summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-10 04:37:19 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-10 04:37:19 +0000
commite488a3365b7f7e97868c350dedae41be0791977e (patch)
treeb95e7ae6f4e5045c5bec804acf8b061a95e0a8e7
parente73c6166749227c368e538af797be4091ed7858b (diff)
automatic import of python-weightedstatsopeneuler20.03
-rw-r--r--.gitignore1
-rw-r--r--python-weightedstats.spec141
-rw-r--r--sources1
3 files changed, 143 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..d4c4927 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/weightedstats-0.4.1.tar.gz
diff --git a/python-weightedstats.spec b/python-weightedstats.spec
new file mode 100644
index 0000000..783234b
--- /dev/null
+++ b/python-weightedstats.spec
@@ -0,0 +1,141 @@
+%global _empty_manifest_terminate_build 0
+Name: python-weightedstats
+Version: 0.4.1
+Release: 1
+Summary: Mean, weighted mean, median, weighted median
+License: MIT
+URL: https://github.com/tinybike/weightedstats
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/da/a5/f5c0e601a610e4618316be3155febbbec98994788fcc0e9d8080369266ec/weightedstats-0.4.1.tar.gz
+BuildArch: noarch
+
+
+%description
+Python functions to calculate the mean, weighted mean, median, and weighted median.
+Installation
+^^^^^^^^^^^^
+The easiest way to install WeightedStats is to use pip::
+ $ pip install weightedstats
+Usage
+^^^^^
+WeightedStats includes four functions (mean, weighted_mean, median, weighted_median) which accept lists as arguments, and two functions (numpy_weighted_mean, numpy weighted_median) which accept either lists or numpy arrays.
+Example:
+ import weightedstats as ws
+ my_data = [1, 2, 3, 4, 5]
+ my_weights = [10, 1, 1, 1, 9]
+ # Ordinary (unweighted) mean and median
+ ws.mean(my_data) # equivalent to ws.weighted_mean(my_data)
+ ws.median(my_data) # equivalent to ws.weighted_median(my_data)
+ # Weighted mean and median
+ ws.weighted_mean(my_data, weights=my_weights)
+ ws.weighted_median(my_data, weights=my_weights)
+ # Special weighted mean and median functions for use with numpy arrays
+ ws.numpy_weighted_mean(my_data, weights=my_weights)
+ ws.numpy_weighted_median(my_data, weights=my_weights)
+Tests
+^^^^^
+Unit tests are in the test/ directory.
+
+%package -n python3-weightedstats
+Summary: Mean, weighted mean, median, weighted median
+Provides: python-weightedstats
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-weightedstats
+Python functions to calculate the mean, weighted mean, median, and weighted median.
+Installation
+^^^^^^^^^^^^
+The easiest way to install WeightedStats is to use pip::
+ $ pip install weightedstats
+Usage
+^^^^^
+WeightedStats includes four functions (mean, weighted_mean, median, weighted_median) which accept lists as arguments, and two functions (numpy_weighted_mean, numpy weighted_median) which accept either lists or numpy arrays.
+Example:
+ import weightedstats as ws
+ my_data = [1, 2, 3, 4, 5]
+ my_weights = [10, 1, 1, 1, 9]
+ # Ordinary (unweighted) mean and median
+ ws.mean(my_data) # equivalent to ws.weighted_mean(my_data)
+ ws.median(my_data) # equivalent to ws.weighted_median(my_data)
+ # Weighted mean and median
+ ws.weighted_mean(my_data, weights=my_weights)
+ ws.weighted_median(my_data, weights=my_weights)
+ # Special weighted mean and median functions for use with numpy arrays
+ ws.numpy_weighted_mean(my_data, weights=my_weights)
+ ws.numpy_weighted_median(my_data, weights=my_weights)
+Tests
+^^^^^
+Unit tests are in the test/ directory.
+
+%package help
+Summary: Development documents and examples for weightedstats
+Provides: python3-weightedstats-doc
+%description help
+Python functions to calculate the mean, weighted mean, median, and weighted median.
+Installation
+^^^^^^^^^^^^
+The easiest way to install WeightedStats is to use pip::
+ $ pip install weightedstats
+Usage
+^^^^^
+WeightedStats includes four functions (mean, weighted_mean, median, weighted_median) which accept lists as arguments, and two functions (numpy_weighted_mean, numpy weighted_median) which accept either lists or numpy arrays.
+Example:
+ import weightedstats as ws
+ my_data = [1, 2, 3, 4, 5]
+ my_weights = [10, 1, 1, 1, 9]
+ # Ordinary (unweighted) mean and median
+ ws.mean(my_data) # equivalent to ws.weighted_mean(my_data)
+ ws.median(my_data) # equivalent to ws.weighted_median(my_data)
+ # Weighted mean and median
+ ws.weighted_mean(my_data, weights=my_weights)
+ ws.weighted_median(my_data, weights=my_weights)
+ # Special weighted mean and median functions for use with numpy arrays
+ ws.numpy_weighted_mean(my_data, weights=my_weights)
+ ws.numpy_weighted_median(my_data, weights=my_weights)
+Tests
+^^^^^
+Unit tests are in the test/ directory.
+
+%prep
+%autosetup -n weightedstats-0.4.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-weightedstats -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.1-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..4addd42
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+f5cac13564b15e49a4eee9ca6d195ca4 weightedstats-0.4.1.tar.gz