summaryrefslogtreecommitdiff
path: root/python-wikipedia2vec.spec
blob: be9f53575d0ec11d5a072e50cd4c3edbc97b824b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
%global _empty_manifest_terminate_build 0
Name:		python-wikipedia2vec
Version:	1.0.5
Release:	1
Summary:	A tool for learning vector representations of words and entities from Wikipedia
License:	Apache Software License
URL:		http://wikipedia2vec.github.io/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/89/83/15ab878fe5a93590b80bac8c3a8b0ad5f5dec5d0ea1071f9a17dbce5c33b/wikipedia2vec-1.0.5.tar.gz
BuildArch:	noarch


%description
[![Fury badge](https://badge.fury.io/py/wikipedia2vec.png)](http://badge.fury.io/py/wikipedia2vec)
[![CircleCI](https://circleci.com/gh/wikipedia2vec/wikipedia2vec.svg?style=svg)](https://circleci.com/gh/wikipedia2vec/wikipedia2vec)
Wikipedia2Vec is a tool used for obtaining embeddings (or vector representations) of words and entities (i.e., concepts that have corresponding pages in Wikipedia) from Wikipedia.
It is developed and maintained by [Studio Ousia](http://www.ousia.jp).
This tool enables you to learn embeddings of words and entities simultaneously, and places similar words and entities close to one another in a continuous vector space.
Embeddings can be easily trained by a single command with a publicly available Wikipedia dump as input.
This tool implements the [conventional skip-gram model](https://en.wikipedia.org/wiki/Word2vec) to learn the embeddings of words, and its extension proposed in [Yamada et al. (2016)](https://arxiv.org/abs/1601.01343) to learn the embeddings of entities.
An empirical comparison between Wikipedia2Vec and existing embedding tools (i.e., FastText, Gensim, RDF2Vec, and Wiki2vec) is available [here](https://arxiv.org/abs/1812.06280).
Documentation  are available online at [http://wikipedia2vec.github.io/](http://wikipedia2vec.github.io/).
## Basic Usage
Wikipedia2Vec can be installed via PyPI:
```bash
% pip install wikipedia2vec
```
With this tool, embeddings can be learned by running a *train* command with a Wikipedia dump as input.
For example, the following commands download the latest English Wikipedia dump and learn embeddings from this dump:
```bash
% wget https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
% wikipedia2vec train enwiki-latest-pages-articles.xml.bz2 MODEL_FILE
```
Then, the learned embeddings are written to *MODEL\_FILE*.
Note that this command can take many optional parameters.
Please refer to [our documentation](https://wikipedia2vec.github.io/wikipedia2vec/commands/) for further details.
## Pretrained Embeddings
Pretrained embeddings for 12 languages (i.e., English, Arabic, Chinese, Dutch, French, German, Italian, Japanese, Polish, Portuguese, Russian, and Spanish) can be downloaded from [this page](https://wikipedia2vec.github.io/wikipedia2vec/pretrained/).
## Use Cases
Wikipedia2Vec has been applied to the following tasks:
* Entity linking: [Yamada et al., 2016](https://arxiv.org/abs/1601.01343), [Eshel et al., 2017](https://arxiv.org/abs/1706.09147), [Chen et al., 2019](https://arxiv.org/abs/1911.03834), [Poerner et al., 2020](https://arxiv.org/abs/1911.03681), [van Hulst et al., 2020](https://arxiv.org/abs/2006.01969).
* Named entity recognition: [Sato et al., 2017](http://www.aclweb.org/anthology/I17-2017), [Lara-Clares and Garcia-Serrano, 2019](http://ceur-ws.org/Vol-2421/eHealth-KD_paper_6.pdf).
* Question answering: [Yamada et al., 2017](https://arxiv.org/abs/1803.08652), [Poerner et al., 2020](https://arxiv.org/abs/1911.03681).
* Entity typing: [Yamada et al., 2018](https://arxiv.org/abs/1806.02960).
* Text classification: [Yamada et al., 2018](https://arxiv.org/abs/1806.02960), [Yamada and Shindo, 2019](https://arxiv.org/abs/1909.01259), [Alam et al., 2020](https://link.springer.com/chapter/10.1007/978-3-030-61244-3_9).
* Relation classification: [Poerner et al., 2020](https://arxiv.org/abs/1911.03681).
* Paraphrase detection: [Duong et al., 2018](https://ieeexplore.ieee.org/abstract/document/8606845).
* Knowledge graph completion: [Shah et al., 2019](https://aaai.org/ojs/index.php/AAAI/article/view/4162), [Shah et al., 2020](https://www.aclweb.org/anthology/2020.textgraphs-1.9/).
* Fake news detection: [Singh et al., 2019](https://arxiv.org/abs/1906.11126), [Ghosal et al., 2020](https://arxiv.org/abs/2010.10836).
* Plot analysis of movies: [Papalampidi et al., 2019](https://arxiv.org/abs/1908.10328).
* Novel entity discovery: [Zhang et al., 2020](https://arxiv.org/abs/2002.00206).
* Entity retrieval: [Gerritse et al., 2020](https://link.springer.com/chapter/10.1007%2F978-3-030-45439-5_7).
* Deepfake detection: [Zhong et al., 2020](https://arxiv.org/abs/2010.07475).
* Conversational information seeking: [Rodriguez et al., 2020](https://arxiv.org/abs/2005.00172).
* Query expansion: [Rosin et al., 2020](https://arxiv.org/abs/2012.12065).
## References
If you use Wikipedia2Vec in a scientific publication, please cite the following paper:
Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu Takefuji, Yuji Matsumoto, [Wikipedia2Vec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from Wikipedia](https://arxiv.org/abs/1812.06280).
```
@inproceedings{yamada2020wikipedia2vec,
  title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia",
  author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji},
  booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
  year = {2020},
  publisher = {Association for Computational Linguistics},
  pages = {23--30}
}
```
The embedding model was originally proposed in the following paper:
Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu Takefuji, [Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation](https://arxiv.org/abs/1601.01343).
```
@inproceedings{yamada2016joint,
  title={Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation},
  author={Yamada, Ikuya and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu},
  booktitle={Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning},
  year={2016},
  publisher={Association for Computational Linguistics},
  pages={250--259}
}
```
The text classification model implemented in [this example](https://github.com/wikipedia2vec/wikipedia2vec/tree/master/examples/text_classification) was proposed in the following paper:
Ikuya Yamada, Hiroyuki Shindo, [Neural Attentive Bag-of-Entities Model for Text Classification](https://arxiv.org/abs/1909.01259).
```
@article{yamada2019neural,
  title={Neural Attentive Bag-of-Entities Model for Text Classification},
  author={Yamada, Ikuya and Shindo, Hiroyuki},
  booktitle={Proceedings of The 23th SIGNLL Conference on Computational Natural Language Learning},
  year={2019},
  publisher={Association for Computational Linguistics},
  pages = {563--573}
}
```
## License
[Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0)

%package -n python3-wikipedia2vec
Summary:	A tool for learning vector representations of words and entities from Wikipedia
Provides:	python-wikipedia2vec
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-wikipedia2vec
[![Fury badge](https://badge.fury.io/py/wikipedia2vec.png)](http://badge.fury.io/py/wikipedia2vec)
[![CircleCI](https://circleci.com/gh/wikipedia2vec/wikipedia2vec.svg?style=svg)](https://circleci.com/gh/wikipedia2vec/wikipedia2vec)
Wikipedia2Vec is a tool used for obtaining embeddings (or vector representations) of words and entities (i.e., concepts that have corresponding pages in Wikipedia) from Wikipedia.
It is developed and maintained by [Studio Ousia](http://www.ousia.jp).
This tool enables you to learn embeddings of words and entities simultaneously, and places similar words and entities close to one another in a continuous vector space.
Embeddings can be easily trained by a single command with a publicly available Wikipedia dump as input.
This tool implements the [conventional skip-gram model](https://en.wikipedia.org/wiki/Word2vec) to learn the embeddings of words, and its extension proposed in [Yamada et al. (2016)](https://arxiv.org/abs/1601.01343) to learn the embeddings of entities.
An empirical comparison between Wikipedia2Vec and existing embedding tools (i.e., FastText, Gensim, RDF2Vec, and Wiki2vec) is available [here](https://arxiv.org/abs/1812.06280).
Documentation  are available online at [http://wikipedia2vec.github.io/](http://wikipedia2vec.github.io/).
## Basic Usage
Wikipedia2Vec can be installed via PyPI:
```bash
% pip install wikipedia2vec
```
With this tool, embeddings can be learned by running a *train* command with a Wikipedia dump as input.
For example, the following commands download the latest English Wikipedia dump and learn embeddings from this dump:
```bash
% wget https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
% wikipedia2vec train enwiki-latest-pages-articles.xml.bz2 MODEL_FILE
```
Then, the learned embeddings are written to *MODEL\_FILE*.
Note that this command can take many optional parameters.
Please refer to [our documentation](https://wikipedia2vec.github.io/wikipedia2vec/commands/) for further details.
## Pretrained Embeddings
Pretrained embeddings for 12 languages (i.e., English, Arabic, Chinese, Dutch, French, German, Italian, Japanese, Polish, Portuguese, Russian, and Spanish) can be downloaded from [this page](https://wikipedia2vec.github.io/wikipedia2vec/pretrained/).
## Use Cases
Wikipedia2Vec has been applied to the following tasks:
* Entity linking: [Yamada et al., 2016](https://arxiv.org/abs/1601.01343), [Eshel et al., 2017](https://arxiv.org/abs/1706.09147), [Chen et al., 2019](https://arxiv.org/abs/1911.03834), [Poerner et al., 2020](https://arxiv.org/abs/1911.03681), [van Hulst et al., 2020](https://arxiv.org/abs/2006.01969).
* Named entity recognition: [Sato et al., 2017](http://www.aclweb.org/anthology/I17-2017), [Lara-Clares and Garcia-Serrano, 2019](http://ceur-ws.org/Vol-2421/eHealth-KD_paper_6.pdf).
* Question answering: [Yamada et al., 2017](https://arxiv.org/abs/1803.08652), [Poerner et al., 2020](https://arxiv.org/abs/1911.03681).
* Entity typing: [Yamada et al., 2018](https://arxiv.org/abs/1806.02960).
* Text classification: [Yamada et al., 2018](https://arxiv.org/abs/1806.02960), [Yamada and Shindo, 2019](https://arxiv.org/abs/1909.01259), [Alam et al., 2020](https://link.springer.com/chapter/10.1007/978-3-030-61244-3_9).
* Relation classification: [Poerner et al., 2020](https://arxiv.org/abs/1911.03681).
* Paraphrase detection: [Duong et al., 2018](https://ieeexplore.ieee.org/abstract/document/8606845).
* Knowledge graph completion: [Shah et al., 2019](https://aaai.org/ojs/index.php/AAAI/article/view/4162), [Shah et al., 2020](https://www.aclweb.org/anthology/2020.textgraphs-1.9/).
* Fake news detection: [Singh et al., 2019](https://arxiv.org/abs/1906.11126), [Ghosal et al., 2020](https://arxiv.org/abs/2010.10836).
* Plot analysis of movies: [Papalampidi et al., 2019](https://arxiv.org/abs/1908.10328).
* Novel entity discovery: [Zhang et al., 2020](https://arxiv.org/abs/2002.00206).
* Entity retrieval: [Gerritse et al., 2020](https://link.springer.com/chapter/10.1007%2F978-3-030-45439-5_7).
* Deepfake detection: [Zhong et al., 2020](https://arxiv.org/abs/2010.07475).
* Conversational information seeking: [Rodriguez et al., 2020](https://arxiv.org/abs/2005.00172).
* Query expansion: [Rosin et al., 2020](https://arxiv.org/abs/2012.12065).
## References
If you use Wikipedia2Vec in a scientific publication, please cite the following paper:
Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu Takefuji, Yuji Matsumoto, [Wikipedia2Vec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from Wikipedia](https://arxiv.org/abs/1812.06280).
```
@inproceedings{yamada2020wikipedia2vec,
  title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia",
  author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji},
  booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
  year = {2020},
  publisher = {Association for Computational Linguistics},
  pages = {23--30}
}
```
The embedding model was originally proposed in the following paper:
Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu Takefuji, [Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation](https://arxiv.org/abs/1601.01343).
```
@inproceedings{yamada2016joint,
  title={Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation},
  author={Yamada, Ikuya and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu},
  booktitle={Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning},
  year={2016},
  publisher={Association for Computational Linguistics},
  pages={250--259}
}
```
The text classification model implemented in [this example](https://github.com/wikipedia2vec/wikipedia2vec/tree/master/examples/text_classification) was proposed in the following paper:
Ikuya Yamada, Hiroyuki Shindo, [Neural Attentive Bag-of-Entities Model for Text Classification](https://arxiv.org/abs/1909.01259).
```
@article{yamada2019neural,
  title={Neural Attentive Bag-of-Entities Model for Text Classification},
  author={Yamada, Ikuya and Shindo, Hiroyuki},
  booktitle={Proceedings of The 23th SIGNLL Conference on Computational Natural Language Learning},
  year={2019},
  publisher={Association for Computational Linguistics},
  pages = {563--573}
}
```
## License
[Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0)

%package help
Summary:	Development documents and examples for wikipedia2vec
Provides:	python3-wikipedia2vec-doc
%description help
[![Fury badge](https://badge.fury.io/py/wikipedia2vec.png)](http://badge.fury.io/py/wikipedia2vec)
[![CircleCI](https://circleci.com/gh/wikipedia2vec/wikipedia2vec.svg?style=svg)](https://circleci.com/gh/wikipedia2vec/wikipedia2vec)
Wikipedia2Vec is a tool used for obtaining embeddings (or vector representations) of words and entities (i.e., concepts that have corresponding pages in Wikipedia) from Wikipedia.
It is developed and maintained by [Studio Ousia](http://www.ousia.jp).
This tool enables you to learn embeddings of words and entities simultaneously, and places similar words and entities close to one another in a continuous vector space.
Embeddings can be easily trained by a single command with a publicly available Wikipedia dump as input.
This tool implements the [conventional skip-gram model](https://en.wikipedia.org/wiki/Word2vec) to learn the embeddings of words, and its extension proposed in [Yamada et al. (2016)](https://arxiv.org/abs/1601.01343) to learn the embeddings of entities.
An empirical comparison between Wikipedia2Vec and existing embedding tools (i.e., FastText, Gensim, RDF2Vec, and Wiki2vec) is available [here](https://arxiv.org/abs/1812.06280).
Documentation  are available online at [http://wikipedia2vec.github.io/](http://wikipedia2vec.github.io/).
## Basic Usage
Wikipedia2Vec can be installed via PyPI:
```bash
% pip install wikipedia2vec
```
With this tool, embeddings can be learned by running a *train* command with a Wikipedia dump as input.
For example, the following commands download the latest English Wikipedia dump and learn embeddings from this dump:
```bash
% wget https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
% wikipedia2vec train enwiki-latest-pages-articles.xml.bz2 MODEL_FILE
```
Then, the learned embeddings are written to *MODEL\_FILE*.
Note that this command can take many optional parameters.
Please refer to [our documentation](https://wikipedia2vec.github.io/wikipedia2vec/commands/) for further details.
## Pretrained Embeddings
Pretrained embeddings for 12 languages (i.e., English, Arabic, Chinese, Dutch, French, German, Italian, Japanese, Polish, Portuguese, Russian, and Spanish) can be downloaded from [this page](https://wikipedia2vec.github.io/wikipedia2vec/pretrained/).
## Use Cases
Wikipedia2Vec has been applied to the following tasks:
* Entity linking: [Yamada et al., 2016](https://arxiv.org/abs/1601.01343), [Eshel et al., 2017](https://arxiv.org/abs/1706.09147), [Chen et al., 2019](https://arxiv.org/abs/1911.03834), [Poerner et al., 2020](https://arxiv.org/abs/1911.03681), [van Hulst et al., 2020](https://arxiv.org/abs/2006.01969).
* Named entity recognition: [Sato et al., 2017](http://www.aclweb.org/anthology/I17-2017), [Lara-Clares and Garcia-Serrano, 2019](http://ceur-ws.org/Vol-2421/eHealth-KD_paper_6.pdf).
* Question answering: [Yamada et al., 2017](https://arxiv.org/abs/1803.08652), [Poerner et al., 2020](https://arxiv.org/abs/1911.03681).
* Entity typing: [Yamada et al., 2018](https://arxiv.org/abs/1806.02960).
* Text classification: [Yamada et al., 2018](https://arxiv.org/abs/1806.02960), [Yamada and Shindo, 2019](https://arxiv.org/abs/1909.01259), [Alam et al., 2020](https://link.springer.com/chapter/10.1007/978-3-030-61244-3_9).
* Relation classification: [Poerner et al., 2020](https://arxiv.org/abs/1911.03681).
* Paraphrase detection: [Duong et al., 2018](https://ieeexplore.ieee.org/abstract/document/8606845).
* Knowledge graph completion: [Shah et al., 2019](https://aaai.org/ojs/index.php/AAAI/article/view/4162), [Shah et al., 2020](https://www.aclweb.org/anthology/2020.textgraphs-1.9/).
* Fake news detection: [Singh et al., 2019](https://arxiv.org/abs/1906.11126), [Ghosal et al., 2020](https://arxiv.org/abs/2010.10836).
* Plot analysis of movies: [Papalampidi et al., 2019](https://arxiv.org/abs/1908.10328).
* Novel entity discovery: [Zhang et al., 2020](https://arxiv.org/abs/2002.00206).
* Entity retrieval: [Gerritse et al., 2020](https://link.springer.com/chapter/10.1007%2F978-3-030-45439-5_7).
* Deepfake detection: [Zhong et al., 2020](https://arxiv.org/abs/2010.07475).
* Conversational information seeking: [Rodriguez et al., 2020](https://arxiv.org/abs/2005.00172).
* Query expansion: [Rosin et al., 2020](https://arxiv.org/abs/2012.12065).
## References
If you use Wikipedia2Vec in a scientific publication, please cite the following paper:
Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu Takefuji, Yuji Matsumoto, [Wikipedia2Vec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from Wikipedia](https://arxiv.org/abs/1812.06280).
```
@inproceedings{yamada2020wikipedia2vec,
  title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia",
  author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji},
  booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
  year = {2020},
  publisher = {Association for Computational Linguistics},
  pages = {23--30}
}
```
The embedding model was originally proposed in the following paper:
Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu Takefuji, [Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation](https://arxiv.org/abs/1601.01343).
```
@inproceedings{yamada2016joint,
  title={Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation},
  author={Yamada, Ikuya and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu},
  booktitle={Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning},
  year={2016},
  publisher={Association for Computational Linguistics},
  pages={250--259}
}
```
The text classification model implemented in [this example](https://github.com/wikipedia2vec/wikipedia2vec/tree/master/examples/text_classification) was proposed in the following paper:
Ikuya Yamada, Hiroyuki Shindo, [Neural Attentive Bag-of-Entities Model for Text Classification](https://arxiv.org/abs/1909.01259).
```
@article{yamada2019neural,
  title={Neural Attentive Bag-of-Entities Model for Text Classification},
  author={Yamada, Ikuya and Shindo, Hiroyuki},
  booktitle={Proceedings of The 23th SIGNLL Conference on Computational Natural Language Learning},
  year={2019},
  publisher={Association for Computational Linguistics},
  pages = {563--573}
}
```
## License
[Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0)

%prep
%autosetup -n wikipedia2vec-1.0.5

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-wikipedia2vec -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.5-1
- Package Spec generated