summaryrefslogtreecommitdiff
path: root/python-whitening.spec
blob: 113a53e140667f66e6b748cc53a5537deb06e6fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
%global _empty_manifest_terminate_build 0
Name:		python-whitening
Version:	0.2
Release:	1
Summary:	Document whitening (foreground separation)
License:	MIT
URL:		https://github.com/rossumai/whitening
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/5d/61/eb6442e547f6e429fe325955e6bd4e33b27095156eb4db4579e56fe0561c/whitening-0.2.tar.gz
BuildArch:	noarch


%description
# Document whitening (foreground separation)

This package tries to separate text/line foreground and background by 2D median
filter.

<img src="data/IMG_3262.jpg" alt="original" width="250">
<img src="data/IMG_3262_fg.jpg" alt="foreground" width="250">
<img src="data/IMG_3262_bg.jpg" alt="background" width="250">

## Installation

Install from PyPI. Works on Python 3.

```bash
pip install whitening
```

## Example usage

### Python API

It works with images represented as `PIL.Image` or as a numpy array. Images can
be either RGB or grayscale.

```python
import numpy as np
import PIL.Image

from whitening import whiten

# possible to use numpy array as input/output
image = np.asarray(PIL.Image.open('image.jpg'), dtype='uint8')
foreground, background = whiten(image, kernel_size=20, downsample=4)
PIL.Image.fromarray(foreground).save('foreground.jpg', 'jpeg')

# or directly a PIL image
image = PIL.Image.open('image.jpg')
foreground, background = whiten(image, kernel_size=20, downsample=4)
foreground.save('foreground.jpg', 'jpeg')
```

### CLI

It install an entry point called `whiten`.

```bash
# help
$ whiten -h

# whiten an image and save the foreground output
$ whiten input.jpg foreground.jpg

# specify the kernel size
$ whiten input.jpg foreground.jpg -k 100

# work in grayscale instead of RGB (3x faster)
$ whiten input.jpg foreground.jpg -g

# downsample the image 4x (faster, but a bit less precise)
$ whiten input.jpg foreground.jpg -d 4

# save also the background
$ whiten input.jpg foreground.jpg -b background.jpg
```

We assume the original images is a product of foreground and background,
thus we can recover the foreground by dividing the image by the background:
`I = F * B => F = I / B`. We try to approximate the background by 2D median
filtering the original image which suppresses sparse features such as text and
lines.

Select kernel size that's enough for not making artifacts while small enough
to keep computation fast. A good starting point is 50 pixels.

A 9.5 Mpx image can be processed on a MacBook in 15 s, with grayscale and
downsampling 4x the run time can be reduced to 1 s! Quite good results can be
obtained even with kernel size 10 and downsampling 16x.

More info: http://bohumirzamecnik.cz/blog/2015/image-whitening/

## Development

See the `Makefile` for various development tasks.

## License

Author: Bohumír Zámečník <bohumir.zamecnik@gmail.com>

Supported by [Rossum](https://rossum.ai), creating a world without manual data entry.


%package -n python3-whitening
Summary:	Document whitening (foreground separation)
Provides:	python-whitening
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-whitening
# Document whitening (foreground separation)

This package tries to separate text/line foreground and background by 2D median
filter.

<img src="data/IMG_3262.jpg" alt="original" width="250">
<img src="data/IMG_3262_fg.jpg" alt="foreground" width="250">
<img src="data/IMG_3262_bg.jpg" alt="background" width="250">

## Installation

Install from PyPI. Works on Python 3.

```bash
pip install whitening
```

## Example usage

### Python API

It works with images represented as `PIL.Image` or as a numpy array. Images can
be either RGB or grayscale.

```python
import numpy as np
import PIL.Image

from whitening import whiten

# possible to use numpy array as input/output
image = np.asarray(PIL.Image.open('image.jpg'), dtype='uint8')
foreground, background = whiten(image, kernel_size=20, downsample=4)
PIL.Image.fromarray(foreground).save('foreground.jpg', 'jpeg')

# or directly a PIL image
image = PIL.Image.open('image.jpg')
foreground, background = whiten(image, kernel_size=20, downsample=4)
foreground.save('foreground.jpg', 'jpeg')
```

### CLI

It install an entry point called `whiten`.

```bash
# help
$ whiten -h

# whiten an image and save the foreground output
$ whiten input.jpg foreground.jpg

# specify the kernel size
$ whiten input.jpg foreground.jpg -k 100

# work in grayscale instead of RGB (3x faster)
$ whiten input.jpg foreground.jpg -g

# downsample the image 4x (faster, but a bit less precise)
$ whiten input.jpg foreground.jpg -d 4

# save also the background
$ whiten input.jpg foreground.jpg -b background.jpg
```

We assume the original images is a product of foreground and background,
thus we can recover the foreground by dividing the image by the background:
`I = F * B => F = I / B`. We try to approximate the background by 2D median
filtering the original image which suppresses sparse features such as text and
lines.

Select kernel size that's enough for not making artifacts while small enough
to keep computation fast. A good starting point is 50 pixels.

A 9.5 Mpx image can be processed on a MacBook in 15 s, with grayscale and
downsampling 4x the run time can be reduced to 1 s! Quite good results can be
obtained even with kernel size 10 and downsampling 16x.

More info: http://bohumirzamecnik.cz/blog/2015/image-whitening/

## Development

See the `Makefile` for various development tasks.

## License

Author: Bohumír Zámečník <bohumir.zamecnik@gmail.com>

Supported by [Rossum](https://rossum.ai), creating a world without manual data entry.


%package help
Summary:	Development documents and examples for whitening
Provides:	python3-whitening-doc
%description help
# Document whitening (foreground separation)

This package tries to separate text/line foreground and background by 2D median
filter.

<img src="data/IMG_3262.jpg" alt="original" width="250">
<img src="data/IMG_3262_fg.jpg" alt="foreground" width="250">
<img src="data/IMG_3262_bg.jpg" alt="background" width="250">

## Installation

Install from PyPI. Works on Python 3.

```bash
pip install whitening
```

## Example usage

### Python API

It works with images represented as `PIL.Image` or as a numpy array. Images can
be either RGB or grayscale.

```python
import numpy as np
import PIL.Image

from whitening import whiten

# possible to use numpy array as input/output
image = np.asarray(PIL.Image.open('image.jpg'), dtype='uint8')
foreground, background = whiten(image, kernel_size=20, downsample=4)
PIL.Image.fromarray(foreground).save('foreground.jpg', 'jpeg')

# or directly a PIL image
image = PIL.Image.open('image.jpg')
foreground, background = whiten(image, kernel_size=20, downsample=4)
foreground.save('foreground.jpg', 'jpeg')
```

### CLI

It install an entry point called `whiten`.

```bash
# help
$ whiten -h

# whiten an image and save the foreground output
$ whiten input.jpg foreground.jpg

# specify the kernel size
$ whiten input.jpg foreground.jpg -k 100

# work in grayscale instead of RGB (3x faster)
$ whiten input.jpg foreground.jpg -g

# downsample the image 4x (faster, but a bit less precise)
$ whiten input.jpg foreground.jpg -d 4

# save also the background
$ whiten input.jpg foreground.jpg -b background.jpg
```

We assume the original images is a product of foreground and background,
thus we can recover the foreground by dividing the image by the background:
`I = F * B => F = I / B`. We try to approximate the background by 2D median
filtering the original image which suppresses sparse features such as text and
lines.

Select kernel size that's enough for not making artifacts while small enough
to keep computation fast. A good starting point is 50 pixels.

A 9.5 Mpx image can be processed on a MacBook in 15 s, with grayscale and
downsampling 4x the run time can be reduced to 1 s! Quite good results can be
obtained even with kernel size 10 and downsampling 16x.

More info: http://bohumirzamecnik.cz/blog/2015/image-whitening/

## Development

See the `Makefile` for various development tasks.

## License

Author: Bohumír Zámečník <bohumir.zamecnik@gmail.com>

Supported by [Rossum](https://rossum.ai), creating a world without manual data entry.


%prep
%autosetup -n whitening-0.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-whitening -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2-1
- Package Spec generated