summaryrefslogtreecommitdiff
path: root/python-wavefront-sdk-python.spec
blob: 1aa6bdb3a0dd8f81ccb4120822081e7c324027bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
%global _empty_manifest_terminate_build 0
Name:		python-wavefront-sdk-python
Version:	1.8.15
Release:	1
Summary:	VMware Aria Operations for Applications Python SDK
License:	Apache-2.0
URL:		https://github.com/wavefrontHQ/wavefront-sdk-python
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/27/23/8cab53a7ab1e13b6f4402bc967d6caab619dcd3712f8f596825d66081781/wavefront-sdk-python-1.8.15.tar.gz
BuildArch:	noarch

Requires:	python3-requests
Requires:	python3-tdigest
Requires:	python3-Deprecated

%description
# wavefront-sdk-python

[![Build Status](https://github.com/wavefrontHQ/wavefront-sdk-python/actions/workflows/main.yml/badge.svg)](https://github.com/wavefrontHQ/wavefront-sdk-python/actions)
[![image](https://img.shields.io/pypi/v/wavefront-sdk-python.svg)](https://pypi.org/project/wavefront-sdk-python/)
[![image](https://img.shields.io/pypi/l/wavefront-sdk-python.svg)](https://pypi.org/project/wavefront-sdk-python/)
[![image](https://img.shields.io/pypi/pyversions/wavefront-sdk-python.svg)](https://pypi.org/project/wavefront-sdk-python/)
![PyPI - Downloads](https://img.shields.io/pypi/dm/wavefront-sdk-python)


## Table of Content
* [Prerequisites](#Prerequisites)
* [Set Up a Sender](#set-up-a-sender)
* [Send a Single Data Point](#send-a-single-data-point)
* [Send Batch Data](#send-batch-data)
* [Get the Failure Count](#get-the-failure-count)
* [Close the Connection](#close-the-connection)
* [License](#License)
* [How to Get Support and Contribute](#how-to-get-support-and-contribute)
* [How to Release](#how-to-release)

# VMware Aria Operations™ for Applications Python SDK

VMware Aria Operations for Applications (formerly known as Wavefront) Python SDK lets you send raw data from your Python application to Operations for Applications using a wavefront_sender interface. The data is then stored as metrics, histograms, and trace data. This SDK is also referred to as the Wavefront Sender SDK for Python.

Although this library is mostly used by the other Operations for Applications Python SDKs to send data to Operations for Applications, you can also use this SDK directly. For example, you can send data directly from a data store or CSV file to Operations for Applications.

Note: We're in the process of updating the product name to Operations for Applications, but in many places we still refer to it as Wavefront.

**Before you start implementing, let us make sure you are using the correct SDK!**

![Python Sender SDK Decision Tree](docs/python_sender_sdk.png)

> ***Note***:
> </br>
>   * **This is the VMware Aria Operations for Applications SDK for Python (Sender SDK for Python)!**
>   If this SDK is not what you were looking for, see the [table](#wavefront-sdks) below.

#### VMware Aria Operations for Applications SDKs
<table id="SDKlevels" style="width: 100%">
<tr>
  <th width="10%">SDK Type</th>
  <th width="45%">SDK Description</th>
  <th width="45%">Supported Languages</th>
</tr>

<tr>
  <td><a href="https://docs.wavefront.com/wavefront_sdks.html#sdks-for-collecting-metrics-and-histograms">Metrics SDK</a></td>
  <td align="justify">Implements a standard metrics library. Lets you define, collect, and report custom business metrics and histograms from any part of your application code.   </td>
  <td>
    <ul>
    <li>
    <b>Java</b>: <a href ="https://github.com/wavefrontHQ/wavefront-dropwizard-metrics-sdk-java">Dropwizard</a> <b>|</b> <a href ="https://github.com/wavefrontHQ/wavefront-runtime-sdk-jvm">JVM</a>
    </li>
    <li>
    <b>Python</b>: <a href ="https://github.com/wavefrontHQ/wavefront-pyformance">Pyformance SDK</a>
    </li>
    <li>
      <b>Go</b>: <a href ="https://github.com/wavefrontHQ/go-metrics-wavefront">Go Metrics SDK</a>
      </li>
    <li>
    <b>.Net/C#</b>: <a href ="https://github.com/wavefrontHQ/wavefront-appmetrics-sdk-csharp">App Metrics SDK</a>
    </li>
    </ul>
  </td>
</tr>

<tr>
  <td><a href="https://docs.wavefront.com/wavefront_sdks.html#sdks-for-sending-raw-data-to-wavefront">Sender SDK</a></td>
  <td align="justify">Lets you send raw data for storage as metrics, histograms, or traces, e.g., to import CSV data into the service.
  </td>
  <td>
    <ul>
    <li>
    <b>Java</b>: <a href ="https://github.com/wavefrontHQ/wavefront-sdk-java">Sender SDK</a>
    </li>
    <li>
    <b>Python</b>: <a href ="https://github.com/wavefrontHQ/wavefront-sdk-python">Sender SDK</a>
    </li>
    <li>
    <b>Go</b>: <a href ="https://github.com/wavefrontHQ/wavefront-sdk-go">Sender SDK</a>
    </li>
    <li>
    <b>.Net/C#</b>: <a href ="https://github.com/wavefrontHQ/wavefront-sdk-csharp">Sender SDK</a>
    </li>
    <li>
    <b>C++</b>: <a href ="https://github.com/wavefrontHQ/wavefront-sdk-cpp">Sender SDK</a>
    </li>
    </ul>
  </td>
</tr>

</tbody>
</table>

## Prerequisites

* Python versions 3.7 - 3.11 are supported.
* Install `wavefront-sdk-python`
    ```
    pip install wavefront-sdk-python
    ```

## Set Up a Sender

You can send metrics, histograms, or trace data from your application to the service using a Wavefront Proxy or direct ingestions.

* Use [**direct ingestion**](https://docs.wavefront.com/direct_ingestion.html) to send the data directly to the service. This is the simplest way to get up and running quickly.
* Use a [**Wavefront Proxy**](https://docs.wavefront.com/proxies.html), which then forwards the data to the service. This is the recommended choice for a large-scale deployment that needs resilience to internet outages, control over data queuing and filtering, and more.

You instantiate an object that corresponds to your choice:
* Option 1 **(Deprecated)**: [Create a `WavefrontDirectClient`](#option-1-create-a-wavefrontdirectclient) to send data directly to a Wavefront service.
* Option 2 **(Deprecated)**: [Create a `WavefrontProxyClient`](#option-2-create-a-wavefrontproxyclient) to send data to a Wavefront Proxy.
* Option 3: [Create a `WavefrontClient`](#option-3-create-a-wavefrontclient) to send data to the service directly or via proxy.
> **Deprecated implementations**: *`WavefrontDirectClient` and `WavefrontProxyClient` are deprecated from proxy version 7.0 onwards. We recommend all new applications to use the `WavefrontClient`.*

### Option 1: Create a WavefrontDirectClient
When sending data via direct ingestion, you need to create a `WavefrontDirectClient`, and build it with the cluster URL and API token to send data directly to the service.

>**Prerequisites**
> * Verify that you have the Direct Data Ingestion permission. For details, see [Examine Groups, Roles, and Permissions](https://docs.wavefront.com/users_account_managing.html#examine-groups-roles-and-permissions).
> * The URL of your cluster. This is the URL you connect to when you log in to the service, typically something like `https://<domain>.wavefront.com`.
> * [Obtain the API token](http://docs.wavefront.com/wavefront_api.html#generating-an-api-token).

#### Initialize the WavefrontDirectClient
You initialize a `WavefrontDirectClient` by providing the access information you obtained in the Prerequisites section..

Optionally, you can specify parameters to tune the following ingestion properties:

* Max queue size - Internal buffer capacity of the sender. Any data in excess of this size is dropped.
* Flush interval - Interval for flushing data from the sender directly to the service.
* Batch size - Amount of data to send to the service in each flush interval.

Together, the batch size and flush interval control the maximum theoretical throughput of the sender. You should override the defaults _only_ to set higher values.


```python
from wavefront_sdk import WavefrontDirectClient

# Create a sender with:
   # your cluster URL
   # an API token that was created with direct ingestion permission
   # max queue size (in data points). Default: 50,000
   # batch size (in data points). Default: 10,000
   # flush interval  (in seconds). Default: 1 second
wavefront_sender = WavefrontDirectClient(
    server="<SERVER_ADDR>",
    token="<TOKEN>",
    max_queue_size=50000,
    batch_size=10000,
    flush_interval_seconds=5
)
```

### Option 2: Create a WavefrontProxyClient

>**Prerequisite** <br/>
>Before your application can use a `WavefrontProxyClient`, you must [set up and start a Wavefront proxy](https://docs.wavefront.com/proxies_installing.html).

When sending data via the Wavefront Proxy, you need to create a `WavefrontProxyClient`. Include the following information.

* The name of the host that will run the Wavefront Proxy.
* One or more proxy listening ports to send data to. The ports you specify depend on the kinds of data you want to send (metrics, histograms, and/or trace data). You must specify at least one listener port.
* Optional settings for tuning communication with the proxy.

> **Note**: See [Advanced Proxy Configuration and Installation](https://docs.wavefront.com/proxies_configuring.html) for details.

```python
from wavefront_sdk import WavefrontProxyClient

# Create a sender with:
   # the proxy hostname or address
   # the default listener port (2878) for sending metrics to
   # the recommended listener port (2878) for sending histograms to
   # the recommended listener port (30000) for sending trace data.
   # if you are directly using the sender sdk to send spans without using any other sdk, use the same port as the customTracingListenerPorts configured in the wavefront proxy for the tracing_port
wavefront_sender = WavefrontProxyClient(
   host="<PROXY_HOST>",
   metrics_port=2878,
   distribution_port=2878,
   tracing_port=30000,
   event_port=2878
)
```

> **Note:** When you set up a Wavefront Proxy on the specified proxy host, you specify the port it will listen to for each type of data to be sent. The `WavefrontProxyClient` must send data to the same ports that the Wavefront Proxy listens to. Consequently, the port-related parameters must specify the same port numbers as the corresponding proxy configuration properties:

| `WavefrontProxyClient()` parameter | Corresponding property in `wavefront.conf` |
| ----- | -------- |
| `metrics_port` | `pushListenerPorts=` |
| `distribution_port` | `histogramDistListenerPorts=` |
| `tracing_port` | `traceListenerPorts=` |

### Option 3: Create a WavefrontClient
Use `WavefrontClientFactory` to create a `WavefrontClient` instance, which can send data directly to the service or send data using a Wavefront Proxy.

The `WavefrontClientFactory` supports multiple client bindings. If more than one client configuration is specified, you can create a `WavefrontMultiClient` instance, which can send data to multiple services.
### Prerequisites
* Sending data via Wavefront Proxy?
  <br/>Before your application can use a `WavefrontClient` you must [set up and start a Wavefront Proxy](https://docs.wavefront.com/proxies_installing.html).
* Sending data via direct ingestion?
  * Verify that you have the Direct Data Ingestion permission. For details, see [Examine Groups, Roles, and Permissions](https://docs.wavefront.com/users_account_managing.html#examine-groups-roles-and-permissions).
  * The HTTP URL of your cluster. This is the URL you connect to when you log in to the service, typically something like `http://<domain>.wavefront.com`.<br/> You can also use HTTP client with Wavefront Proxy version 7.0 or newer. Example: `http://proxy.acme.corp:2878`.
  * [Obtain the API token](http://docs.wavefront.com/wavefront_api.html#generating-an-api-token).

### Initialize the WavefrontClient
```python
from wavefront_sdk.client_factory import WavefrontClientFactory

# Create a sender with:
   # Required Parameter
   #   URL format to send data via proxy: "proxy://<your.proxy.load.balancer.com>:<somePort>"
   #   URL format to send data via direct ingestion: "https://TOKEN@DOMAIN.wavefront.com"
   # Optional Parameter
   #   max queue size (in data points). Default: 50000
   #   batch size (in data points). Default: 10000
   #   flush interval  (in seconds). Default: 1 second

client_factory = WavefrontClientFactory()
client_factory.add_client(
    url="<URL for proxy or direct ingestions>",
    max_queue_size=50000,
    batch_size=10000,
    flush_interval_seconds=5)
wavefront_sender = client_factory.get_client()
```
#### Add multiple clients to client factory to send data to multiple services.
```
from wavefront_sdk.client_factory import WavefrontClientFactory

client_factory = WavefrontClientFactory()
client_factory.add_client("proxy://our.proxy.lb.com:2878")
client_factory.add_client("https://someToken@DOMAIN.wavefront.com")

# Send traces and spans to the tracing port. If you are directly using the sender SDK to send spans without using any other SDK, use the same port as the customTracingListenerPorts configured in the wavefront proxy. Assume you have installed and started the proxy on <proxy_hostname>.
client_factory.add_client("http://<proxy_hostname>:30000")

wavefront_sender = client_factory.get_client()
```

## Send a Single Data Point

The following examples show how to send a single data point to the service. You use the Wavefront Sender you created above.

### Single Metric or  Delta Counter

```python
from uuid import UUID

# Wavefront metrics data format:
# <metricName> <metricValue> [<timestamp>] source=<source> [pointTags]
wavefront_sender.send_metric(
    name="new_york.power.usage",
    value=42422.0,
    timestamp=1533529977,
    source="localhost",
    tags={"datacenter": "dc1"})

# Wavefront delta counter data format:
# <metricName> <metricValue> source=<source> [pointTags]
wavefront_sender.send_delta_counter(
    name="delta.counter",
    value=1.0,
    source="localhost",
    tags={"datacenter": "dc1"})
```
***Note***: If your metric name has a bad character, that character is replaced with a `-`.

### Single Histogram Distribution

```python
from uuid import UUID
from wavefront_sdk.entities.histogram import histogram_granularity

# Wavefront histogram data format:
# {!M | !H | !D} [<timestamp>] #<count> <mean> [centroids] <histogramName> source=<source> [pointTags]
# Example: You can choose to send to at most 3 bins: Minute, Hour, Day
# "!M 1533529977 #20 30.0 #10 5.1 request.latency source=appServer1 region=us-west"
# "!H 1533529977 #20 30.0 #10 5.1 request.latency source=appServer1 region=us-west"
# "!D 1533529977 #20 30.0 #10 5.1 request.latency source=appServer1 region=us-west"
wavefront_sender.send_distribution(
    name="request.latency",
    centroids=[(30, 20), (5.1, 10)],
    histogram_granularities={histogram_granularity.DAY,
                             histogram_granularity.HOUR,
                             histogram_granularity.MINUTE},
    timestamp=1533529977,
    source="appServer1",
    tags={"region": "us-west"})
```

### Single Span

If you are directly using the Sender SDK to send data to the service, you won’t see span-level RED metrics by default unless you use the Wavefront Proxy and define a custom tracing port (`tracing_port`). See [Instrument Your Application with the Sender SDKs](https://docs.wavefront.com/tracing_instrumenting_frameworks.html#instrument-your-application-with-wavefront-sender-sdks) for details.

```python
from uuid import UUID

# Wavefront trace and span data format:
# <tracingSpanName> source=<source> [pointTags] <start_millis> <duration_milliseconds>
# Example: "getAllUsers source=localhost
#           traceId=7b3bf470-9456-11e8-9eb6-529269fb1459
#           spanId=0313bafe-9457-11e8-9eb6-529269fb1459
#           parent=2f64e538-9457-11e8-9eb6-529269fb1459
#           application=Wavefront http.method=GET
#           1533529977 343500"
wavefront_sender.send_span(
    name="getAllUsers",
    start_millis=1533529977,
    duration_millis=343500,
    source="localhost",
    trace_id=UUID("7b3bf470-9456-11e8-9eb6-529269fb1459"),
    span_id=UUID("0313bafe-9457-11e8-9eb6-529269fb1459"),
    parents=[UUID("2f64e538-9457-11e8-9eb6-529269fb1459")],
    follows_from=None,
    tags=[("application", "Wavefront"),
          ("service", "istio"),
          ("http.method", "GET")],
    span_logs=None)
```

### Single Event

```python
# Wavefront event format:
# @Event <StartTime> <EndTime> "<EventName>"  severity="<Severity>"
# type="<Type>" details="<EventDetail>" host="<Source>" tag="<Tags>"
wavefront_sender.send_event('event name',
                            1592200048,
                            1592201048,
                            "localhost",
                            ["env:", "dev"],
                            {"severity": "info",
                             "type": "backup",
                             "details": "broker backup"})
```

## Send Batch Data

The following examples show how to generate data points manually and send them as a batch to Wavefront.

### Batch Metrics

```python
from uuid import UUID
from wavefront_sdk.common import metric_to_line_data

# Generate string data in Wavefront metric format
one_metric_data = metric_to_line_data(
    name="new-york.power.usage",
    value=42422,
    timestamp=1493773500,
    source="localhost",
    tags={"datacenter": "dc1"},
    default_source="defaultSource")

# Result of one_metric_data:
  # '"new-york.power.usage" 42422.0 1493773500 source="localhost" "datacenter"="dc1"\n'

# List of data
batch_metric_data = [one_metric_data, one_metric_data]

# Send list of data immediately
wavefront_sender.send_metric_now(batch_metric_data)
```
***Note***: If your metric name has a bad character, that character is replaced with a `-`.

### Batch Histograms

```python
from uuid import UUID
from wavefront_sdk.entities.histogram import histogram_granularity
from wavefront_sdk.common import histogram_to_line_data

# Generate string data in Wavefront histogram format
one_histogram_data = histogram_to_line_data(
    name="request.latency",
    centroids=[(30.0, 20), (5.1, 10)],
    histogram_granularities={histogram_granularity.MINUTE,
                             histogram_granularity.HOUR,
                             histogram_granularity.DAY},
    timestamp=1493773500,
    source="appServer1",
    tags={"region": "us-west"},
    default_source ="defaultSource")

# Result of one_histogram_data:
  # '!D 1493773500 #20 30.0 #10 5.1 "request.latency" source="appServer1" "region"="us-west"\n
  # !H 1493773500 #20 30.0 #10 5.1 "request.latency" source="appServer1" "region"="us-west"\n
  # !M 1493773500 #20 30.0 #10 5.1 "request.latency" source="appServer1" "region"="us-west"\n'

# List of data
batch_histogram_data = [one_histogram_data, one_histogram_data]

# Send list of data immediately
wavefront_sender.send_distribution_now(batch_histogram_data)
```
### Batch Trace Data

If you are directly using the Sender SDK to send data to the service, you won’t see span-level RED metrics by default unless you use the Wavefront Proxy and define a custom tracing port (`tracing_port`). See [Instrument Your Application with Wavefront Sender SDKs](https://docs.wavefront.com/tracing_instrumenting_frameworks.html#instrument-your-application-with-wavefront-sender-sdks) for details.

```python
from uuid import UUID
from wavefront_sdk.common import tracing_span_to_line_data

# Generate string data in Wavefront tracing span format
one_tracing_span_data = tracing_span_to_line_data(
    name="getAllUsers",
    start_millis=1552949776000,
    duration_millis=343,
    source="localhost",
    trace_id=UUID("7b3bf470-9456-11e8-9eb6-529269fb1459"),
    span_id=UUID("0313bafe-9457-11e8-9eb6-529269fb1459"),
    parents=[UUID("2f64e538-9457-11e8-9eb6-529269fb1459")],
    follows_from=[UUID("5f64e538-9457-11e8-9eb6-529269fb1459")],
    tags=[("application", "Wavefront"), ("http.method", "GET")],
    span_logs=None,
    default_source="defaultSource")

# Result of one_tracing_span_data:
  # '"getAllUsers" source="localhost" traceId=7b3bf470-9456-11e8-9eb6-529269fb1459 spanId=0313bafe-
  # 9457-11e8-9eb6-529269fb1459 parent=2f64e538-9457-11e8-9eb6-529269fb1459 followsFrom=5f64e538-
  # 9457-11e8-9eb6-529269fb1459 "application"="Wavefront" "http.method"="GET" 1552949776000 343\n'

# List of data
batch_span_data = [one_tracing_span_data, one_tracing_span_data]

# Send list of data immediately
wavefront_sender.send_span_now(batch_span_data)
```

### Batch Events

```python
from wavefront_sdk.common import event_to_line_data

# Generate string data in Wavefront event format
one_event_data = event_to_line_data(
    name="event name",
    start_time=1592200048,
    end_time=1592201048,
    source="localhost",
    tags=["env", "dev"],
    annotations={"severity": "info",
                 "type": "backup",
                 "details": "broker backup"})

# Result of one_event_data:
# '@Event 1592200048 1592201048 "event name" severity="info" type="backup" details="broker backup"
# host="localhost" tag="env" tag="dev"\n'

# List of events
batch_event_data = [one_event_data, one_event_data]

# Send list of events immediately
wavefront_sender.send_event_now(batch_event_data)
```

## Get the Failure Count

If the application failed to send metrics, histograms, or trace data via the `wavefront_sender`, you can get the total failure count.

```python
# Get the total failure count
total_failures = wavefront_sender.get_failure_count()
```
## Close the Connection

* If the sender is from a `WavefrontClientFactory`, close the connection before shutting down the application.

    ```python
    # To shut down a sender from a WavefrontClientFactory
    wavefront_sender = client_factory.get_client()

    # Close the sender connection
    wavefront_sender.close()
    ```
* If the sender is a `WavefrontDirectClient`, flush all buffers and then close the connection before shutting down the application.

    ```python
    # To shut down a WavefrontDirectClient
    # Flush all buffers.
    wavefront_sender.flush_now()

    # Close the sender connection
    wavefront_sender.close()
    ```
* If the sender is a `WavefrontProxyClient`, close the connection before shutting down the application.

    ```python
    # To shut down a WavefrontProxyClient

    # Close the sender connection
    wavefront_sender.close()
    ```

## License
[Apache 2.0 License](LICENSE).

## How to Get Support and Contribute

* When submitting changes, be sure to increment the version number in setup.py.
  The version number is documented as such in setup.py.
  We follow semantic versioning. For bug fixes, increment the patch version
  (last number). For backward compatible changes to the API, update the
  minor version (second number), and zero out the patch version. For breaking
  changes to the API, increment the major version (first number) and zero out
  the minor and patch versions.
* Reach out to us on our public [Slack channel](https://www.wavefront.com/join-public-slack).
* If you run into any issues, let us know by creating a GitHub issue.

## How to Release

1. Merge all the changes that need to go into the release to the master branch.
2. Open the `setup.py` file from the top level directory of the project.
3. Search for version= in the file to find the version number, for example 1.8.15.
4. Create a pull request, get it reviewed and approved, and merge it after approval.
5. Check [test.pypi.org](https://test.pypi.org/project/wavefront-sdk-python) for a published package, make sure it's production ready.
6. Log in to GitHub, click Releases on the right, and click Draft a new release.
7. For **Choose a tag**, choose the version you found in step 3, and prefix it with `v` for example `v1.8.15`. You need to enter the version where it says **Find or create new tag**.

<img src="images/choose-version.png" alt="A diagram that shows how to choose version"/>

8. Provide a short but descriptive title for the release.
9. Fill in the details of the release. Please copy the markdown from the previous release and follow the same format.
10. Click **Publish release.** to start publishing the release to pypi.org.
11. From the GitHub top navigation bar of this project, click the **Actions** tab. On the first line of the list of workflows, you should see a workflow running that will publish your release to pypi.org.
12. When the workflow from step 9 has a green checkmark next to it, go to [pypi.org](https://pypi.org/project/wavefront-sdk-python/) and verify that the latest version is published.


%package -n python3-wavefront-sdk-python
Summary:	VMware Aria Operations for Applications Python SDK
Provides:	python-wavefront-sdk-python
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-wavefront-sdk-python
# wavefront-sdk-python

[![Build Status](https://github.com/wavefrontHQ/wavefront-sdk-python/actions/workflows/main.yml/badge.svg)](https://github.com/wavefrontHQ/wavefront-sdk-python/actions)
[![image](https://img.shields.io/pypi/v/wavefront-sdk-python.svg)](https://pypi.org/project/wavefront-sdk-python/)
[![image](https://img.shields.io/pypi/l/wavefront-sdk-python.svg)](https://pypi.org/project/wavefront-sdk-python/)
[![image](https://img.shields.io/pypi/pyversions/wavefront-sdk-python.svg)](https://pypi.org/project/wavefront-sdk-python/)
![PyPI - Downloads](https://img.shields.io/pypi/dm/wavefront-sdk-python)


## Table of Content
* [Prerequisites](#Prerequisites)
* [Set Up a Sender](#set-up-a-sender)
* [Send a Single Data Point](#send-a-single-data-point)
* [Send Batch Data](#send-batch-data)
* [Get the Failure Count](#get-the-failure-count)
* [Close the Connection](#close-the-connection)
* [License](#License)
* [How to Get Support and Contribute](#how-to-get-support-and-contribute)
* [How to Release](#how-to-release)

# VMware Aria Operations™ for Applications Python SDK

VMware Aria Operations for Applications (formerly known as Wavefront) Python SDK lets you send raw data from your Python application to Operations for Applications using a wavefront_sender interface. The data is then stored as metrics, histograms, and trace data. This SDK is also referred to as the Wavefront Sender SDK for Python.

Although this library is mostly used by the other Operations for Applications Python SDKs to send data to Operations for Applications, you can also use this SDK directly. For example, you can send data directly from a data store or CSV file to Operations for Applications.

Note: We're in the process of updating the product name to Operations for Applications, but in many places we still refer to it as Wavefront.

**Before you start implementing, let us make sure you are using the correct SDK!**

![Python Sender SDK Decision Tree](docs/python_sender_sdk.png)

> ***Note***:
> </br>
>   * **This is the VMware Aria Operations for Applications SDK for Python (Sender SDK for Python)!**
>   If this SDK is not what you were looking for, see the [table](#wavefront-sdks) below.

#### VMware Aria Operations for Applications SDKs
<table id="SDKlevels" style="width: 100%">
<tr>
  <th width="10%">SDK Type</th>
  <th width="45%">SDK Description</th>
  <th width="45%">Supported Languages</th>
</tr>

<tr>
  <td><a href="https://docs.wavefront.com/wavefront_sdks.html#sdks-for-collecting-metrics-and-histograms">Metrics SDK</a></td>
  <td align="justify">Implements a standard metrics library. Lets you define, collect, and report custom business metrics and histograms from any part of your application code.   </td>
  <td>
    <ul>
    <li>
    <b>Java</b>: <a href ="https://github.com/wavefrontHQ/wavefront-dropwizard-metrics-sdk-java">Dropwizard</a> <b>|</b> <a href ="https://github.com/wavefrontHQ/wavefront-runtime-sdk-jvm">JVM</a>
    </li>
    <li>
    <b>Python</b>: <a href ="https://github.com/wavefrontHQ/wavefront-pyformance">Pyformance SDK</a>
    </li>
    <li>
      <b>Go</b>: <a href ="https://github.com/wavefrontHQ/go-metrics-wavefront">Go Metrics SDK</a>
      </li>
    <li>
    <b>.Net/C#</b>: <a href ="https://github.com/wavefrontHQ/wavefront-appmetrics-sdk-csharp">App Metrics SDK</a>
    </li>
    </ul>
  </td>
</tr>

<tr>
  <td><a href="https://docs.wavefront.com/wavefront_sdks.html#sdks-for-sending-raw-data-to-wavefront">Sender SDK</a></td>
  <td align="justify">Lets you send raw data for storage as metrics, histograms, or traces, e.g., to import CSV data into the service.
  </td>
  <td>
    <ul>
    <li>
    <b>Java</b>: <a href ="https://github.com/wavefrontHQ/wavefront-sdk-java">Sender SDK</a>
    </li>
    <li>
    <b>Python</b>: <a href ="https://github.com/wavefrontHQ/wavefront-sdk-python">Sender SDK</a>
    </li>
    <li>
    <b>Go</b>: <a href ="https://github.com/wavefrontHQ/wavefront-sdk-go">Sender SDK</a>
    </li>
    <li>
    <b>.Net/C#</b>: <a href ="https://github.com/wavefrontHQ/wavefront-sdk-csharp">Sender SDK</a>
    </li>
    <li>
    <b>C++</b>: <a href ="https://github.com/wavefrontHQ/wavefront-sdk-cpp">Sender SDK</a>
    </li>
    </ul>
  </td>
</tr>

</tbody>
</table>

## Prerequisites

* Python versions 3.7 - 3.11 are supported.
* Install `wavefront-sdk-python`
    ```
    pip install wavefront-sdk-python
    ```

## Set Up a Sender

You can send metrics, histograms, or trace data from your application to the service using a Wavefront Proxy or direct ingestions.

* Use [**direct ingestion**](https://docs.wavefront.com/direct_ingestion.html) to send the data directly to the service. This is the simplest way to get up and running quickly.
* Use a [**Wavefront Proxy**](https://docs.wavefront.com/proxies.html), which then forwards the data to the service. This is the recommended choice for a large-scale deployment that needs resilience to internet outages, control over data queuing and filtering, and more.

You instantiate an object that corresponds to your choice:
* Option 1 **(Deprecated)**: [Create a `WavefrontDirectClient`](#option-1-create-a-wavefrontdirectclient) to send data directly to a Wavefront service.
* Option 2 **(Deprecated)**: [Create a `WavefrontProxyClient`](#option-2-create-a-wavefrontproxyclient) to send data to a Wavefront Proxy.
* Option 3: [Create a `WavefrontClient`](#option-3-create-a-wavefrontclient) to send data to the service directly or via proxy.
> **Deprecated implementations**: *`WavefrontDirectClient` and `WavefrontProxyClient` are deprecated from proxy version 7.0 onwards. We recommend all new applications to use the `WavefrontClient`.*

### Option 1: Create a WavefrontDirectClient
When sending data via direct ingestion, you need to create a `WavefrontDirectClient`, and build it with the cluster URL and API token to send data directly to the service.

>**Prerequisites**
> * Verify that you have the Direct Data Ingestion permission. For details, see [Examine Groups, Roles, and Permissions](https://docs.wavefront.com/users_account_managing.html#examine-groups-roles-and-permissions).
> * The URL of your cluster. This is the URL you connect to when you log in to the service, typically something like `https://<domain>.wavefront.com`.
> * [Obtain the API token](http://docs.wavefront.com/wavefront_api.html#generating-an-api-token).

#### Initialize the WavefrontDirectClient
You initialize a `WavefrontDirectClient` by providing the access information you obtained in the Prerequisites section..

Optionally, you can specify parameters to tune the following ingestion properties:

* Max queue size - Internal buffer capacity of the sender. Any data in excess of this size is dropped.
* Flush interval - Interval for flushing data from the sender directly to the service.
* Batch size - Amount of data to send to the service in each flush interval.

Together, the batch size and flush interval control the maximum theoretical throughput of the sender. You should override the defaults _only_ to set higher values.


```python
from wavefront_sdk import WavefrontDirectClient

# Create a sender with:
   # your cluster URL
   # an API token that was created with direct ingestion permission
   # max queue size (in data points). Default: 50,000
   # batch size (in data points). Default: 10,000
   # flush interval  (in seconds). Default: 1 second
wavefront_sender = WavefrontDirectClient(
    server="<SERVER_ADDR>",
    token="<TOKEN>",
    max_queue_size=50000,
    batch_size=10000,
    flush_interval_seconds=5
)
```

### Option 2: Create a WavefrontProxyClient

>**Prerequisite** <br/>
>Before your application can use a `WavefrontProxyClient`, you must [set up and start a Wavefront proxy](https://docs.wavefront.com/proxies_installing.html).

When sending data via the Wavefront Proxy, you need to create a `WavefrontProxyClient`. Include the following information.

* The name of the host that will run the Wavefront Proxy.
* One or more proxy listening ports to send data to. The ports you specify depend on the kinds of data you want to send (metrics, histograms, and/or trace data). You must specify at least one listener port.
* Optional settings for tuning communication with the proxy.

> **Note**: See [Advanced Proxy Configuration and Installation](https://docs.wavefront.com/proxies_configuring.html) for details.

```python
from wavefront_sdk import WavefrontProxyClient

# Create a sender with:
   # the proxy hostname or address
   # the default listener port (2878) for sending metrics to
   # the recommended listener port (2878) for sending histograms to
   # the recommended listener port (30000) for sending trace data.
   # if you are directly using the sender sdk to send spans without using any other sdk, use the same port as the customTracingListenerPorts configured in the wavefront proxy for the tracing_port
wavefront_sender = WavefrontProxyClient(
   host="<PROXY_HOST>",
   metrics_port=2878,
   distribution_port=2878,
   tracing_port=30000,
   event_port=2878
)
```

> **Note:** When you set up a Wavefront Proxy on the specified proxy host, you specify the port it will listen to for each type of data to be sent. The `WavefrontProxyClient` must send data to the same ports that the Wavefront Proxy listens to. Consequently, the port-related parameters must specify the same port numbers as the corresponding proxy configuration properties:

| `WavefrontProxyClient()` parameter | Corresponding property in `wavefront.conf` |
| ----- | -------- |
| `metrics_port` | `pushListenerPorts=` |
| `distribution_port` | `histogramDistListenerPorts=` |
| `tracing_port` | `traceListenerPorts=` |

### Option 3: Create a WavefrontClient
Use `WavefrontClientFactory` to create a `WavefrontClient` instance, which can send data directly to the service or send data using a Wavefront Proxy.

The `WavefrontClientFactory` supports multiple client bindings. If more than one client configuration is specified, you can create a `WavefrontMultiClient` instance, which can send data to multiple services.
### Prerequisites
* Sending data via Wavefront Proxy?
  <br/>Before your application can use a `WavefrontClient` you must [set up and start a Wavefront Proxy](https://docs.wavefront.com/proxies_installing.html).
* Sending data via direct ingestion?
  * Verify that you have the Direct Data Ingestion permission. For details, see [Examine Groups, Roles, and Permissions](https://docs.wavefront.com/users_account_managing.html#examine-groups-roles-and-permissions).
  * The HTTP URL of your cluster. This is the URL you connect to when you log in to the service, typically something like `http://<domain>.wavefront.com`.<br/> You can also use HTTP client with Wavefront Proxy version 7.0 or newer. Example: `http://proxy.acme.corp:2878`.
  * [Obtain the API token](http://docs.wavefront.com/wavefront_api.html#generating-an-api-token).

### Initialize the WavefrontClient
```python
from wavefront_sdk.client_factory import WavefrontClientFactory

# Create a sender with:
   # Required Parameter
   #   URL format to send data via proxy: "proxy://<your.proxy.load.balancer.com>:<somePort>"
   #   URL format to send data via direct ingestion: "https://TOKEN@DOMAIN.wavefront.com"
   # Optional Parameter
   #   max queue size (in data points). Default: 50000
   #   batch size (in data points). Default: 10000
   #   flush interval  (in seconds). Default: 1 second

client_factory = WavefrontClientFactory()
client_factory.add_client(
    url="<URL for proxy or direct ingestions>",
    max_queue_size=50000,
    batch_size=10000,
    flush_interval_seconds=5)
wavefront_sender = client_factory.get_client()
```
#### Add multiple clients to client factory to send data to multiple services.
```
from wavefront_sdk.client_factory import WavefrontClientFactory

client_factory = WavefrontClientFactory()
client_factory.add_client("proxy://our.proxy.lb.com:2878")
client_factory.add_client("https://someToken@DOMAIN.wavefront.com")

# Send traces and spans to the tracing port. If you are directly using the sender SDK to send spans without using any other SDK, use the same port as the customTracingListenerPorts configured in the wavefront proxy. Assume you have installed and started the proxy on <proxy_hostname>.
client_factory.add_client("http://<proxy_hostname>:30000")

wavefront_sender = client_factory.get_client()
```

## Send a Single Data Point

The following examples show how to send a single data point to the service. You use the Wavefront Sender you created above.

### Single Metric or  Delta Counter

```python
from uuid import UUID

# Wavefront metrics data format:
# <metricName> <metricValue> [<timestamp>] source=<source> [pointTags]
wavefront_sender.send_metric(
    name="new_york.power.usage",
    value=42422.0,
    timestamp=1533529977,
    source="localhost",
    tags={"datacenter": "dc1"})

# Wavefront delta counter data format:
# <metricName> <metricValue> source=<source> [pointTags]
wavefront_sender.send_delta_counter(
    name="delta.counter",
    value=1.0,
    source="localhost",
    tags={"datacenter": "dc1"})
```
***Note***: If your metric name has a bad character, that character is replaced with a `-`.

### Single Histogram Distribution

```python
from uuid import UUID
from wavefront_sdk.entities.histogram import histogram_granularity

# Wavefront histogram data format:
# {!M | !H | !D} [<timestamp>] #<count> <mean> [centroids] <histogramName> source=<source> [pointTags]
# Example: You can choose to send to at most 3 bins: Minute, Hour, Day
# "!M 1533529977 #20 30.0 #10 5.1 request.latency source=appServer1 region=us-west"
# "!H 1533529977 #20 30.0 #10 5.1 request.latency source=appServer1 region=us-west"
# "!D 1533529977 #20 30.0 #10 5.1 request.latency source=appServer1 region=us-west"
wavefront_sender.send_distribution(
    name="request.latency",
    centroids=[(30, 20), (5.1, 10)],
    histogram_granularities={histogram_granularity.DAY,
                             histogram_granularity.HOUR,
                             histogram_granularity.MINUTE},
    timestamp=1533529977,
    source="appServer1",
    tags={"region": "us-west"})
```

### Single Span

If you are directly using the Sender SDK to send data to the service, you won’t see span-level RED metrics by default unless you use the Wavefront Proxy and define a custom tracing port (`tracing_port`). See [Instrument Your Application with the Sender SDKs](https://docs.wavefront.com/tracing_instrumenting_frameworks.html#instrument-your-application-with-wavefront-sender-sdks) for details.

```python
from uuid import UUID

# Wavefront trace and span data format:
# <tracingSpanName> source=<source> [pointTags] <start_millis> <duration_milliseconds>
# Example: "getAllUsers source=localhost
#           traceId=7b3bf470-9456-11e8-9eb6-529269fb1459
#           spanId=0313bafe-9457-11e8-9eb6-529269fb1459
#           parent=2f64e538-9457-11e8-9eb6-529269fb1459
#           application=Wavefront http.method=GET
#           1533529977 343500"
wavefront_sender.send_span(
    name="getAllUsers",
    start_millis=1533529977,
    duration_millis=343500,
    source="localhost",
    trace_id=UUID("7b3bf470-9456-11e8-9eb6-529269fb1459"),
    span_id=UUID("0313bafe-9457-11e8-9eb6-529269fb1459"),
    parents=[UUID("2f64e538-9457-11e8-9eb6-529269fb1459")],
    follows_from=None,
    tags=[("application", "Wavefront"),
          ("service", "istio"),
          ("http.method", "GET")],
    span_logs=None)
```

### Single Event

```python
# Wavefront event format:
# @Event <StartTime> <EndTime> "<EventName>"  severity="<Severity>"
# type="<Type>" details="<EventDetail>" host="<Source>" tag="<Tags>"
wavefront_sender.send_event('event name',
                            1592200048,
                            1592201048,
                            "localhost",
                            ["env:", "dev"],
                            {"severity": "info",
                             "type": "backup",
                             "details": "broker backup"})
```

## Send Batch Data

The following examples show how to generate data points manually and send them as a batch to Wavefront.

### Batch Metrics

```python
from uuid import UUID
from wavefront_sdk.common import metric_to_line_data

# Generate string data in Wavefront metric format
one_metric_data = metric_to_line_data(
    name="new-york.power.usage",
    value=42422,
    timestamp=1493773500,
    source="localhost",
    tags={"datacenter": "dc1"},
    default_source="defaultSource")

# Result of one_metric_data:
  # '"new-york.power.usage" 42422.0 1493773500 source="localhost" "datacenter"="dc1"\n'

# List of data
batch_metric_data = [one_metric_data, one_metric_data]

# Send list of data immediately
wavefront_sender.send_metric_now(batch_metric_data)
```
***Note***: If your metric name has a bad character, that character is replaced with a `-`.

### Batch Histograms

```python
from uuid import UUID
from wavefront_sdk.entities.histogram import histogram_granularity
from wavefront_sdk.common import histogram_to_line_data

# Generate string data in Wavefront histogram format
one_histogram_data = histogram_to_line_data(
    name="request.latency",
    centroids=[(30.0, 20), (5.1, 10)],
    histogram_granularities={histogram_granularity.MINUTE,
                             histogram_granularity.HOUR,
                             histogram_granularity.DAY},
    timestamp=1493773500,
    source="appServer1",
    tags={"region": "us-west"},
    default_source ="defaultSource")

# Result of one_histogram_data:
  # '!D 1493773500 #20 30.0 #10 5.1 "request.latency" source="appServer1" "region"="us-west"\n
  # !H 1493773500 #20 30.0 #10 5.1 "request.latency" source="appServer1" "region"="us-west"\n
  # !M 1493773500 #20 30.0 #10 5.1 "request.latency" source="appServer1" "region"="us-west"\n'

# List of data
batch_histogram_data = [one_histogram_data, one_histogram_data]

# Send list of data immediately
wavefront_sender.send_distribution_now(batch_histogram_data)
```
### Batch Trace Data

If you are directly using the Sender SDK to send data to the service, you won’t see span-level RED metrics by default unless you use the Wavefront Proxy and define a custom tracing port (`tracing_port`). See [Instrument Your Application with Wavefront Sender SDKs](https://docs.wavefront.com/tracing_instrumenting_frameworks.html#instrument-your-application-with-wavefront-sender-sdks) for details.

```python
from uuid import UUID
from wavefront_sdk.common import tracing_span_to_line_data

# Generate string data in Wavefront tracing span format
one_tracing_span_data = tracing_span_to_line_data(
    name="getAllUsers",
    start_millis=1552949776000,
    duration_millis=343,
    source="localhost",
    trace_id=UUID("7b3bf470-9456-11e8-9eb6-529269fb1459"),
    span_id=UUID("0313bafe-9457-11e8-9eb6-529269fb1459"),
    parents=[UUID("2f64e538-9457-11e8-9eb6-529269fb1459")],
    follows_from=[UUID("5f64e538-9457-11e8-9eb6-529269fb1459")],
    tags=[("application", "Wavefront"), ("http.method", "GET")],
    span_logs=None,
    default_source="defaultSource")

# Result of one_tracing_span_data:
  # '"getAllUsers" source="localhost" traceId=7b3bf470-9456-11e8-9eb6-529269fb1459 spanId=0313bafe-
  # 9457-11e8-9eb6-529269fb1459 parent=2f64e538-9457-11e8-9eb6-529269fb1459 followsFrom=5f64e538-
  # 9457-11e8-9eb6-529269fb1459 "application"="Wavefront" "http.method"="GET" 1552949776000 343\n'

# List of data
batch_span_data = [one_tracing_span_data, one_tracing_span_data]

# Send list of data immediately
wavefront_sender.send_span_now(batch_span_data)
```

### Batch Events

```python
from wavefront_sdk.common import event_to_line_data

# Generate string data in Wavefront event format
one_event_data = event_to_line_data(
    name="event name",
    start_time=1592200048,
    end_time=1592201048,
    source="localhost",
    tags=["env", "dev"],
    annotations={"severity": "info",
                 "type": "backup",
                 "details": "broker backup"})

# Result of one_event_data:
# '@Event 1592200048 1592201048 "event name" severity="info" type="backup" details="broker backup"
# host="localhost" tag="env" tag="dev"\n'

# List of events
batch_event_data = [one_event_data, one_event_data]

# Send list of events immediately
wavefront_sender.send_event_now(batch_event_data)
```

## Get the Failure Count

If the application failed to send metrics, histograms, or trace data via the `wavefront_sender`, you can get the total failure count.

```python
# Get the total failure count
total_failures = wavefront_sender.get_failure_count()
```
## Close the Connection

* If the sender is from a `WavefrontClientFactory`, close the connection before shutting down the application.

    ```python
    # To shut down a sender from a WavefrontClientFactory
    wavefront_sender = client_factory.get_client()

    # Close the sender connection
    wavefront_sender.close()
    ```
* If the sender is a `WavefrontDirectClient`, flush all buffers and then close the connection before shutting down the application.

    ```python
    # To shut down a WavefrontDirectClient
    # Flush all buffers.
    wavefront_sender.flush_now()

    # Close the sender connection
    wavefront_sender.close()
    ```
* If the sender is a `WavefrontProxyClient`, close the connection before shutting down the application.

    ```python
    # To shut down a WavefrontProxyClient

    # Close the sender connection
    wavefront_sender.close()
    ```

## License
[Apache 2.0 License](LICENSE).

## How to Get Support and Contribute

* When submitting changes, be sure to increment the version number in setup.py.
  The version number is documented as such in setup.py.
  We follow semantic versioning. For bug fixes, increment the patch version
  (last number). For backward compatible changes to the API, update the
  minor version (second number), and zero out the patch version. For breaking
  changes to the API, increment the major version (first number) and zero out
  the minor and patch versions.
* Reach out to us on our public [Slack channel](https://www.wavefront.com/join-public-slack).
* If you run into any issues, let us know by creating a GitHub issue.

## How to Release

1. Merge all the changes that need to go into the release to the master branch.
2. Open the `setup.py` file from the top level directory of the project.
3. Search for version= in the file to find the version number, for example 1.8.15.
4. Create a pull request, get it reviewed and approved, and merge it after approval.
5. Check [test.pypi.org](https://test.pypi.org/project/wavefront-sdk-python) for a published package, make sure it's production ready.
6. Log in to GitHub, click Releases on the right, and click Draft a new release.
7. For **Choose a tag**, choose the version you found in step 3, and prefix it with `v` for example `v1.8.15`. You need to enter the version where it says **Find or create new tag**.

<img src="images/choose-version.png" alt="A diagram that shows how to choose version"/>

8. Provide a short but descriptive title for the release.
9. Fill in the details of the release. Please copy the markdown from the previous release and follow the same format.
10. Click **Publish release.** to start publishing the release to pypi.org.
11. From the GitHub top navigation bar of this project, click the **Actions** tab. On the first line of the list of workflows, you should see a workflow running that will publish your release to pypi.org.
12. When the workflow from step 9 has a green checkmark next to it, go to [pypi.org](https://pypi.org/project/wavefront-sdk-python/) and verify that the latest version is published.


%package help
Summary:	Development documents and examples for wavefront-sdk-python
Provides:	python3-wavefront-sdk-python-doc
%description help
# wavefront-sdk-python

[![Build Status](https://github.com/wavefrontHQ/wavefront-sdk-python/actions/workflows/main.yml/badge.svg)](https://github.com/wavefrontHQ/wavefront-sdk-python/actions)
[![image](https://img.shields.io/pypi/v/wavefront-sdk-python.svg)](https://pypi.org/project/wavefront-sdk-python/)
[![image](https://img.shields.io/pypi/l/wavefront-sdk-python.svg)](https://pypi.org/project/wavefront-sdk-python/)
[![image](https://img.shields.io/pypi/pyversions/wavefront-sdk-python.svg)](https://pypi.org/project/wavefront-sdk-python/)
![PyPI - Downloads](https://img.shields.io/pypi/dm/wavefront-sdk-python)


## Table of Content
* [Prerequisites](#Prerequisites)
* [Set Up a Sender](#set-up-a-sender)
* [Send a Single Data Point](#send-a-single-data-point)
* [Send Batch Data](#send-batch-data)
* [Get the Failure Count](#get-the-failure-count)
* [Close the Connection](#close-the-connection)
* [License](#License)
* [How to Get Support and Contribute](#how-to-get-support-and-contribute)
* [How to Release](#how-to-release)

# VMware Aria Operations™ for Applications Python SDK

VMware Aria Operations for Applications (formerly known as Wavefront) Python SDK lets you send raw data from your Python application to Operations for Applications using a wavefront_sender interface. The data is then stored as metrics, histograms, and trace data. This SDK is also referred to as the Wavefront Sender SDK for Python.

Although this library is mostly used by the other Operations for Applications Python SDKs to send data to Operations for Applications, you can also use this SDK directly. For example, you can send data directly from a data store or CSV file to Operations for Applications.

Note: We're in the process of updating the product name to Operations for Applications, but in many places we still refer to it as Wavefront.

**Before you start implementing, let us make sure you are using the correct SDK!**

![Python Sender SDK Decision Tree](docs/python_sender_sdk.png)

> ***Note***:
> </br>
>   * **This is the VMware Aria Operations for Applications SDK for Python (Sender SDK for Python)!**
>   If this SDK is not what you were looking for, see the [table](#wavefront-sdks) below.

#### VMware Aria Operations for Applications SDKs
<table id="SDKlevels" style="width: 100%">
<tr>
  <th width="10%">SDK Type</th>
  <th width="45%">SDK Description</th>
  <th width="45%">Supported Languages</th>
</tr>

<tr>
  <td><a href="https://docs.wavefront.com/wavefront_sdks.html#sdks-for-collecting-metrics-and-histograms">Metrics SDK</a></td>
  <td align="justify">Implements a standard metrics library. Lets you define, collect, and report custom business metrics and histograms from any part of your application code.   </td>
  <td>
    <ul>
    <li>
    <b>Java</b>: <a href ="https://github.com/wavefrontHQ/wavefront-dropwizard-metrics-sdk-java">Dropwizard</a> <b>|</b> <a href ="https://github.com/wavefrontHQ/wavefront-runtime-sdk-jvm">JVM</a>
    </li>
    <li>
    <b>Python</b>: <a href ="https://github.com/wavefrontHQ/wavefront-pyformance">Pyformance SDK</a>
    </li>
    <li>
      <b>Go</b>: <a href ="https://github.com/wavefrontHQ/go-metrics-wavefront">Go Metrics SDK</a>
      </li>
    <li>
    <b>.Net/C#</b>: <a href ="https://github.com/wavefrontHQ/wavefront-appmetrics-sdk-csharp">App Metrics SDK</a>
    </li>
    </ul>
  </td>
</tr>

<tr>
  <td><a href="https://docs.wavefront.com/wavefront_sdks.html#sdks-for-sending-raw-data-to-wavefront">Sender SDK</a></td>
  <td align="justify">Lets you send raw data for storage as metrics, histograms, or traces, e.g., to import CSV data into the service.
  </td>
  <td>
    <ul>
    <li>
    <b>Java</b>: <a href ="https://github.com/wavefrontHQ/wavefront-sdk-java">Sender SDK</a>
    </li>
    <li>
    <b>Python</b>: <a href ="https://github.com/wavefrontHQ/wavefront-sdk-python">Sender SDK</a>
    </li>
    <li>
    <b>Go</b>: <a href ="https://github.com/wavefrontHQ/wavefront-sdk-go">Sender SDK</a>
    </li>
    <li>
    <b>.Net/C#</b>: <a href ="https://github.com/wavefrontHQ/wavefront-sdk-csharp">Sender SDK</a>
    </li>
    <li>
    <b>C++</b>: <a href ="https://github.com/wavefrontHQ/wavefront-sdk-cpp">Sender SDK</a>
    </li>
    </ul>
  </td>
</tr>

</tbody>
</table>

## Prerequisites

* Python versions 3.7 - 3.11 are supported.
* Install `wavefront-sdk-python`
    ```
    pip install wavefront-sdk-python
    ```

## Set Up a Sender

You can send metrics, histograms, or trace data from your application to the service using a Wavefront Proxy or direct ingestions.

* Use [**direct ingestion**](https://docs.wavefront.com/direct_ingestion.html) to send the data directly to the service. This is the simplest way to get up and running quickly.
* Use a [**Wavefront Proxy**](https://docs.wavefront.com/proxies.html), which then forwards the data to the service. This is the recommended choice for a large-scale deployment that needs resilience to internet outages, control over data queuing and filtering, and more.

You instantiate an object that corresponds to your choice:
* Option 1 **(Deprecated)**: [Create a `WavefrontDirectClient`](#option-1-create-a-wavefrontdirectclient) to send data directly to a Wavefront service.
* Option 2 **(Deprecated)**: [Create a `WavefrontProxyClient`](#option-2-create-a-wavefrontproxyclient) to send data to a Wavefront Proxy.
* Option 3: [Create a `WavefrontClient`](#option-3-create-a-wavefrontclient) to send data to the service directly or via proxy.
> **Deprecated implementations**: *`WavefrontDirectClient` and `WavefrontProxyClient` are deprecated from proxy version 7.0 onwards. We recommend all new applications to use the `WavefrontClient`.*

### Option 1: Create a WavefrontDirectClient
When sending data via direct ingestion, you need to create a `WavefrontDirectClient`, and build it with the cluster URL and API token to send data directly to the service.

>**Prerequisites**
> * Verify that you have the Direct Data Ingestion permission. For details, see [Examine Groups, Roles, and Permissions](https://docs.wavefront.com/users_account_managing.html#examine-groups-roles-and-permissions).
> * The URL of your cluster. This is the URL you connect to when you log in to the service, typically something like `https://<domain>.wavefront.com`.
> * [Obtain the API token](http://docs.wavefront.com/wavefront_api.html#generating-an-api-token).

#### Initialize the WavefrontDirectClient
You initialize a `WavefrontDirectClient` by providing the access information you obtained in the Prerequisites section..

Optionally, you can specify parameters to tune the following ingestion properties:

* Max queue size - Internal buffer capacity of the sender. Any data in excess of this size is dropped.
* Flush interval - Interval for flushing data from the sender directly to the service.
* Batch size - Amount of data to send to the service in each flush interval.

Together, the batch size and flush interval control the maximum theoretical throughput of the sender. You should override the defaults _only_ to set higher values.


```python
from wavefront_sdk import WavefrontDirectClient

# Create a sender with:
   # your cluster URL
   # an API token that was created with direct ingestion permission
   # max queue size (in data points). Default: 50,000
   # batch size (in data points). Default: 10,000
   # flush interval  (in seconds). Default: 1 second
wavefront_sender = WavefrontDirectClient(
    server="<SERVER_ADDR>",
    token="<TOKEN>",
    max_queue_size=50000,
    batch_size=10000,
    flush_interval_seconds=5
)
```

### Option 2: Create a WavefrontProxyClient

>**Prerequisite** <br/>
>Before your application can use a `WavefrontProxyClient`, you must [set up and start a Wavefront proxy](https://docs.wavefront.com/proxies_installing.html).

When sending data via the Wavefront Proxy, you need to create a `WavefrontProxyClient`. Include the following information.

* The name of the host that will run the Wavefront Proxy.
* One or more proxy listening ports to send data to. The ports you specify depend on the kinds of data you want to send (metrics, histograms, and/or trace data). You must specify at least one listener port.
* Optional settings for tuning communication with the proxy.

> **Note**: See [Advanced Proxy Configuration and Installation](https://docs.wavefront.com/proxies_configuring.html) for details.

```python
from wavefront_sdk import WavefrontProxyClient

# Create a sender with:
   # the proxy hostname or address
   # the default listener port (2878) for sending metrics to
   # the recommended listener port (2878) for sending histograms to
   # the recommended listener port (30000) for sending trace data.
   # if you are directly using the sender sdk to send spans without using any other sdk, use the same port as the customTracingListenerPorts configured in the wavefront proxy for the tracing_port
wavefront_sender = WavefrontProxyClient(
   host="<PROXY_HOST>",
   metrics_port=2878,
   distribution_port=2878,
   tracing_port=30000,
   event_port=2878
)
```

> **Note:** When you set up a Wavefront Proxy on the specified proxy host, you specify the port it will listen to for each type of data to be sent. The `WavefrontProxyClient` must send data to the same ports that the Wavefront Proxy listens to. Consequently, the port-related parameters must specify the same port numbers as the corresponding proxy configuration properties:

| `WavefrontProxyClient()` parameter | Corresponding property in `wavefront.conf` |
| ----- | -------- |
| `metrics_port` | `pushListenerPorts=` |
| `distribution_port` | `histogramDistListenerPorts=` |
| `tracing_port` | `traceListenerPorts=` |

### Option 3: Create a WavefrontClient
Use `WavefrontClientFactory` to create a `WavefrontClient` instance, which can send data directly to the service or send data using a Wavefront Proxy.

The `WavefrontClientFactory` supports multiple client bindings. If more than one client configuration is specified, you can create a `WavefrontMultiClient` instance, which can send data to multiple services.
### Prerequisites
* Sending data via Wavefront Proxy?
  <br/>Before your application can use a `WavefrontClient` you must [set up and start a Wavefront Proxy](https://docs.wavefront.com/proxies_installing.html).
* Sending data via direct ingestion?
  * Verify that you have the Direct Data Ingestion permission. For details, see [Examine Groups, Roles, and Permissions](https://docs.wavefront.com/users_account_managing.html#examine-groups-roles-and-permissions).
  * The HTTP URL of your cluster. This is the URL you connect to when you log in to the service, typically something like `http://<domain>.wavefront.com`.<br/> You can also use HTTP client with Wavefront Proxy version 7.0 or newer. Example: `http://proxy.acme.corp:2878`.
  * [Obtain the API token](http://docs.wavefront.com/wavefront_api.html#generating-an-api-token).

### Initialize the WavefrontClient
```python
from wavefront_sdk.client_factory import WavefrontClientFactory

# Create a sender with:
   # Required Parameter
   #   URL format to send data via proxy: "proxy://<your.proxy.load.balancer.com>:<somePort>"
   #   URL format to send data via direct ingestion: "https://TOKEN@DOMAIN.wavefront.com"
   # Optional Parameter
   #   max queue size (in data points). Default: 50000
   #   batch size (in data points). Default: 10000
   #   flush interval  (in seconds). Default: 1 second

client_factory = WavefrontClientFactory()
client_factory.add_client(
    url="<URL for proxy or direct ingestions>",
    max_queue_size=50000,
    batch_size=10000,
    flush_interval_seconds=5)
wavefront_sender = client_factory.get_client()
```
#### Add multiple clients to client factory to send data to multiple services.
```
from wavefront_sdk.client_factory import WavefrontClientFactory

client_factory = WavefrontClientFactory()
client_factory.add_client("proxy://our.proxy.lb.com:2878")
client_factory.add_client("https://someToken@DOMAIN.wavefront.com")

# Send traces and spans to the tracing port. If you are directly using the sender SDK to send spans without using any other SDK, use the same port as the customTracingListenerPorts configured in the wavefront proxy. Assume you have installed and started the proxy on <proxy_hostname>.
client_factory.add_client("http://<proxy_hostname>:30000")

wavefront_sender = client_factory.get_client()
```

## Send a Single Data Point

The following examples show how to send a single data point to the service. You use the Wavefront Sender you created above.

### Single Metric or  Delta Counter

```python
from uuid import UUID

# Wavefront metrics data format:
# <metricName> <metricValue> [<timestamp>] source=<source> [pointTags]
wavefront_sender.send_metric(
    name="new_york.power.usage",
    value=42422.0,
    timestamp=1533529977,
    source="localhost",
    tags={"datacenter": "dc1"})

# Wavefront delta counter data format:
# <metricName> <metricValue> source=<source> [pointTags]
wavefront_sender.send_delta_counter(
    name="delta.counter",
    value=1.0,
    source="localhost",
    tags={"datacenter": "dc1"})
```
***Note***: If your metric name has a bad character, that character is replaced with a `-`.

### Single Histogram Distribution

```python
from uuid import UUID
from wavefront_sdk.entities.histogram import histogram_granularity

# Wavefront histogram data format:
# {!M | !H | !D} [<timestamp>] #<count> <mean> [centroids] <histogramName> source=<source> [pointTags]
# Example: You can choose to send to at most 3 bins: Minute, Hour, Day
# "!M 1533529977 #20 30.0 #10 5.1 request.latency source=appServer1 region=us-west"
# "!H 1533529977 #20 30.0 #10 5.1 request.latency source=appServer1 region=us-west"
# "!D 1533529977 #20 30.0 #10 5.1 request.latency source=appServer1 region=us-west"
wavefront_sender.send_distribution(
    name="request.latency",
    centroids=[(30, 20), (5.1, 10)],
    histogram_granularities={histogram_granularity.DAY,
                             histogram_granularity.HOUR,
                             histogram_granularity.MINUTE},
    timestamp=1533529977,
    source="appServer1",
    tags={"region": "us-west"})
```

### Single Span

If you are directly using the Sender SDK to send data to the service, you won’t see span-level RED metrics by default unless you use the Wavefront Proxy and define a custom tracing port (`tracing_port`). See [Instrument Your Application with the Sender SDKs](https://docs.wavefront.com/tracing_instrumenting_frameworks.html#instrument-your-application-with-wavefront-sender-sdks) for details.

```python
from uuid import UUID

# Wavefront trace and span data format:
# <tracingSpanName> source=<source> [pointTags] <start_millis> <duration_milliseconds>
# Example: "getAllUsers source=localhost
#           traceId=7b3bf470-9456-11e8-9eb6-529269fb1459
#           spanId=0313bafe-9457-11e8-9eb6-529269fb1459
#           parent=2f64e538-9457-11e8-9eb6-529269fb1459
#           application=Wavefront http.method=GET
#           1533529977 343500"
wavefront_sender.send_span(
    name="getAllUsers",
    start_millis=1533529977,
    duration_millis=343500,
    source="localhost",
    trace_id=UUID("7b3bf470-9456-11e8-9eb6-529269fb1459"),
    span_id=UUID("0313bafe-9457-11e8-9eb6-529269fb1459"),
    parents=[UUID("2f64e538-9457-11e8-9eb6-529269fb1459")],
    follows_from=None,
    tags=[("application", "Wavefront"),
          ("service", "istio"),
          ("http.method", "GET")],
    span_logs=None)
```

### Single Event

```python
# Wavefront event format:
# @Event <StartTime> <EndTime> "<EventName>"  severity="<Severity>"
# type="<Type>" details="<EventDetail>" host="<Source>" tag="<Tags>"
wavefront_sender.send_event('event name',
                            1592200048,
                            1592201048,
                            "localhost",
                            ["env:", "dev"],
                            {"severity": "info",
                             "type": "backup",
                             "details": "broker backup"})
```

## Send Batch Data

The following examples show how to generate data points manually and send them as a batch to Wavefront.

### Batch Metrics

```python
from uuid import UUID
from wavefront_sdk.common import metric_to_line_data

# Generate string data in Wavefront metric format
one_metric_data = metric_to_line_data(
    name="new-york.power.usage",
    value=42422,
    timestamp=1493773500,
    source="localhost",
    tags={"datacenter": "dc1"},
    default_source="defaultSource")

# Result of one_metric_data:
  # '"new-york.power.usage" 42422.0 1493773500 source="localhost" "datacenter"="dc1"\n'

# List of data
batch_metric_data = [one_metric_data, one_metric_data]

# Send list of data immediately
wavefront_sender.send_metric_now(batch_metric_data)
```
***Note***: If your metric name has a bad character, that character is replaced with a `-`.

### Batch Histograms

```python
from uuid import UUID
from wavefront_sdk.entities.histogram import histogram_granularity
from wavefront_sdk.common import histogram_to_line_data

# Generate string data in Wavefront histogram format
one_histogram_data = histogram_to_line_data(
    name="request.latency",
    centroids=[(30.0, 20), (5.1, 10)],
    histogram_granularities={histogram_granularity.MINUTE,
                             histogram_granularity.HOUR,
                             histogram_granularity.DAY},
    timestamp=1493773500,
    source="appServer1",
    tags={"region": "us-west"},
    default_source ="defaultSource")

# Result of one_histogram_data:
  # '!D 1493773500 #20 30.0 #10 5.1 "request.latency" source="appServer1" "region"="us-west"\n
  # !H 1493773500 #20 30.0 #10 5.1 "request.latency" source="appServer1" "region"="us-west"\n
  # !M 1493773500 #20 30.0 #10 5.1 "request.latency" source="appServer1" "region"="us-west"\n'

# List of data
batch_histogram_data = [one_histogram_data, one_histogram_data]

# Send list of data immediately
wavefront_sender.send_distribution_now(batch_histogram_data)
```
### Batch Trace Data

If you are directly using the Sender SDK to send data to the service, you won’t see span-level RED metrics by default unless you use the Wavefront Proxy and define a custom tracing port (`tracing_port`). See [Instrument Your Application with Wavefront Sender SDKs](https://docs.wavefront.com/tracing_instrumenting_frameworks.html#instrument-your-application-with-wavefront-sender-sdks) for details.

```python
from uuid import UUID
from wavefront_sdk.common import tracing_span_to_line_data

# Generate string data in Wavefront tracing span format
one_tracing_span_data = tracing_span_to_line_data(
    name="getAllUsers",
    start_millis=1552949776000,
    duration_millis=343,
    source="localhost",
    trace_id=UUID("7b3bf470-9456-11e8-9eb6-529269fb1459"),
    span_id=UUID("0313bafe-9457-11e8-9eb6-529269fb1459"),
    parents=[UUID("2f64e538-9457-11e8-9eb6-529269fb1459")],
    follows_from=[UUID("5f64e538-9457-11e8-9eb6-529269fb1459")],
    tags=[("application", "Wavefront"), ("http.method", "GET")],
    span_logs=None,
    default_source="defaultSource")

# Result of one_tracing_span_data:
  # '"getAllUsers" source="localhost" traceId=7b3bf470-9456-11e8-9eb6-529269fb1459 spanId=0313bafe-
  # 9457-11e8-9eb6-529269fb1459 parent=2f64e538-9457-11e8-9eb6-529269fb1459 followsFrom=5f64e538-
  # 9457-11e8-9eb6-529269fb1459 "application"="Wavefront" "http.method"="GET" 1552949776000 343\n'

# List of data
batch_span_data = [one_tracing_span_data, one_tracing_span_data]

# Send list of data immediately
wavefront_sender.send_span_now(batch_span_data)
```

### Batch Events

```python
from wavefront_sdk.common import event_to_line_data

# Generate string data in Wavefront event format
one_event_data = event_to_line_data(
    name="event name",
    start_time=1592200048,
    end_time=1592201048,
    source="localhost",
    tags=["env", "dev"],
    annotations={"severity": "info",
                 "type": "backup",
                 "details": "broker backup"})

# Result of one_event_data:
# '@Event 1592200048 1592201048 "event name" severity="info" type="backup" details="broker backup"
# host="localhost" tag="env" tag="dev"\n'

# List of events
batch_event_data = [one_event_data, one_event_data]

# Send list of events immediately
wavefront_sender.send_event_now(batch_event_data)
```

## Get the Failure Count

If the application failed to send metrics, histograms, or trace data via the `wavefront_sender`, you can get the total failure count.

```python
# Get the total failure count
total_failures = wavefront_sender.get_failure_count()
```
## Close the Connection

* If the sender is from a `WavefrontClientFactory`, close the connection before shutting down the application.

    ```python
    # To shut down a sender from a WavefrontClientFactory
    wavefront_sender = client_factory.get_client()

    # Close the sender connection
    wavefront_sender.close()
    ```
* If the sender is a `WavefrontDirectClient`, flush all buffers and then close the connection before shutting down the application.

    ```python
    # To shut down a WavefrontDirectClient
    # Flush all buffers.
    wavefront_sender.flush_now()

    # Close the sender connection
    wavefront_sender.close()
    ```
* If the sender is a `WavefrontProxyClient`, close the connection before shutting down the application.

    ```python
    # To shut down a WavefrontProxyClient

    # Close the sender connection
    wavefront_sender.close()
    ```

## License
[Apache 2.0 License](LICENSE).

## How to Get Support and Contribute

* When submitting changes, be sure to increment the version number in setup.py.
  The version number is documented as such in setup.py.
  We follow semantic versioning. For bug fixes, increment the patch version
  (last number). For backward compatible changes to the API, update the
  minor version (second number), and zero out the patch version. For breaking
  changes to the API, increment the major version (first number) and zero out
  the minor and patch versions.
* Reach out to us on our public [Slack channel](https://www.wavefront.com/join-public-slack).
* If you run into any issues, let us know by creating a GitHub issue.

## How to Release

1. Merge all the changes that need to go into the release to the master branch.
2. Open the `setup.py` file from the top level directory of the project.
3. Search for version= in the file to find the version number, for example 1.8.15.
4. Create a pull request, get it reviewed and approved, and merge it after approval.
5. Check [test.pypi.org](https://test.pypi.org/project/wavefront-sdk-python) for a published package, make sure it's production ready.
6. Log in to GitHub, click Releases on the right, and click Draft a new release.
7. For **Choose a tag**, choose the version you found in step 3, and prefix it with `v` for example `v1.8.15`. You need to enter the version where it says **Find or create new tag**.

<img src="images/choose-version.png" alt="A diagram that shows how to choose version"/>

8. Provide a short but descriptive title for the release.
9. Fill in the details of the release. Please copy the markdown from the previous release and follow the same format.
10. Click **Publish release.** to start publishing the release to pypi.org.
11. From the GitHub top navigation bar of this project, click the **Actions** tab. On the first line of the list of workflows, you should see a workflow running that will publish your release to pypi.org.
12. When the workflow from step 9 has a green checkmark next to it, go to [pypi.org](https://pypi.org/project/wavefront-sdk-python/) and verify that the latest version is published.


%prep
%autosetup -n wavefront-sdk-python-1.8.15

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-wavefront-sdk-python -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.8.15-1
- Package Spec generated