summaryrefslogtreecommitdiff
path: root/python-wmd.spec
blob: 1d04de99a97427955a87447cd90751432193b223 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
%global _empty_manifest_terminate_build 0
Name:		python-wmd
Version:	1.3.2
Release:	1
Summary:	Accelerated functions to calculate Word Mover's Distance
License:	Apache Software License
URL:		https://github.com/src-d/wmd-relax
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/e5/14/e1d122e56607ae49999041f372fa14166eb1e3b838122118d706f9bf1620/wmd-1.3.2.tar.gz
BuildArch:	noarch


%description
Calculates Word Mover's Distance as described in
[From Word Embeddings To Document Distances](http://www.cs.cornell.edu/~kilian/papers/wmd_metric.pdf)
by Matt Kusner, Yu Sun, Nicholas Kolkin and Kilian Weinberger.
<img src="doc/wmd.png" alt="Word Mover's Distance" width="200"/>
The high level logic is written in Python, the low level functions related to
linear programming are offloaded to the bundled native extension. The native
extension can be built as a generic shared library not related to Python at all.
**Python 2.7 and older are not supported.** The heavy-lifting is done by
[google/or-tools](https://github.com/google/or-tools).
### Installation
```
pip3 install wmd
```
Tested on Linux and macOS.
### Usage
You should have the embeddings numpy array and the nbow model - that is,
every sample is a weighted set of items, and every item is embedded.
```python
import numpy
from wmd import WMD
embeddings = numpy.array([[0.1, 1], [1, 0.1]], dtype=numpy.float32)
nbow = {"first":  ("#1", [0, 1], numpy.array([1.5, 0.5], dtype=numpy.float32)),
        "second": ("#2", [0, 1], numpy.array([0.75, 0.15], dtype=numpy.float32))}
calc = WMD(embeddings, nbow, vocabulary_min=2)
print(calc.nearest_neighbors("first"))
```
```
[('second', 0.10606599599123001)]
```
`embeddings` must support `__getitem__` which returns an item by it's
identifier; particularly, `numpy.ndarray` matches that interface.
`nbow` must be iterable - returns sample identifiers - and support
`__getitem__` by those identifiers which returns tuples of length 3.
The first element is the human-readable name of the sample, the
second is an iterable with item identifiers and the third is `numpy.ndarray`
with the corresponding weights. All numpy arrays must be float32. The return
format is the list of tuples with sample identifiers and relevancy
indices (lower the better).
It is possible to use this package with [spaCy](https://github.com/explosion/spaCy):
```python
import spacy
import wmd
nlp = spacy.load('en_core_web_md')
nlp.add_pipe(wmd.WMD.SpacySimilarityHook(nlp), last=True)
doc1 = nlp("Politician speaks to the media in Illinois.")
doc2 = nlp("The president greets the press in Chicago.")
print(doc1.similarity(doc2))
```
Besides, see another [example](spacy_example.py) which finds similar Wikipedia
pages.
### Building from source
Either build it as a Python package:
```
pip3 install git+https://github.com/src-d/wmd-relax
```
or use CMake:
```
git clone --recursive https://github.com/src-d/wmd-relax
cmake -D CMAKE_BUILD_TYPE=Release .
make -j
```
Please note the `--recursive` flag for `git clone`. This project uses source{d}'s
fork of [google/or-tools](https://github.com/google/or-tools) as the git submodule.
### Tests
Tests are in `test.py` and use the stock `unittest` package.
### Documentation
```
cd doc
make html
```
The files are in `doc/doxyhtml` and `doc/html` directories.
### Contributions
### License
[Apache 2.0](LICENSE.md)
#### README {#ignore_this_doxygen_anchor}

%package -n python3-wmd
Summary:	Accelerated functions to calculate Word Mover's Distance
Provides:	python-wmd
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-wmd
Calculates Word Mover's Distance as described in
[From Word Embeddings To Document Distances](http://www.cs.cornell.edu/~kilian/papers/wmd_metric.pdf)
by Matt Kusner, Yu Sun, Nicholas Kolkin and Kilian Weinberger.
<img src="doc/wmd.png" alt="Word Mover's Distance" width="200"/>
The high level logic is written in Python, the low level functions related to
linear programming are offloaded to the bundled native extension. The native
extension can be built as a generic shared library not related to Python at all.
**Python 2.7 and older are not supported.** The heavy-lifting is done by
[google/or-tools](https://github.com/google/or-tools).
### Installation
```
pip3 install wmd
```
Tested on Linux and macOS.
### Usage
You should have the embeddings numpy array and the nbow model - that is,
every sample is a weighted set of items, and every item is embedded.
```python
import numpy
from wmd import WMD
embeddings = numpy.array([[0.1, 1], [1, 0.1]], dtype=numpy.float32)
nbow = {"first":  ("#1", [0, 1], numpy.array([1.5, 0.5], dtype=numpy.float32)),
        "second": ("#2", [0, 1], numpy.array([0.75, 0.15], dtype=numpy.float32))}
calc = WMD(embeddings, nbow, vocabulary_min=2)
print(calc.nearest_neighbors("first"))
```
```
[('second', 0.10606599599123001)]
```
`embeddings` must support `__getitem__` which returns an item by it's
identifier; particularly, `numpy.ndarray` matches that interface.
`nbow` must be iterable - returns sample identifiers - and support
`__getitem__` by those identifiers which returns tuples of length 3.
The first element is the human-readable name of the sample, the
second is an iterable with item identifiers and the third is `numpy.ndarray`
with the corresponding weights. All numpy arrays must be float32. The return
format is the list of tuples with sample identifiers and relevancy
indices (lower the better).
It is possible to use this package with [spaCy](https://github.com/explosion/spaCy):
```python
import spacy
import wmd
nlp = spacy.load('en_core_web_md')
nlp.add_pipe(wmd.WMD.SpacySimilarityHook(nlp), last=True)
doc1 = nlp("Politician speaks to the media in Illinois.")
doc2 = nlp("The president greets the press in Chicago.")
print(doc1.similarity(doc2))
```
Besides, see another [example](spacy_example.py) which finds similar Wikipedia
pages.
### Building from source
Either build it as a Python package:
```
pip3 install git+https://github.com/src-d/wmd-relax
```
or use CMake:
```
git clone --recursive https://github.com/src-d/wmd-relax
cmake -D CMAKE_BUILD_TYPE=Release .
make -j
```
Please note the `--recursive` flag for `git clone`. This project uses source{d}'s
fork of [google/or-tools](https://github.com/google/or-tools) as the git submodule.
### Tests
Tests are in `test.py` and use the stock `unittest` package.
### Documentation
```
cd doc
make html
```
The files are in `doc/doxyhtml` and `doc/html` directories.
### Contributions
### License
[Apache 2.0](LICENSE.md)
#### README {#ignore_this_doxygen_anchor}

%package help
Summary:	Development documents and examples for wmd
Provides:	python3-wmd-doc
%description help
Calculates Word Mover's Distance as described in
[From Word Embeddings To Document Distances](http://www.cs.cornell.edu/~kilian/papers/wmd_metric.pdf)
by Matt Kusner, Yu Sun, Nicholas Kolkin and Kilian Weinberger.
<img src="doc/wmd.png" alt="Word Mover's Distance" width="200"/>
The high level logic is written in Python, the low level functions related to
linear programming are offloaded to the bundled native extension. The native
extension can be built as a generic shared library not related to Python at all.
**Python 2.7 and older are not supported.** The heavy-lifting is done by
[google/or-tools](https://github.com/google/or-tools).
### Installation
```
pip3 install wmd
```
Tested on Linux and macOS.
### Usage
You should have the embeddings numpy array and the nbow model - that is,
every sample is a weighted set of items, and every item is embedded.
```python
import numpy
from wmd import WMD
embeddings = numpy.array([[0.1, 1], [1, 0.1]], dtype=numpy.float32)
nbow = {"first":  ("#1", [0, 1], numpy.array([1.5, 0.5], dtype=numpy.float32)),
        "second": ("#2", [0, 1], numpy.array([0.75, 0.15], dtype=numpy.float32))}
calc = WMD(embeddings, nbow, vocabulary_min=2)
print(calc.nearest_neighbors("first"))
```
```
[('second', 0.10606599599123001)]
```
`embeddings` must support `__getitem__` which returns an item by it's
identifier; particularly, `numpy.ndarray` matches that interface.
`nbow` must be iterable - returns sample identifiers - and support
`__getitem__` by those identifiers which returns tuples of length 3.
The first element is the human-readable name of the sample, the
second is an iterable with item identifiers and the third is `numpy.ndarray`
with the corresponding weights. All numpy arrays must be float32. The return
format is the list of tuples with sample identifiers and relevancy
indices (lower the better).
It is possible to use this package with [spaCy](https://github.com/explosion/spaCy):
```python
import spacy
import wmd
nlp = spacy.load('en_core_web_md')
nlp.add_pipe(wmd.WMD.SpacySimilarityHook(nlp), last=True)
doc1 = nlp("Politician speaks to the media in Illinois.")
doc2 = nlp("The president greets the press in Chicago.")
print(doc1.similarity(doc2))
```
Besides, see another [example](spacy_example.py) which finds similar Wikipedia
pages.
### Building from source
Either build it as a Python package:
```
pip3 install git+https://github.com/src-d/wmd-relax
```
or use CMake:
```
git clone --recursive https://github.com/src-d/wmd-relax
cmake -D CMAKE_BUILD_TYPE=Release .
make -j
```
Please note the `--recursive` flag for `git clone`. This project uses source{d}'s
fork of [google/or-tools](https://github.com/google/or-tools) as the git submodule.
### Tests
Tests are in `test.py` and use the stock `unittest` package.
### Documentation
```
cd doc
make html
```
The files are in `doc/doxyhtml` and `doc/html` directories.
### Contributions
### License
[Apache 2.0](LICENSE.md)
#### README {#ignore_this_doxygen_anchor}

%prep
%autosetup -n wmd-1.3.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-wmd -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 1.3.2-1
- Package Spec generated