my_promise = spawn `cmd` [args]:
    resolver block (promise, args)
    args passed in args
    return resolved or unresolved (True or False)
 ```
    
_Spawn with resolver arguments omitted_:
```
my_promise = spawn `cmd`:
    resolver block (promise, args)
    return resolved or unresolved (True or False)
```

_Simple spawn example_:
```buildoutcfg
p = spawn `tar -zcvf /tmp/file.tar.gz /home/user/dir`:
    # Resolver block to which "promise" and "args" are passed
    # Resolver block is called when spawned command has completed
    for line in promise.output.stderr:
        print(line)
    
    # This marks the promise resolved
    return True
    
# Wait for spawned command to resolve (not merely complete)
try:
    p.join({"expire": 3})
    print("tar resolved")
except Exception as ex:
    print(ex.args)
```

_Example of file that overrides spawn controller parameters_:
```
#!/usr/bin/python3
def spawn_expired(promise, count):
    print("I do nothing just to demonstrate the error callback.")
    print(f"This command failed {promise.command} at this threshold {count}")
    
    raise Exception("Too many threads.")
    
if __name__ == "__main__":
    # Example showing default values
    parms = {"max": 10, # Max number of threads allowed before slowdown mode
         "sleep-floor": .125,  # Starting sleep value
         "sleep-ceiling": 3,  # Maximum sleep value
         "sleep-increment": .125,  # Incremental sleep value
         "expire": -1,  # Default: no expiration
         "error": spawn_expired  # Method called upon slowdown expiration
    }
     
    # Set spawn controller parameter values
    spawn-ctl parms
```

<div id="join-wait-watch"/>

#### Join, Wait, or Watch

Once commands are spawned, the caller can wait for _all_ promises, including inner or child promises, to complete, or
the caller can wait for just a specific promise to complete.  To wait for all _child_ promises including
the promise on which you're calling this method, call _join()_.  It will wait for that promise and all its children. To 
wait for just one specific promise, call _wait()_ on the promise of interest.  To wait for _all_ promises in 
the promise tree, call _join()_ on the root promise.

_join_ and _wait_ can be controlled through parameters.  Each are iterators paused with a sleep method and will throw
an expiration exception should you set a limit for iterations.  If an expiration value is not set,
no exception will be thrown and the cycle will run only until the promise(s) are resolved.  _join_ and _wait_ are not
affected by _spawn-ctl_.

_watch_ is called to establish a separate asynchronous thread that will call back a function of your choosing should
the command the promise is attached to time out.  This is different than _join_ and _wait_ in that _watch_ is not synchronous 
and does not pause.  This is used to keep an eye on a spawned command and take action should it hang.  Your watcher
function is passed the promise on which the watcher was attached, and the arguments, if any, from the spawn expression.
If your command does not time out (i.e. hangs and expires), the watcher thread will quietly go away when the promise
is resolved.  _watch_ expiration is expressed in **seconds**, unlike _join_ and _wait_ which are expressed as total
_iterations_ paused at the sleep value.  _watch_'s polling cycle pause is .250 seconds, so the expiration value is
multiplied by 4.  The default expiration is 15 seconds.

Examples:
```
# Spawn a thread running this command
p = spawn `ls -lrt`:
    ## resolver block ##
    return True
    
# Wait for promises, pause for 1/4 second each iteration, and throw an exception after 4 iterations 
(1 second)
try:
    p.join({"sleep": .250, "expire": 4})
except Exception as ex:
    print(ex.args)

# Wait for this promise, pause for 1 second each iteration, and throw an exception after 5 iterations 
(5 seconds)
try:
    p.wait({"sleep": 1, "expire": 5})
except Exception as ex:
    print(ex.args)
 
# My watcher function (called if spawned command never resolves by its experation period)
def watcher(promise, args):
    print(f"This promise is likely hung: {promise.command}")
    print(f"and I still have the spawn expression's args: {args}")

p = spawn `echo "hello" && sleep 5` args:
    print(f"Args passed to me: {args}")
    return True

# Attach a watcher to this thread.  It will be called upon experation.
p.watch(watcher)
print("watch() does not pause like join or wait")

# Attach a watcher that will expire in 5 seconds
p.watch(watcher, {"expire": 5})
```

**_join_ syntax**
```
promise.join({optional args})
Where args is a Python dictionary with the following options:
    "sleep" - seconds of sleep for each iteration (fractions such as .5 are honored)
        default: .5 seconds
    "expire" - number of sleep iterations until an excpetions is raised
        default: no expiration
Note: "args" is optional and can be omitted
```

_Example of joining parent and children promises_:
```
p = spawn `ls *.txt`:
    for f in promise.output.stdout:
        cmd = f"tar -zcvf {f}.tar.gz {f}"
        spawn `$cmd` {"file":f}:
            print(f"{f} completed")
            promise.resolve_parent()
            return True
    return False

# Wait for all commands to complete
try:
    p.join({"sleep":1, "expire":20})
except Exception as ex:
    print(ex.args)
```

**_wait_ syntax**
```
promise.wait({optional args})
Where args is a Python dictionary with the following options:
    "sleep" - seconds of sleep for each iteration (fractions such as .5 are honored)
        default: .5 seconds
    "expire" - number of sleep iterations until an excpetions is raised
        default: no expiration
Note: "args" is optional and can be omitted
```

_Example of waiting on just the parent promise_:
```
p = spawn `ls *.txt`:
    for f in promise.output.stdout:
        cmd = f"tar -zcvf {f}.tar.gz {}"
        spawn `$cmd` {"file":f}:
            print(f"{f} completed")
            promise.resolve_parent() # Wait completes here
            return True
    return False

# Wait for just the parent promise to complete
try:
    p.wait({"sleep":1, "expire":20})
except Exception as ex:
    print(ex.args)
```

**_watch_ syntax**
```
promise.watch(callback, {optional args})
Where args is a Python dictionary with the following options:
    "sleep" - seconds of sleep for each iteration (fractions such as .5 are honored)
        default: .5 seconds
    "expire" - number of sleep iterations until an excpetions is raised
        default: no expiration
Note: "args" is optional and can be omitted
```

_Example of creating a watcher_:
```buildoutcfg
# Define watcher method.  Called if command times out (i.e. expires)
def time_out(promise, args):
    print(f"Command {promise.command} timed out.")

# Spawn a thread running some command that hangs
p = spawn `long-running.sh`:
    print("Finally completed.  Watcher method won't be called.")
    return True
 
p.watch(time_out)  # Does not wait.  Calls method "time_out" if this promise expires (i.e. command hangs)
 
# Do other things...
 
```

<div id="promise-tree"/>

#### The Promise Tree
Each _spawn_ issued inserts its promise object into the promise tree.  The outermost _spawn_ will generate the root
promise and each inner _spawn_ will be among its children.  There's no limit to how far it can nest.  _wait_ only applies
to the promise on which it is called and is how it is different than _join_.  _wait_ does not consider any other
promise state but the one it's called for, whereas _join_ considers the one it's called for **and** anything below it
in the tree.

The promise tree can be printed with the ```dump_tree()``` method on the promise.  This method is intended for
diagnostic purposes where it must be determined why spawned commands hung.  ```dump_tree(subtree)``` accepts
a subtree promise as an argument.  If no arguments are passed, ```dump_tree()``` dumps from the root promise on down.
```
# Simple example with no child promises
p = spawn `date`:
    return True
    
p.tree_dump()  # Dump tree from root
# or
p.tree_dump(subtree_promise)  # Dump tree from node in argument
```

Example dumping tree from subtree node:
```buildoutcfg
# Complex example with child and grandchild promises
# Demonstrates how to dump the promise tree from various points within it
p = spawn `date`:
    # Spawn child command (child promise)
    spawn `pwd`:
        # Spawn a grandchild to the parent promise
        spawn `python --version`:
            promise.tree_dump(promise)  # Dump the subtree from this point down
            return False
    # Spawn another child
     spawn `echo "blah"`:
         # Resolve parent promise
         promise.resolve_parent()
         # Resolve child promise
        return True
    # Do NOT resolve parent promise, let child do that
    return False
    
p.join()
p.tree_dump(p.children[0])  # Dump subtree from first child on down
p.tree_dump(p.children[1])  # Dump subtree from the second child
p.tree_dump(p.children[0].children[0]) # Dump subtree from the grandchild 

# Dump all children
for c in p.children:
    p.tree_dump(c)
```

_Parent and child joins shown in these two examples_:

``` 
root_promise = spawn `ls -lr`:
    for file in promise.stdout:
        t = f"touch {file}"
        spawn `$t` {"file" file}:  # This promise is a child of root
            print(f"{file} updated".)
            spawn `echo "done" > /tmp/done"`:  # Another child promise (root's grandchild)
                print("Complete")
                promise.resolve_parent()
                return True
            promise.resolve_parent()
            return False
    return False

root_promise.join()  # Wait on the root promise and all its children.  Thus, waiting for everything.
```

``` 
root_promise = spawn `ls -lr`:
    for file in promise.output.stdout:
        t = f"touch {file}"
        spawn `$t` {"file" file}:  # This promise is a child of root
            print(f"{promise.args['file'])} updated")
            promise.join() # Wait for this promise and its children but not its parent (root)
            spawn `echo "done" > /tmp/done"`:
                print("Complete")
```



_Resolving a parent promise_:
```
p = spawn `ls -lrt`:
    for f in promise.output.stdout:
        cmd = f"touch {f}"
        # Spawn command from this resolver and pass our promise
        spawn `$cmd`:
            print("Resolving all promises")
            promise.resolve_parent() # Resolve parent promise here
            return True # Resolve child promise
        return False # Do NOT resolve parent promise here
p.join()  # Wait for ALL promises to be resolved
```

<div id="spawn-results"/>

### Results from Spawned Commands
Spawned commands return their results in the _promise.output_ property of the _promise_ object passed to
the resolver block, and in the spawn expression if there is an assignment in that spawn expression.

The result properties can then be accessed as followed:

<table>
    <th>Property</th><th>Data Type</th><th>Description</th>
    <tr></tr>
    <td valign="top">promise.output.stdout</td><td valign="top">List</td><td valign="top">STDOUT lines from the command normalized for display</td>
    <tr></tr>
    <td valign="top">promise.output.stderr</td><td valign="top">List</td><td valign="top">STDERR lines from the command normalized for display</td>
    <tr></tr>
    <td valign="top">promise.output.exit_code</td><td valign="top">Integer</td><td valign="top">Exit code value from command</td>
    <tr></tr>
    <td valign="top">promise.output.cwd</td><td valign="top">String</td><td valign="top">Current working directory <i>after</i> command was executed</td>
</table>


_Notes:_
1. Watiba backticked commands can exist within the resolver 
2. Other _spawn_ blocks can be embedded within a resolver (recursion allowed)
3. The command within the _spawn_ definition can be a variable
    (The same rules apply as for all backticked shell commands.  This means the variable must contain
   pure shell commands.)
4. The leading dash to ignore CWD _cannot_ be used in the _spawn_ expression
5. The _promise.output_ object is not available until _promise.resolved()_ returns True

_Simple example with the shell command as a Python variable_:
```
#!/usr/bin/python3

# run "date" command asynchronously 
d = 'date "+%Y/%m/%d"'
spawn `$d`:
    print(promise.output.stdout[0])
    return True

```

_Example with shell commands executed within resolver block_:
```
#!/usr/bin/python3

print("Running Watiba spawn with wait")
`rm /tmp/done`

# run "ls -lrt" command asynchronously 
p = spawn `ls -lrt`:
    print(f"Exit code: {promise.output.exit_code}")
    print(f"CWD: {promise.output.cwd}")
    print(f"STDERR: {promise.output.stderr}")

    # Loop through STDOUT from command
    for l in promise.output.stdout:
        print(l)
    `echo "Done" > /tmp/done`

    # Resolve promise
    return True

# Pause until spawn command is complete
p.wait()
print("complete")

```

<div id="threads"/>

### Threads
Each promise produced from a _spawn_ expression results in one OS thread.  To access the 
number of threads your code has spawned collectively, you can do the following:
``` 
num_of_spawns = promise.spawn_count()  # Returns number of nodes in the promise tree
num_of_resolved_promises = promise.resolved_count() # Returns the number of promises resolved in tree
``` 
<div id="remote-execution"/>

## Remote Execution
Shell commands can be executed remotely.  This is achieved though the SSH command, issued by Watiba, and has the 
following requirements:
- OpenSSH is installed on the local and remote hosts
- The local SSH key is in the remote's _authorized_keys_ file.  _The details of this
  process is beyond the scope of this README.  For those instructions, consult www.ssh.com_
  
- Make sure that SSH'ing to the target host does not cause any prompts.  
  
Test that your SSH environment is setup first by manually entering: 
```
ssh {user}@{host} "ls -lrt"

# For example
ssh rwalk@walkubu "ls -lrt"

# If SSH prompts you, then Watiba remote execution cannot function. 
```

To execute a command remotely, a _@host_ parameter is suffixed to the backticked command.  The host name can be a
literal or a variable.  To employ a variable, prepend a _$_ to the name following _@_ such as _@$var_.

<div id="change-ssh-port"/>

#### Change SSH port for remote execution
To change the default SSH port 22 to a custom value, add to your Watiba code:  ```watiba-ctl {"ssh-port": custom port}```
Example:
```buildoutcfg
watiba-ctl {"ssh-port": 2233}
```
Examples:
```buildoutcfg
p = spawn `ls -lrt`@remoteserver {parms}:
    for line in promise.output.stdout:
        print(line)
    return True
     
```  
```buildoutcfg
remotename = "serverB"
p = spawn `ls -lrt`@$remotename {parms}:
    for line in p.output.stdout:
        print(line)
    return True
```
```buildoutcfg
out = `ls -lrt`@remoteserver
for line in out.stdout:
    print(line)
```
```buildoutcfg
remotename = "serverB"
out = `ls -lrt`@$remotename
for line in out.stdout:
    print(line)
```


<div id="command-hooks"/>

## Command Hooks
Hooks are pre- or -post functions that are attached to a _command_ _pattern_, which is a regular expression (regex).  Anytime Watiba encounters a command
that matches the pattern for the hook, the hook function is called.

All commands, spawned, remote, or local, can have Python functions executed **before** exection, by default, or **post hooks** that are run **after** the command.  (Note: Post hooks are not run for spwaned commands because the resolver function is a post hook itself.)  These functions can be passed arguments, too.

### Command Hook Expressions
```
# Run before commands that match that pattern
hook-cmd "pattern" hook-function parms

# Run before commands that match that pattern, but is non-recursive
hook-cmd-nr "pattern" hook-function parms 

# Run after commands that match that pattern
post-hook-cmd "pattern" hook-function parms

# Run after commands that match that pattern, but is non-recursive
post-hook-cmd-nr "pattern" hook-function parms 
```

### Hook Recursion
Hooks, which are nothing more than Python functions called before or after a command is run, can issue their own commands and, thus, cause the hook
to be recursively called.  However, if the command in the hook block of code matches a command pattern that causes that same hook function to be run again,
an infinte loop can occur.  To prevent that, use the **-nr** suffix on the Watiba hook expression. (-nr stands for non-recursive.)  This will ensure that
the hook cannot be re-invoked for any commands that are within it.

<br>
To attach a hook:
1. Code one or more Python functions that will be the hooks.  At the end of each hook, you must return True if the hook was successful, or False
if something wrong.
2. Use the _hook-cmd_ expression to attach those hooks to a command
pattern, which is a regular expression
3. To remove the hooks, use the _remove-hooks "pattern"_ expression.  If a pattern, i.e. command regex pattern, is omitted, then all command hooks are removed.

**hook-cmd "command pattern" function parms**

The first parameter always passed to the hook function is the Python _match_ object from the command match.  This is provided so the hook has access
to the tokens on the command should it need them.

Example:
```
def my_hook(match, parms):
    print(match.groups())
    print(f'Tar file name is {match.group(1)}')
    print(parms["parmA"])
    print(parms["parmB"])
    return True  # Successful execution

def your_hook(match, parms):
    # This hook doesn't need the match object, so ignores it
    print(parms["something"])
    if parms["something-else"] != "blah":
        return False # Failed execution
    return True # Successful excution


# Add first hook to my tar command
hook-cmd "tar -zcvf (\S.*)" my_hook: {"parmA":"A", "parmB":"B"}

# Add another hook to my tar command
hook-cmd "tar -zcvf (\S.*)" your_hook: {"parmD":1, "parmE":"something"}

# Spawn command, but hooks will be invoked first...
spawn `tar -zcvf files.tar.gz /tmp/files/* `:
    # Resolver code block
    return True  # Resolve promise
```

Your parameters are whatever is valid for Python.  These are simply passed to their attached functions, essentially each one's key is the function name, as specified.


_Where are the hooks run for spawned commands?_  All hooks run under the thread of the issuer on the local host, not the target thread.

_Where are the hooks run for remote commands?_ As with spawned commands, all hooks are issued on the local host, not the remote.  Note that you
can have remote backticked commands in your hook and that will run those remotely.  If your remote command matches a hook(s) pattern, then those hooks will be run.  This means if your command pattern for the first remote call runs a hook that contains another remote command that matches that same command pattern, then the hook is run again.  Since this can lead to infinte hook loops, Watiba offers a non-recursive definition for the command pattern.  Note that this non-recursive setting
only applies to the command pattern and not the hook function itself.  So if _hookA_ is run for two different command patterns, say, "ls -lrt" and "ls -laF" you can
make one non-recusrive and still run the same hook for both commands.  For the recursive command pattern, the hook has no limit to its recursion.  For non-recursive,
it will only be called once during the recursion process.

To set a command pattern as non-recursive, use _hook-cmd-nr_.

Example using a variation on a previous example:

```
def my_hook(match, parms)
    `tar -zcvf /tmp/files`  # my_hook will NOT because for this command even though it matches
    print("Will be called only once!")
    return True

# Note the "-nr" on the expression.  That's for non-recursive
hook-cmd-nr "tar -zcvf (\S.*)" my_hook: {"parmA":"A", "parmB":"B"}

# my_hook will be called before this command runs
` tar -zcvf tarball.tar.gz /home/user/files.*`
```

<div id="command-chaining"/>

## Command Chaining
Watiba extends its remote command execution to chaining commands across multiple remote hosts.  This is achieved
by the _chain_ expression.  This expression will execute the backticked command across a list of hosts, passed by
the user, sequentially, synchronously until the hosts list is exhausted, or the command fails.  _chain_ returns a
Python dictionary where the keys are the host names and the values the WTOutput from the command run on that host.

#### Chain Exception
The _chain_ expression raises a WTChainException on the first failed command.  The exception raised
has the following properties:

_WTChainException_:
<table>
<th>Property</th><th>Data Type</th><th>Description</th>
<tr></tr>
<td valign="top">command</td><td valign="top">String</td><td valign="top">Command that failed</td>
<tr></tr>
<td valign="top">host</td><td valign="top">String</td><td valign="top">Host where command failed</td>
<tr></tr>
<td valign="top">message</td><td valign="top">String</td><td valign="top">Error message</td>
<tr></tr>
<td valign="top">output</td><td valign="top">WTOutput structure:

- stdout
- stderr
- exit_code
- cwd</td><td valign="top">Output from command</td>
</table>

Import this exception to catch it:
```buildoutcfg
from watiba import WTChainException
```


Examples:
```
from watiba import WTChainException

try:
    out = chain `tar -zcvf backup/file.tar.gz dir/*` {"hosts", ["serverA", "serverB"]}
    for host,output in out.items():
        print(f'{host} exit code: {output.exit_code}')
        for line in output.stderr:
            print(line)
 except WTChainException(ex):
    print(f"Error: {ex.message}")
    print(f"  host: {ex.host} exit code: {ex.output.exit_code} command: {ex.command})
            
```

<div id="piping-output"/>

## Command Chain Piping (Experimental)
The _chain_ expression supports piping STDOUT and/or STDERR to other commands executed on remote servers.  Complex
arrangements can be constructed through the Python dictionary passed to the _chain_ expression.  The dictionary
contents function as follows:
- "hosts": [server, server, ...]   This entry instructions _chain_ on which hosts the backticked command will run.
    This is a required entry.
    
- "stdout": {server:command, server:command, ...}
    This is an optional entry.
  
- "stderr": {server:command, server:command, ...}
    This is an optional entry.

Just like a _chain_ expression that does not pipe output, the return object is a dictionary of WTOutput object keyed
by the host name from the _hosts_ list and *not* from the commands recieving the piped output.

If any command fails, a WTChainException is raised.  Import this exception to catch it:
```buildoutcfg
from watiba import WTChainException
```

_Note_: _The piping feature is experimental as of this release, and a better design will eventually
supercede it._

Examples:  
```
from watiba import WTChainException

# This is a simple chain with no piping
try:
    args = {"hosts": ["serverA", "serverB", "serverC"]}
    out = chain `ls -lrt dir/` args
    for host, output in out.items():
        print(f'{host} exit code: {output.exit_code}')
except WTChainException as ex:
    print(f'ERROR: {ex.message}, {ex.host}, {ex.command}, {ex.output.stderr}')
```
```
# This is a more complex chain that runs the "ls -lrt" command on each server listed in "hosts"
# and pipes the STDOUT output from serverC to serverV and serverD, to those commands, and serverB's STDERR
# to serverX and its command
try:
    args = {"hosts": ["serverA", "serverB", "serverC"],
                "stdout": {"serverC":{"serverV": "grep something", "serverD":"grep somethingelse"}},
                "stderr": {"serverB":{"serverX": "cat >> /tmp/serverC.err"}}
           }
    out = chain `ls -lrt dir/` args
    for host, output in out.items():
        print(f'{host} exit code: {output.exit_code}')
except WTChainException as ex:
    print(f'ERROR: {ex.message}, {ex.host}, {ex.command}, {ex.output.stderr}')
```

####How does this work?
Watiba will run the backticked command in the expression on each host listed in _hosts_, in sequence and synchronously.
If there is a "stdout" found in the arguments, then it will name the source host as the key, i.e. the host from which
STDOUT will be read, and fed to each host and command listed under that host.  This is true for STDERR as well.

The method in which Watiba feeds the piped output is through a an _echo_ command shell piped to the command to be run
on that host.  So, "stdout": {"serverC":{"serverV": "grep something"}} causes Watiba to read each line of STDOUT from
serverC and issue ```echo "$line" | grep something``` on serverV.  It is piping from serverC to serverV.

<div id="installation"/>

## Installation
### PIP
If you installed this as a Python package, e.g. pip, then the pre-compiler, _watiba-c_,
will be placed in your system's PATH by PIP.

### GITHUB
If you cloned this from github, you'll still need to install the package with pip, first, for the
watbia module.  Follow these steps to install Watiba locally.
```
# Watiba package required
python3 -m pip install watiba
```


<div id="pre-compiling"/>

## Pre-compiling
Test that the pre-compiler functions in your environment:
```
watiba-c version
```
For example:
```buildoutcfg
rwalk@walkubu:~$ watiba-c version
Watiba 0.3.26
```

To pre-compile a .wt file:
```
watiba-c my_file.wt > my_file.py
chmod +x my_file.py
./my_file.py
```

Where _my_file.wt_ is your Watiba code.

<div id="code-examples"/>

## Code Examples

**my_file.wt**

```
#!/usr/bin/python3

# Stand alone commands.  One with directory context, one without

# This CWD will be active until a subsequent command changes it
`cd /tmp`

# Simple statement utilizing command and results in one statement
print(`cd /tmp`.cwd)

# This will not change the Watiba CWD context, because of the dash prefix, but within 
# the command itself the cd is honored.  file.txt is created in /home/user/blah but
# this does not impact the CWD of any subsequent commands.  They
# are still operating from the previous cd command to /tmp
-`cd /home/user/blah && touch file.txt`

# This will print "/tmp" _not_ /home because of the leading dash on the command
print(f"CWD is not /home: {-`cd /home`.cwd)}"

# This will find text files in /tmp/, not /home/user/blah  (CWD context!)
w=`find . -name '*.txt'`
for l in w.stdout:
    print(f"File: {l}")


# Embedding commands in print expressions that will print the stderr output, which tar writes to
print(`echo "Some textual comment" > /tmp/blah.txt && tar -zcvf /tmp/blah.tar.gz /tmp`).stdout)

# This will print the first line of stdout from the echo
print(`echo "hello!"`.stdout[0])

# Example of more than one command in a statement line
if len(`ls -lrt`.stdout) > 0 or len(-`cd /tmp`.stdout) > 0:
    print("You have stdout or stderr messages")


# Example of a command as a Python varible and
#  receiving a Watiba object
cmd = "tar -zcvf /tmp/watiba_test.tar.gz /mnt/data/git/watiba/src"
cmd_results = `$cmd`
if cmd_results.exit_code == 0:
    for l in cmd_results.stderr:
        print(l)

# Simple reading of command output
#  Iterate on the stdout property
for l in `cat blah.txt`.stdout:
    print(l)

# Example of a failed command to see its exit code
xc = `lsvv -lrt`.exit_code
print(f"Return code: {xc}")

# Example of running a command asynchronously and resolving promise
spawn `cd /tmp && tar -zxvf tarball.tar.gz`:
    for l in promise.output.stderr:
        print(l)
    return True  # Mark promise resolved


# List dirs from CWD, iterate through them, spawn a tar command
# then within the resolver, spawn a move command
# Demonstrates spawns within resolvers
for dir in `ls -d *`.stdout:
    tar = "tar -zcvf {}.tar.gz {}"
    prom = spawn `$tar` {"dir": dir}:
        print(f"{}args['dir'] tar complete")
        mv = f"mv -r {args['dir']}/* /tmp/."
        spawn `$mv`:
            print("Move done")
            # Resolve outer promise
            promise.resolve_parent()
            return True
        # Do not resolve this promise yet.  Let the inner resolver do it
        return False
    prom.join()
```




%package help
Summary:	Development documents and examples for watiba
Provides:	python3-watiba-doc
%description help
# Watiba
#### Version:  **0.6.59**
#### Date: 2021/12/04

Watiba, pronounced wah-TEE-bah, is a lightweight Python pre-compiler for embedding Linux shell 
commands within Python applications.  It is similar to other languages' syntactical enhancements where
XML or HTML is integrated into a language such as JavaScript.  That is the concept applied here but integrating
BASH shell commands with Python.

As you browse this document, you'll find Watiba is rich with features for shell command integration with Python.

Features:
- Shell command integration with Python code
- In-line access to shell command results
- Current directory context maintained across commands throughout your Python code
- Async/promise support for integrated shell commands
- Remote shell command execution
- Remote shell command chaining and piping

## Table of Contents
1. [Usage](#usage)
2. [Directory Context](#directory-context)
3. [Commands as Variables](#commands-as-variables)
4. [Command Results](#command-results)
5. [Asynchronous Spawning and Promises](#async-spawing-and-promises)
    1. [Useful Properties in Promise](#useful-properties-in-promise)
    2. [Spawn Controller](#spawn-controller)
    3. [Join, Wait or Watch](#join-wait-watch)
    4. [The Promise Tree](#promise-tree)
    5. [Threads](#threads)
6. [Remote Execution](#remote-execution)
    1. [Change SSH port for remote execution](#change-ssh-port)
7. [Command Hooks](#command-hooks)
8. [Command Chaining](#command-chaining)
9. [Command Chain Piping (Experimental)](#piping-output)
10. [Installation](#installation)
11. [Pre-compiling](#pre-compiling)
12. [Code Examples](#code-examples)

<div id="usage"/>

## Usage
Watiba files, suffixed with ".wt", are Python programs containing embedded shell commands. 
Shell commands are expressed within backtick characters emulating BASH's original capture syntax.
They can be placed in any Python statement or expression.  Watiba keeps track of the current working directory 
after the execution of any shell command so that all subsequent shell commands keep context.  For example:

Basic example of embedded commands:
```
#!/usr/bin/python3

# Typical Python program

if __name__ == "__main__":

    # Change directory context
    `cd /tmp`
    
    # Directory context maintained
    for file in `ls -lrt`.stdout:  # In-line access to command results
        print(f"File in /tmp: {file}")
```

This loop will display the file list from /tmp. The `ls -lrt` is run in the 
context of previous `cd /tmp`.  

<div id="commands-as-variables"/>

#### Commands Expressed as Variables
Commands within backticks can _be_ a variable, but cannot contain snippets of Python code or Python variables. 
The statement within the backticks _must_ be either a pure shell command or a Python variable containing a pure
shell command.  To execute commands in a Python variable, prefix the variable name between backticks with a dollar sign.

_A command variable is denoted by prepending a dollar sign on the variable name within backticks_:
```
# Set the Python variable to the command
cmdA = 'echo "This is a line of output" > /tmp/blah.txt'
cmdB = 'cat /tmp/blah.txt'

# Execute first command
`$cmdA`  # Execute the command within Python variable cmdA

# Execute second command
for line in `$cmdB`.stdout:
    print(line)
```

_This example demonstrates keeping dir context and executing a command by variable_:
```
#!/usr/bin/python3

if __name__ == "__main__":
    # Change CWD to /tmp
    `cd /tmp`
    
    # Set a command string
    my_cmd = "tar -zxvf tmp.tar.gz"
    
    # Execute that command and save the command results in variable "w"
    w = `$my_cmd`
    if w.exit_code == 0:
        for l in w.stderr:
            print(l)
```

_These constructs are **not** supported_:
 ```
file_name = "blah.txt"

# Python variable within backticks
`touch file_name`  # NOT SUPPORTED!

# Attempting to access Python variable with dollar sign
`touch $file_name` # NOT SUPPORTED!

# Python within backticks is NOT SUPPORTED!
`if x not in l: ls -lrt x`
```
<div id="directory-context"/>

## Directory Context

An important Watiba usage point is directory context is kept for dispersed shell commands.
Any command that changes the shell's CWD is discovered and kept by Watiba.  Watiba achieves 
this by tagging a `&& echo pwd` to the user's command, locating the result in the command's STDOUT, 
and finally setting the Python environment to that CWD with `os.chdir(dir)`.  This is automatic and 
opaque to the user.  The user will not see the results of the generated suffix.  If the `echo` 
suffix presents a problem for the user, it can be eliminated by prefixing the leading backtick with a
dash.  The dash turns off the context tracking by not suffixing the command and so causes Watiba to
lose its context.  However, the context is maintained _within_ the set of commands in the backticks just not
when it returns.  For example, **out = -\`cd /tmp && ls -lrt\`** honors the ```cd``` within the scope
of that execution line, but not for any backticked commands that follow later in your code.

**_Warning!_** The dash will cause Watiba to lose its directory context should the command
cause a CWD change either explicitly or implicitly.

_Example_:
```
`cd /tmp`  # Context will be kept

# This will print from /home/user, but context is NOT kept  
for line in -`cd /home/user && ls -lrt`.stdout:
    print(line) 

# This will print from /tmp, not /home/user
for line in `ls -lrt`.stdout:
    print(line)
```

<div id="command-results"/>

## Command Results
The results of the command issued in backticks are available in the properties
of the object returned by Watiba.  Following are those properties:

<table>
    <th>Property</th><th>Data Type</th><th>Description</th>
    <tr></tr>
    <td valign="top">stdout</td><td valign="top">List</td><td valign="top">STDOUT lines from the command normalized for display</td>
    <tr></tr>
    <td valign="top">stderr</td><td valign="top">List</td><td valign="top">STDERR lines from the command normalized for display</td>
    <tr></tr>
    <td valign="top">exit_code</td><td valign="top">Integer</td><td valign="top">Exit code value from command</td>
    <tr></tr>
    <td valign="top">cwd</td><td valign="top">String</td><td valign="top">Current working directory <i>after</i> command was executed</td>
</table>

Technically, the returned object for any shell command is defined in the WTOutput class.

<div id="async-spawing-and-promises"/>

## Asynchronous Spawning and Promises
Shell commands can be executed asynchronously with a defined resolver callback block.  Each _spawn_ expression creates
and runs a new OS thread. The resolver is a callback block that follows the Watiba _spawn_ expression.  The spawn 
feature is executed when a ```spawn `cmd` args: resolver block``` code block is encountered. The 
resolver is passed the results in the promise object. (The promise structure contains the properties 
defined in section ["Results from Spawned Commands"](#spawn-results)  The _spawn_ expression also returns a _promise_ object 
to the caller of _spawn_.  The promise object is passed to the _resolver block_ in argument _promise_.  The 
outer code can check its state with a call to _resolved()_ on the *returned* promise object.  Output from the command
is found in _promise.output_.  The examples throughout this README and in the _examples.wt_ file make this clear.

<div id="useful-properties-in-promise"/>

##### Useful properties in promise structure 
A promise is either returned in assignment from outermost spawn, or passed to child spawns in argument "promise".

  <table>
      <th>Property</th>
      <th>Data Type</th>
      <th>Description</th>
      <tr></tr>
      <td valign="top">host</td><td valign="top">String</td><td valign="top">Host name on which spawned command ran</td>
      <tr></tr>
      <td valign="top">children</td><td valign="top">List</td><td valign="top">Children promises for this promise node</td>
      <tr></tr>
      <td valign="top">parent</td><td valign="top">Reference</td><td valign="top">Parent promise node of child promise. None if root promise.</td>
      <tr></tr>
      <td valign="top">command</td><td valign="top">String</td><td valign="top">Shell command issued for this promise</td>
      <tr></tr>
      <td valign="top">resolved()</td><td valign="top">Method</td><td valign="top">Call to find out if this promise is resolved</td>
      <tr></tr>
      <td valign="top">resolve_parent()</td><td valign="top">Method</td><td valign="top">Call inside resolver block to resolve parent promise</td>
      <tr></tr>
      <td valign="top">tree_dump()</td><td valign="top">Method</td><td valign="top">Call to show the promise tree.  Takes subtree argument otherwise it defaults to the root promise</td>
      <tr></tr>
      <td valign="top">join()</td><td valign="top">Method</td><td valign="top">Call to wait on on promise and all its children</td>
      <tr></tr>
      <td valign="top">wait()</td><td valign="top">Method</td><td valign="top">Call to wait on just this promise</td>
      <tr></tr>
      <td valign="top">watch()</td><td valign="top">Method</td><td valign="top">Call to create watcher on this promise</td>
      <tr></tr>
      <td valign="top">start_time</td><td valign="top">Time</td><td valign="top">Time that spawned command started</td>
      <tr></tr>
      <td valign="top">end_time</td><td valign="top">Time</td><td valign="top">Time that promise resolved</td>
  </table>

_Example of simple spawn_:
```buildoutcfg
prom = spawn `tar -zcvf big_file.tar.gz some_dir/*`:
    # Resolver block to which "promise" and "args" is passed...
    print(f"{promise.command} completed.")
    return True  # Resolve promise

# Do other things while tar is running
# Finally wait for tar promise to resolve
prom.join()
```

<div id="spawn-controller"/>

#### Spawn Controller
All spawned threads are managed by Watiba's Spawn Controller.  The controller watches for too many threads and
incrementally slows down each thread start when that threshold is exceeded until either all the promises in the tree
resolve, or an expiration count is reached, at which time an exception is thrown on the last spawned command.  
This exception is raised by the default error method. This method as well as other spawn controlling parameters 
can be overridden.  The controller's purpose is to not allow run away threads and provide signaling of possible
hung threads.

_spawn-ctl_ example:
```buildoutcfg
# Only allow 20 spawns max, 
# and increase slowdown by 1/2 second each 3rd cycle
...python code...
spawn-ctl {"max":20, "sleep-increment":.500}  
```

Spawn control parameters:

<table>
    <th>Key Name</th>
    <th>Data Type</th>
    <th>Description</th>
    <th>Default</th>
    <tr></tr>
    <td valign="top">max</td><td valign="top">Integer</td><td valign="top">The maximum number of spawned commands allowed before the controller enters slowdown mode</td><td valign="top">10</td>
    <tr></tr>
    <td valign="top">sleep-floor</td><td valign="top">Integer</td><td valign="top">Seconds of <i>starting</i> 
sleep value when the controller enters slowdown mode</td><td valign="top">.125 (start at 1/8th second pause)</td>
    <tr></tr>
    <td valign="top">sleep-increment</td><td valign="top">Integer</td><td valign="top">Seconds the <i>amount</i> of seconds sleep will increase every 3rd cycle when in slowdown 
      mode</td><td valign="top">.125 (Increase pause 1/8th second every 3rd cycle)</td>
    <tr></tr>
    <td valign="top">sleep-ceiling</td><td valign="top">Integer</td><td valign="top">Seconds the <i>highest</i> length sleep value allowed when in slowdown mode  
      (As slow as it will get)</td><td valign="top">3 (won't get slower than 3 second pauses)</td>
    <tr></tr>
    <td valign="top">expire</td><td valign="top">Integer</td><td valign="top">Total number of slowdown cycles allowed before the error method is called</td><td valign="top">No expiration</td>
    <tr></tr>
    <td valign="top">error</td><td valign="top">Method</td><td valign="top">
    Callback method invoked when slowdown mode expires. Use this to catch hung commands.
            This method is passed 2 arguments:
    
- **promise** - The promise attempting execution at the time of expiration
- **count** - The thread count (unresolved promises) at the time of expiration
    </td><td valign="top">Generic error handler.  Just throws <i>WTSpawnException</i> that hold properties <i>promise</i> and <i>message</i></td></td>
</table>
 <hr>

**_spawn-ctl_** only overrides the values it sets and does not affect values not specified.  _spawn-ctl_ statements can
set whichever values it wants, can be dispersed throughout your code (i.e. multiple _spawn-ctl_ statements) and 
only affects subsequent spawn expressions.

_Notes:_
1. Arguments can be passed to the resolver by specifying a trailing variable after the command.  If the arguments
variable is omitted, an empty dictionary, i.e. {}, is passed to the resolver in _args_.
**_Warning!_** Python threading does not deep copy objects passed as arguments to threads.  What you place in ```args```
of the spawn expression will only be shallow copied so if there are references to other objects, it's not likely to 
   survive the copy.
2. The resolver must return _True_ to set the promise to resolved, or _False_ to leave it unresolved.
3. A resolver can also set the promise to resolved by calling ```promise.set_resolved()```.  This is handy in cases where
a resolver has spawned another command and doesn't want the outer promise resolved until the inner resolvers are done. 
To resolve an outer, i.e. parent, resolver issue _promise.resolve_parent()_.  Then the parent resolver can return
_False_ at the end of its block so it leaves the resolved determination to the inner resolver block.
4. Each promise object holds its OS thread object in property _thread_ and its thread id in property _thread_id_. This
can be useful for controlling the thread directly.  For example, to signal a kill. 
5. _spawn-ctl_ has no affect on _join_, _wait_, or _watch_.  This is because _spawn-ctl_ establishes an upper end
throttle on the overall spawning process.  When the number of spawns hits the max value, throttling (i.e. slowdown 
   mode) takes affect and will expire if none of the promises resolve.  Conversely, the arguments used by _join_, 
   _wait_ and _watch_ control the sleep cycle and expiration of just those calls, not the spawned threads as a whole. When
   an expiration is set for, say, _join_, then that join will expire at that time.  When an expiration is set in
   _spawn-ctl_, then if all the spawned threads as a whole don't resolve in time then an expiration function is called.


**_Spawn Syntax:_**
```
my_promise = spawn `cmd` [args]:
    resolver block (promise, args)
    args passed in args
    return resolved or unresolved (True or False)
 ```
    
_Spawn with resolver arguments omitted_:
```
my_promise = spawn `cmd`:
    resolver block (promise, args)
    return resolved or unresolved (True or False)
```

_Simple spawn example_:
```buildoutcfg
p = spawn `tar -zcvf /tmp/file.tar.gz /home/user/dir`:
    # Resolver block to which "promise" and "args" are passed
    # Resolver block is called when spawned command has completed
    for line in promise.output.stderr:
        print(line)
    
    # This marks the promise resolved
    return True
    
# Wait for spawned command to resolve (not merely complete)
try:
    p.join({"expire": 3})
    print("tar resolved")
except Exception as ex:
    print(ex.args)
```

_Example of file that overrides spawn controller parameters_:
```
#!/usr/bin/python3
def spawn_expired(promise, count):
    print("I do nothing just to demonstrate the error callback.")
    print(f"This command failed {promise.command} at this threshold {count}")
    
    raise Exception("Too many threads.")
    
if __name__ == "__main__":
    # Example showing default values
    parms = {"max": 10, # Max number of threads allowed before slowdown mode
         "sleep-floor": .125,  # Starting sleep value
         "sleep-ceiling": 3,  # Maximum sleep value
         "sleep-increment": .125,  # Incremental sleep value
         "expire": -1,  # Default: no expiration
         "error": spawn_expired  # Method called upon slowdown expiration
    }
     
    # Set spawn controller parameter values
    spawn-ctl parms
```

<div id="join-wait-watch"/>

#### Join, Wait, or Watch

Once commands are spawned, the caller can wait for _all_ promises, including inner or child promises, to complete, or
the caller can wait for just a specific promise to complete.  To wait for all _child_ promises including
the promise on which you're calling this method, call _join()_.  It will wait for that promise and all its children. To 
wait for just one specific promise, call _wait()_ on the promise of interest.  To wait for _all_ promises in 
the promise tree, call _join()_ on the root promise.

_join_ and _wait_ can be controlled through parameters.  Each are iterators paused with a sleep method and will throw
an expiration exception should you set a limit for iterations.  If an expiration value is not set,
no exception will be thrown and the cycle will run only until the promise(s) are resolved.  _join_ and _wait_ are not
affected by _spawn-ctl_.

_watch_ is called to establish a separate asynchronous thread that will call back a function of your choosing should
the command the promise is attached to time out.  This is different than _join_ and _wait_ in that _watch_ is not synchronous 
and does not pause.  This is used to keep an eye on a spawned command and take action should it hang.  Your watcher
function is passed the promise on which the watcher was attached, and the arguments, if any, from the spawn expression.
If your command does not time out (i.e. hangs and expires), the watcher thread will quietly go away when the promise
is resolved.  _watch_ expiration is expressed in **seconds**, unlike _join_ and _wait_ which are expressed as total
_iterations_ paused at the sleep value.  _watch_'s polling cycle pause is .250 seconds, so the expiration value is
multiplied by 4.  The default expiration is 15 seconds.

Examples:
```
# Spawn a thread running this command
p = spawn `ls -lrt`:
    ## resolver block ##
    return True
    
# Wait for promises, pause for 1/4 second each iteration, and throw an exception after 4 iterations 
(1 second)
try:
    p.join({"sleep": .250, "expire": 4})
except Exception as ex:
    print(ex.args)

# Wait for this promise, pause for 1 second each iteration, and throw an exception after 5 iterations 
(5 seconds)
try:
    p.wait({"sleep": 1, "expire": 5})
except Exception as ex:
    print(ex.args)
 
# My watcher function (called if spawned command never resolves by its experation period)
def watcher(promise, args):
    print(f"This promise is likely hung: {promise.command}")
    print(f"and I still have the spawn expression's args: {args}")

p = spawn `echo "hello" && sleep 5` args:
    print(f"Args passed to me: {args}")
    return True

# Attach a watcher to this thread.  It will be called upon experation.
p.watch(watcher)
print("watch() does not pause like join or wait")

# Attach a watcher that will expire in 5 seconds
p.watch(watcher, {"expire": 5})
```

**_join_ syntax**
```
promise.join({optional args})
Where args is a Python dictionary with the following options:
    "sleep" - seconds of sleep for each iteration (fractions such as .5 are honored)
        default: .5 seconds
    "expire" - number of sleep iterations until an excpetions is raised
        default: no expiration
Note: "args" is optional and can be omitted
```

_Example of joining parent and children promises_:
```
p = spawn `ls *.txt`:
    for f in promise.output.stdout:
        cmd = f"tar -zcvf {f}.tar.gz {f}"
        spawn `$cmd` {"file":f}:
            print(f"{f} completed")
            promise.resolve_parent()
            return True
    return False

# Wait for all commands to complete
try:
    p.join({"sleep":1, "expire":20})
except Exception as ex:
    print(ex.args)
```

**_wait_ syntax**
```
promise.wait({optional args})
Where args is a Python dictionary with the following options:
    "sleep" - seconds of sleep for each iteration (fractions such as .5 are honored)
        default: .5 seconds
    "expire" - number of sleep iterations until an excpetions is raised
        default: no expiration
Note: "args" is optional and can be omitted
```

_Example of waiting on just the parent promise_:
```
p = spawn `ls *.txt`:
    for f in promise.output.stdout:
        cmd = f"tar -zcvf {f}.tar.gz {}"
        spawn `$cmd` {"file":f}:
            print(f"{f} completed")
            promise.resolve_parent() # Wait completes here
            return True
    return False

# Wait for just the parent promise to complete
try:
    p.wait({"sleep":1, "expire":20})
except Exception as ex:
    print(ex.args)
```

**_watch_ syntax**
```
promise.watch(callback, {optional args})
Where args is a Python dictionary with the following options:
    "sleep" - seconds of sleep for each iteration (fractions such as .5 are honored)
        default: .5 seconds
    "expire" - number of sleep iterations until an excpetions is raised
        default: no expiration
Note: "args" is optional and can be omitted
```

_Example of creating a watcher_:
```buildoutcfg
# Define watcher method.  Called if command times out (i.e. expires)
def time_out(promise, args):
    print(f"Command {promise.command} timed out.")

# Spawn a thread running some command that hangs
p = spawn `long-running.sh`:
    print("Finally completed.  Watcher method won't be called.")
    return True
 
p.watch(time_out)  # Does not wait.  Calls method "time_out" if this promise expires (i.e. command hangs)
 
# Do other things...
 
```

<div id="promise-tree"/>

#### The Promise Tree
Each _spawn_ issued inserts its promise object into the promise tree.  The outermost _spawn_ will generate the root
promise and each inner _spawn_ will be among its children.  There's no limit to how far it can nest.  _wait_ only applies
to the promise on which it is called and is how it is different than _join_.  _wait_ does not consider any other
promise state but the one it's called for, whereas _join_ considers the one it's called for **and** anything below it
in the tree.

The promise tree can be printed with the ```dump_tree()``` method on the promise.  This method is intended for
diagnostic purposes where it must be determined why spawned commands hung.  ```dump_tree(subtree)``` accepts
a subtree promise as an argument.  If no arguments are passed, ```dump_tree()``` dumps from the root promise on down.
```
# Simple example with no child promises
p = spawn `date`:
    return True
    
p.tree_dump()  # Dump tree from root
# or
p.tree_dump(subtree_promise)  # Dump tree from node in argument
```

Example dumping tree from subtree node:
```buildoutcfg
# Complex example with child and grandchild promises
# Demonstrates how to dump the promise tree from various points within it
p = spawn `date`:
    # Spawn child command (child promise)
    spawn `pwd`:
        # Spawn a grandchild to the parent promise
        spawn `python --version`:
            promise.tree_dump(promise)  # Dump the subtree from this point down
            return False
    # Spawn another child
     spawn `echo "blah"`:
         # Resolve parent promise
         promise.resolve_parent()
         # Resolve child promise
        return True
    # Do NOT resolve parent promise, let child do that
    return False
    
p.join()
p.tree_dump(p.children[0])  # Dump subtree from first child on down
p.tree_dump(p.children[1])  # Dump subtree from the second child
p.tree_dump(p.children[0].children[0]) # Dump subtree from the grandchild 

# Dump all children
for c in p.children:
    p.tree_dump(c)
```

_Parent and child joins shown in these two examples_:

``` 
root_promise = spawn `ls -lr`:
    for file in promise.stdout:
        t = f"touch {file}"
        spawn `$t` {"file" file}:  # This promise is a child of root
            print(f"{file} updated".)
            spawn `echo "done" > /tmp/done"`:  # Another child promise (root's grandchild)
                print("Complete")
                promise.resolve_parent()
                return True
            promise.resolve_parent()
            return False
    return False

root_promise.join()  # Wait on the root promise and all its children.  Thus, waiting for everything.
```

``` 
root_promise = spawn `ls -lr`:
    for file in promise.output.stdout:
        t = f"touch {file}"
        spawn `$t` {"file" file}:  # This promise is a child of root
            print(f"{promise.args['file'])} updated")
            promise.join() # Wait for this promise and its children but not its parent (root)
            spawn `echo "done" > /tmp/done"`:
                print("Complete")
```



_Resolving a parent promise_:
```
p = spawn `ls -lrt`:
    for f in promise.output.stdout:
        cmd = f"touch {f}"
        # Spawn command from this resolver and pass our promise
        spawn `$cmd`:
            print("Resolving all promises")
            promise.resolve_parent() # Resolve parent promise here
            return True # Resolve child promise
        return False # Do NOT resolve parent promise here
p.join()  # Wait for ALL promises to be resolved
```

<div id="spawn-results"/>

### Results from Spawned Commands
Spawned commands return their results in the _promise.output_ property of the _promise_ object passed to
the resolver block, and in the spawn expression if there is an assignment in that spawn expression.

The result properties can then be accessed as followed:

<table>
    <th>Property</th><th>Data Type</th><th>Description</th>
    <tr></tr>
    <td valign="top">promise.output.stdout</td><td valign="top">List</td><td valign="top">STDOUT lines from the command normalized for display</td>
    <tr></tr>
    <td valign="top">promise.output.stderr</td><td valign="top">List</td><td valign="top">STDERR lines from the command normalized for display</td>
    <tr></tr>
    <td valign="top">promise.output.exit_code</td><td valign="top">Integer</td><td valign="top">Exit code value from command</td>
    <tr></tr>
    <td valign="top">promise.output.cwd</td><td valign="top">String</td><td valign="top">Current working directory <i>after</i> command was executed</td>
</table>


_Notes:_
1. Watiba backticked commands can exist within the resolver 
2. Other _spawn_ blocks can be embedded within a resolver (recursion allowed)
3. The command within the _spawn_ definition can be a variable
    (The same rules apply as for all backticked shell commands.  This means the variable must contain
   pure shell commands.)
4. The leading dash to ignore CWD _cannot_ be used in the _spawn_ expression
5. The _promise.output_ object is not available until _promise.resolved()_ returns True

_Simple example with the shell command as a Python variable_:
```
#!/usr/bin/python3

# run "date" command asynchronously 
d = 'date "+%Y/%m/%d"'
spawn `$d`:
    print(promise.output.stdout[0])
    return True

```

_Example with shell commands executed within resolver block_:
```
#!/usr/bin/python3

print("Running Watiba spawn with wait")
`rm /tmp/done`

# run "ls -lrt" command asynchronously 
p = spawn `ls -lrt`:
    print(f"Exit code: {promise.output.exit_code}")
    print(f"CWD: {promise.output.cwd}")
    print(f"STDERR: {promise.output.stderr}")

    # Loop through STDOUT from command
    for l in promise.output.stdout:
        print(l)
    `echo "Done" > /tmp/done`

    # Resolve promise
    return True

# Pause until spawn command is complete
p.wait()
print("complete")

```

<div id="threads"/>

### Threads
Each promise produced from a _spawn_ expression results in one OS thread.  To access the 
number of threads your code has spawned collectively, you can do the following:
``` 
num_of_spawns = promise.spawn_count()  # Returns number of nodes in the promise tree
num_of_resolved_promises = promise.resolved_count() # Returns the number of promises resolved in tree
``` 
<div id="remote-execution"/>

## Remote Execution
Shell commands can be executed remotely.  This is achieved though the SSH command, issued by Watiba, and has the 
following requirements:
- OpenSSH is installed on the local and remote hosts
- The local SSH key is in the remote's _authorized_keys_ file.  _The details of this
  process is beyond the scope of this README.  For those instructions, consult www.ssh.com_
  
- Make sure that SSH'ing to the target host does not cause any prompts.  
  
Test that your SSH environment is setup first by manually entering: 
```
ssh {user}@{host} "ls -lrt"

# For example
ssh rwalk@walkubu "ls -lrt"

# If SSH prompts you, then Watiba remote execution cannot function. 
```

To execute a command remotely, a _@host_ parameter is suffixed to the backticked command.  The host name can be a
literal or a variable.  To employ a variable, prepend a _$_ to the name following _@_ such as _@$var_.

<div id="change-ssh-port"/>

#### Change SSH port for remote execution
To change the default SSH port 22 to a custom value, add to your Watiba code:  ```watiba-ctl {"ssh-port": custom port}```
Example:
```buildoutcfg
watiba-ctl {"ssh-port": 2233}
```
Examples:
```buildoutcfg
p = spawn `ls -lrt`@remoteserver {parms}:
    for line in promise.output.stdout:
        print(line)
    return True
     
```  
```buildoutcfg
remotename = "serverB"
p = spawn `ls -lrt`@$remotename {parms}:
    for line in p.output.stdout:
        print(line)
    return True
```
```buildoutcfg
out = `ls -lrt`@remoteserver
for line in out.stdout:
    print(line)
```
```buildoutcfg
remotename = "serverB"
out = `ls -lrt`@$remotename
for line in out.stdout:
    print(line)
```


<div id="command-hooks"/>

## Command Hooks
Hooks are pre- or -post functions that are attached to a _command_ _pattern_, which is a regular expression (regex).  Anytime Watiba encounters a command
that matches the pattern for the hook, the hook function is called.

All commands, spawned, remote, or local, can have Python functions executed **before** exection, by default, or **post hooks** that are run **after** the command.  (Note: Post hooks are not run for spwaned commands because the resolver function is a post hook itself.)  These functions can be passed arguments, too.

### Command Hook Expressions
```
# Run before commands that match that pattern
hook-cmd "pattern" hook-function parms

# Run before commands that match that pattern, but is non-recursive
hook-cmd-nr "pattern" hook-function parms 

# Run after commands that match that pattern
post-hook-cmd "pattern" hook-function parms

# Run after commands that match that pattern, but is non-recursive
post-hook-cmd-nr "pattern" hook-function parms 
```

### Hook Recursion
Hooks, which are nothing more than Python functions called before or after a command is run, can issue their own commands and, thus, cause the hook
to be recursively called.  However, if the command in the hook block of code matches a command pattern that causes that same hook function to be run again,
an infinte loop can occur.  To prevent that, use the **-nr** suffix on the Watiba hook expression. (-nr stands for non-recursive.)  This will ensure that
the hook cannot be re-invoked for any commands that are within it.

<br>
To attach a hook:
1. Code one or more Python functions that will be the hooks.  At the end of each hook, you must return True if the hook was successful, or False
if something wrong.
2. Use the _hook-cmd_ expression to attach those hooks to a command
pattern, which is a regular expression
3. To remove the hooks, use the _remove-hooks "pattern"_ expression.  If a pattern, i.e. command regex pattern, is omitted, then all command hooks are removed.

**hook-cmd "command pattern" function parms**

The first parameter always passed to the hook function is the Python _match_ object from the command match.  This is provided so the hook has access
to the tokens on the command should it need them.

Example:
```
def my_hook(match, parms):
    print(match.groups())
    print(f'Tar file name is {match.group(1)}')
    print(parms["parmA"])
    print(parms["parmB"])
    return True  # Successful execution

def your_hook(match, parms):
    # This hook doesn't need the match object, so ignores it
    print(parms["something"])
    if parms["something-else"] != "blah":
        return False # Failed execution
    return True # Successful excution


# Add first hook to my tar command
hook-cmd "tar -zcvf (\S.*)" my_hook: {"parmA":"A", "parmB":"B"}

# Add another hook to my tar command
hook-cmd "tar -zcvf (\S.*)" your_hook: {"parmD":1, "parmE":"something"}

# Spawn command, but hooks will be invoked first...
spawn `tar -zcvf files.tar.gz /tmp/files/* `:
    # Resolver code block
    return True  # Resolve promise
```

Your parameters are whatever is valid for Python.  These are simply passed to their attached functions, essentially each one's key is the function name, as specified.


_Where are the hooks run for spawned commands?_  All hooks run under the thread of the issuer on the local host, not the target thread.

_Where are the hooks run for remote commands?_ As with spawned commands, all hooks are issued on the local host, not the remote.  Note that you
can have remote backticked commands in your hook and that will run those remotely.  If your remote command matches a hook(s) pattern, then those hooks will be run.  This means if your command pattern for the first remote call runs a hook that contains another remote command that matches that same command pattern, then the hook is run again.  Since this can lead to infinte hook loops, Watiba offers a non-recursive definition for the command pattern.  Note that this non-recursive setting
only applies to the command pattern and not the hook function itself.  So if _hookA_ is run for two different command patterns, say, "ls -lrt" and "ls -laF" you can
make one non-recusrive and still run the same hook for both commands.  For the recursive command pattern, the hook has no limit to its recursion.  For non-recursive,
it will only be called once during the recursion process.

To set a command pattern as non-recursive, use _hook-cmd-nr_.

Example using a variation on a previous example:

```
def my_hook(match, parms)
    `tar -zcvf /tmp/files`  # my_hook will NOT because for this command even though it matches
    print("Will be called only once!")
    return True

# Note the "-nr" on the expression.  That's for non-recursive
hook-cmd-nr "tar -zcvf (\S.*)" my_hook: {"parmA":"A", "parmB":"B"}

# my_hook will be called before this command runs
` tar -zcvf tarball.tar.gz /home/user/files.*`
```

<div id="command-chaining"/>

## Command Chaining
Watiba extends its remote command execution to chaining commands across multiple remote hosts.  This is achieved
by the _chain_ expression.  This expression will execute the backticked command across a list of hosts, passed by
the user, sequentially, synchronously until the hosts list is exhausted, or the command fails.  _chain_ returns a
Python dictionary where the keys are the host names and the values the WTOutput from the command run on that host.

#### Chain Exception
The _chain_ expression raises a WTChainException on the first failed command.  The exception raised
has the following properties:

_WTChainException_:
<table>
<th>Property</th><th>Data Type</th><th>Description</th>
<tr></tr>
<td valign="top">command</td><td valign="top">String</td><td valign="top">Command that failed</td>
<tr></tr>
<td valign="top">host</td><td valign="top">String</td><td valign="top">Host where command failed</td>
<tr></tr>
<td valign="top">message</td><td valign="top">String</td><td valign="top">Error message</td>
<tr></tr>
<td valign="top">output</td><td valign="top">WTOutput structure:

- stdout
- stderr
- exit_code
- cwd</td><td valign="top">Output from command</td>
</table>

Import this exception to catch it:
```buildoutcfg
from watiba import WTChainException
```


Examples:
```
from watiba import WTChainException

try:
    out = chain `tar -zcvf backup/file.tar.gz dir/*` {"hosts", ["serverA", "serverB"]}
    for host,output in out.items():
        print(f'{host} exit code: {output.exit_code}')
        for line in output.stderr:
            print(line)
 except WTChainException(ex):
    print(f"Error: {ex.message}")
    print(f"  host: {ex.host} exit code: {ex.output.exit_code} command: {ex.command})
            
```

<div id="piping-output"/>

## Command Chain Piping (Experimental)
The _chain_ expression supports piping STDOUT and/or STDERR to other commands executed on remote servers.  Complex
arrangements can be constructed through the Python dictionary passed to the _chain_ expression.  The dictionary
contents function as follows:
- "hosts": [server, server, ...]   This entry instructions _chain_ on which hosts the backticked command will run.
    This is a required entry.
    
- "stdout": {server:command, server:command, ...}
    This is an optional entry.
  
- "stderr": {server:command, server:command, ...}
    This is an optional entry.

Just like a _chain_ expression that does not pipe output, the return object is a dictionary of WTOutput object keyed
by the host name from the _hosts_ list and *not* from the commands recieving the piped output.

If any command fails, a WTChainException is raised.  Import this exception to catch it:
```buildoutcfg
from watiba import WTChainException
```

_Note_: _The piping feature is experimental as of this release, and a better design will eventually
supercede it._

Examples:  
```
from watiba import WTChainException

# This is a simple chain with no piping
try:
    args = {"hosts": ["serverA", "serverB", "serverC"]}
    out = chain `ls -lrt dir/` args
    for host, output in out.items():
        print(f'{host} exit code: {output.exit_code}')
except WTChainException as ex:
    print(f'ERROR: {ex.message}, {ex.host}, {ex.command}, {ex.output.stderr}')
```
```
# This is a more complex chain that runs the "ls -lrt" command on each server listed in "hosts"
# and pipes the STDOUT output from serverC to serverV and serverD, to those commands, and serverB's STDERR
# to serverX and its command
try:
    args = {"hosts": ["serverA", "serverB", "serverC"],
                "stdout": {"serverC":{"serverV": "grep something", "serverD":"grep somethingelse"}},
                "stderr": {"serverB":{"serverX": "cat >> /tmp/serverC.err"}}
           }
    out = chain `ls -lrt dir/` args
    for host, output in out.items():
        print(f'{host} exit code: {output.exit_code}')
except WTChainException as ex:
    print(f'ERROR: {ex.message}, {ex.host}, {ex.command}, {ex.output.stderr}')
```

####How does this work?
Watiba will run the backticked command in the expression on each host listed in _hosts_, in sequence and synchronously.
If there is a "stdout" found in the arguments, then it will name the source host as the key, i.e. the host from which
STDOUT will be read, and fed to each host and command listed under that host.  This is true for STDERR as well.

The method in which Watiba feeds the piped output is through a an _echo_ command shell piped to the command to be run
on that host.  So, "stdout": {"serverC":{"serverV": "grep something"}} causes Watiba to read each line of STDOUT from
serverC and issue ```echo "$line" | grep something``` on serverV.  It is piping from serverC to serverV.

<div id="installation"/>

## Installation
### PIP
If you installed this as a Python package, e.g. pip, then the pre-compiler, _watiba-c_,
will be placed in your system's PATH by PIP.

### GITHUB
If you cloned this from github, you'll still need to install the package with pip, first, for the
watbia module.  Follow these steps to install Watiba locally.
```
# Watiba package required
python3 -m pip install watiba
```


<div id="pre-compiling"/>

## Pre-compiling
Test that the pre-compiler functions in your environment:
```
watiba-c version
```
For example:
```buildoutcfg
rwalk@walkubu:~$ watiba-c version
Watiba 0.3.26
```

To pre-compile a .wt file:
```
watiba-c my_file.wt > my_file.py
chmod +x my_file.py
./my_file.py
```

Where _my_file.wt_ is your Watiba code.

<div id="code-examples"/>

## Code Examples

**my_file.wt**

```
#!/usr/bin/python3

# Stand alone commands.  One with directory context, one without

# This CWD will be active until a subsequent command changes it
`cd /tmp`

# Simple statement utilizing command and results in one statement
print(`cd /tmp`.cwd)

# This will not change the Watiba CWD context, because of the dash prefix, but within 
# the command itself the cd is honored.  file.txt is created in /home/user/blah but
# this does not impact the CWD of any subsequent commands.  They
# are still operating from the previous cd command to /tmp
-`cd /home/user/blah && touch file.txt`

# This will print "/tmp" _not_ /home because of the leading dash on the command
print(f"CWD is not /home: {-`cd /home`.cwd)}"

# This will find text files in /tmp/, not /home/user/blah  (CWD context!)
w=`find . -name '*.txt'`
for l in w.stdout:
    print(f"File: {l}")


# Embedding commands in print expressions that will print the stderr output, which tar writes to
print(`echo "Some textual comment" > /tmp/blah.txt && tar -zcvf /tmp/blah.tar.gz /tmp`).stdout)

# This will print the first line of stdout from the echo
print(`echo "hello!"`.stdout[0])

# Example of more than one command in a statement line
if len(`ls -lrt`.stdout) > 0 or len(-`cd /tmp`.stdout) > 0:
    print("You have stdout or stderr messages")


# Example of a command as a Python varible and
#  receiving a Watiba object
cmd = "tar -zcvf /tmp/watiba_test.tar.gz /mnt/data/git/watiba/src"
cmd_results = `$cmd`
if cmd_results.exit_code == 0:
    for l in cmd_results.stderr:
        print(l)

# Simple reading of command output
#  Iterate on the stdout property
for l in `cat blah.txt`.stdout:
    print(l)

# Example of a failed command to see its exit code
xc = `lsvv -lrt`.exit_code
print(f"Return code: {xc}")

# Example of running a command asynchronously and resolving promise
spawn `cd /tmp && tar -zxvf tarball.tar.gz`:
    for l in promise.output.stderr:
        print(l)
    return True  # Mark promise resolved


# List dirs from CWD, iterate through them, spawn a tar command
# then within the resolver, spawn a move command
# Demonstrates spawns within resolvers
for dir in `ls -d *`.stdout:
    tar = "tar -zcvf {}.tar.gz {}"
    prom = spawn `$tar` {"dir": dir}:
        print(f"{}args['dir'] tar complete")
        mv = f"mv -r {args['dir']}/* /tmp/."
        spawn `$mv`:
            print("Move done")
            # Resolve outer promise
            promise.resolve_parent()
            return True
        # Do not resolve this promise yet.  Let the inner resolver do it
        return False
    prom.join()
```




%prep
%autosetup -n watiba-0.6.59

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-watiba -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.59-1
- Package Spec generated