1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
%global _empty_manifest_terminate_build 0
Name: python-whylogs
Version: 1.1.39
Release: 1
Summary: Profile and monitor your ML data pipeline end-to-end
License: Apache-2.0
URL: https://docs.whylabs.ai
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a0/d2/50c3c523d2cf5cc61c0fdb387f677b367cc37afb60f174a2345f7e0d0094/whylogs-1.1.39.tar.gz
BuildArch: noarch
Requires: python3-Pillow
Requires: python3-boto3
Requires: python3-fugue
Requires: python3-furo
Requires: python3-google-cloud-storage
Requires: python3-importlib-metadata
Requires: python3-ipython
Requires: python3-ipython_genutils
Requires: python3-mlflow-skinny
Requires: python3-myst-parser[sphinx]
Requires: python3-nbconvert
Requires: python3-nbsphinx
Requires: python3-numpy
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-protobuf
Requires: python3-pyarrow
Requires: python3-pybars3
Requires: python3-pyspark
Requires: python3-requests
Requires: python3-scikit-learn
Requires: python3-scikit-learn
Requires: python3-scipy
Requires: python3-scipy
Requires: python3-sphinx
Requires: python3-sphinx-autoapi
Requires: python3-sphinx-autobuild
Requires: python3-sphinx-copybutton
Requires: python3-sphinx-inline-tabs
Requires: python3-sphinxext-opengraph
Requires: python3-typing-extensions
Requires: python3-whylabs-client
Requires: python3-whylogs-sketching
%description
<img src="https://static.scarf.sh/a.png?x-pxid=bc3c57b0-9a65-49fe-b8ea-f711c4d35b82" /><p align="center">
<img src="https://i.imgur.com/nv33goV.png" width="35%"/>
</br>
<h1 align="center">The open standard for data logging
</h1>
<h3 align="center">
<a href="https://whylogs.readthedocs.io/"><b>Documentation</b></a> •
<a href="https://bit.ly/whylogsslack"><b>Slack Community</b></a> •
<a href="https://github.com/whylabs/whylogs#python-quickstart"><b>Python Quickstart</b></a> •
<a href="https://whylogs.readthedocs.io/en/latest/examples/integrations/writers/Writing_to_WhyLabs.html"><b>WhyLabs Quickstart</b></a>
</h3>
<p align="center">
<a href="https://github.com/whylabs/whylogs-python/blob/mainline/LICENSE" target="_blank">
<img src="http://img.shields.io/:license-Apache%202-blue.svg" alt="License">
</a>
<a href="https://badge.fury.io/py/whylogs" target="_blank">
<img src="https://badge.fury.io/py/whylogs.svg" alt="PyPi Version">
</a>
<a href="https://github.com/python/black" target="_blank">
<img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Code style: black">
</a>
<a href="https://pepy.tech/project/whylogs" target="_blank">
<img src="https://pepy.tech/badge/whylogs" alt="PyPi Downloads">
</a>
<a href="bit.ly/whylogs" target="_blank">
<img src="https://github.com/whylabs/whylogs-python/workflows/whylogs%20CI/badge.svg" alt="CI">
</a>
<a href="https://codeclimate.com/github/whylabs/whylogs-python/maintainability" target="_blank">
<img src="https://api.codeclimate.com/v1/badges/442f6ca3dca1e583a488/maintainability" alt="Maintainability">
</a>
</p>
## What is whylogs
whylogs is an open source library for logging any kind of data. With whylogs, users are able to generate summaries of their datasets (called _whylogs profiles_) which they can use to:
1. Track changes in their dataset
2. Create _data constraints_ to know whether their data looks the way it should
3. Quickly visualize key summary statistics about their datasets
These three functionalities enable a variety of use cases for data scientists, machine learning engineers, and data engineers:
- Detect data drift in model input features
- Detect training-serving skew, concept drift, and model performance degradation
- Validate data quality in model inputs or in a data pipeline
- Perform exploratory data analysis of massive datasets
- Track data distributions & data quality for ML experiments
- Enable data auditing and governance across the organization
- Standardize data documentation practices across the organization
- And more
## Quickstart
Install whylogs using the pip package manager in a terminal by running:
```
pip install whylogs
```
Then you can log data in python as simply as this:
```python
import whylogs as why
import pandas as pd
df = pd.read_csv("path/to/file.csv")
results = why.log(df)
```
And voilà, you now have a whylogs profile. To learn more about what a whylogs profile is and what you can do with it, check out our [docs](https://whylogs.readthedocs.io/en/latest/) and our [examples](https://github.com/whylabs/whylogs/tree/mainline/python/examples).
%package -n python3-whylogs
Summary: Profile and monitor your ML data pipeline end-to-end
Provides: python-whylogs
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-whylogs
<img src="https://static.scarf.sh/a.png?x-pxid=bc3c57b0-9a65-49fe-b8ea-f711c4d35b82" /><p align="center">
<img src="https://i.imgur.com/nv33goV.png" width="35%"/>
</br>
<h1 align="center">The open standard for data logging
</h1>
<h3 align="center">
<a href="https://whylogs.readthedocs.io/"><b>Documentation</b></a> •
<a href="https://bit.ly/whylogsslack"><b>Slack Community</b></a> •
<a href="https://github.com/whylabs/whylogs#python-quickstart"><b>Python Quickstart</b></a> •
<a href="https://whylogs.readthedocs.io/en/latest/examples/integrations/writers/Writing_to_WhyLabs.html"><b>WhyLabs Quickstart</b></a>
</h3>
<p align="center">
<a href="https://github.com/whylabs/whylogs-python/blob/mainline/LICENSE" target="_blank">
<img src="http://img.shields.io/:license-Apache%202-blue.svg" alt="License">
</a>
<a href="https://badge.fury.io/py/whylogs" target="_blank">
<img src="https://badge.fury.io/py/whylogs.svg" alt="PyPi Version">
</a>
<a href="https://github.com/python/black" target="_blank">
<img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Code style: black">
</a>
<a href="https://pepy.tech/project/whylogs" target="_blank">
<img src="https://pepy.tech/badge/whylogs" alt="PyPi Downloads">
</a>
<a href="bit.ly/whylogs" target="_blank">
<img src="https://github.com/whylabs/whylogs-python/workflows/whylogs%20CI/badge.svg" alt="CI">
</a>
<a href="https://codeclimate.com/github/whylabs/whylogs-python/maintainability" target="_blank">
<img src="https://api.codeclimate.com/v1/badges/442f6ca3dca1e583a488/maintainability" alt="Maintainability">
</a>
</p>
## What is whylogs
whylogs is an open source library for logging any kind of data. With whylogs, users are able to generate summaries of their datasets (called _whylogs profiles_) which they can use to:
1. Track changes in their dataset
2. Create _data constraints_ to know whether their data looks the way it should
3. Quickly visualize key summary statistics about their datasets
These three functionalities enable a variety of use cases for data scientists, machine learning engineers, and data engineers:
- Detect data drift in model input features
- Detect training-serving skew, concept drift, and model performance degradation
- Validate data quality in model inputs or in a data pipeline
- Perform exploratory data analysis of massive datasets
- Track data distributions & data quality for ML experiments
- Enable data auditing and governance across the organization
- Standardize data documentation practices across the organization
- And more
## Quickstart
Install whylogs using the pip package manager in a terminal by running:
```
pip install whylogs
```
Then you can log data in python as simply as this:
```python
import whylogs as why
import pandas as pd
df = pd.read_csv("path/to/file.csv")
results = why.log(df)
```
And voilà, you now have a whylogs profile. To learn more about what a whylogs profile is and what you can do with it, check out our [docs](https://whylogs.readthedocs.io/en/latest/) and our [examples](https://github.com/whylabs/whylogs/tree/mainline/python/examples).
%package help
Summary: Development documents and examples for whylogs
Provides: python3-whylogs-doc
%description help
<img src="https://static.scarf.sh/a.png?x-pxid=bc3c57b0-9a65-49fe-b8ea-f711c4d35b82" /><p align="center">
<img src="https://i.imgur.com/nv33goV.png" width="35%"/>
</br>
<h1 align="center">The open standard for data logging
</h1>
<h3 align="center">
<a href="https://whylogs.readthedocs.io/"><b>Documentation</b></a> •
<a href="https://bit.ly/whylogsslack"><b>Slack Community</b></a> •
<a href="https://github.com/whylabs/whylogs#python-quickstart"><b>Python Quickstart</b></a> •
<a href="https://whylogs.readthedocs.io/en/latest/examples/integrations/writers/Writing_to_WhyLabs.html"><b>WhyLabs Quickstart</b></a>
</h3>
<p align="center">
<a href="https://github.com/whylabs/whylogs-python/blob/mainline/LICENSE" target="_blank">
<img src="http://img.shields.io/:license-Apache%202-blue.svg" alt="License">
</a>
<a href="https://badge.fury.io/py/whylogs" target="_blank">
<img src="https://badge.fury.io/py/whylogs.svg" alt="PyPi Version">
</a>
<a href="https://github.com/python/black" target="_blank">
<img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Code style: black">
</a>
<a href="https://pepy.tech/project/whylogs" target="_blank">
<img src="https://pepy.tech/badge/whylogs" alt="PyPi Downloads">
</a>
<a href="bit.ly/whylogs" target="_blank">
<img src="https://github.com/whylabs/whylogs-python/workflows/whylogs%20CI/badge.svg" alt="CI">
</a>
<a href="https://codeclimate.com/github/whylabs/whylogs-python/maintainability" target="_blank">
<img src="https://api.codeclimate.com/v1/badges/442f6ca3dca1e583a488/maintainability" alt="Maintainability">
</a>
</p>
## What is whylogs
whylogs is an open source library for logging any kind of data. With whylogs, users are able to generate summaries of their datasets (called _whylogs profiles_) which they can use to:
1. Track changes in their dataset
2. Create _data constraints_ to know whether their data looks the way it should
3. Quickly visualize key summary statistics about their datasets
These three functionalities enable a variety of use cases for data scientists, machine learning engineers, and data engineers:
- Detect data drift in model input features
- Detect training-serving skew, concept drift, and model performance degradation
- Validate data quality in model inputs or in a data pipeline
- Perform exploratory data analysis of massive datasets
- Track data distributions & data quality for ML experiments
- Enable data auditing and governance across the organization
- Standardize data documentation practices across the organization
- And more
## Quickstart
Install whylogs using the pip package manager in a terminal by running:
```
pip install whylogs
```
Then you can log data in python as simply as this:
```python
import whylogs as why
import pandas as pd
df = pd.read_csv("path/to/file.csv")
results = why.log(df)
```
And voilà, you now have a whylogs profile. To learn more about what a whylogs profile is and what you can do with it, check out our [docs](https://whylogs.readthedocs.io/en/latest/) and our [examples](https://github.com/whylabs/whylogs/tree/mainline/python/examples).
%prep
%autosetup -n whylogs-1.1.39
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-whylogs -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.39-1
- Package Spec generated
|