summaryrefslogtreecommitdiff
path: root/python-wombat-db.spec
blob: 2d25fc14a736dc860cada1acefc5cdc225bd5c2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
%global _empty_manifest_terminate_build 0
Name:		python-wombat-db
Version:	0.0.18
Release:	1
Summary:	Useful data crunching tools for pyarrow
License:	APACHE
URL:		https://github.com/TomScheffers/wombat
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/d3/24/88e245a2833b96e768bfa958c0a67f6fe6496c6489adf37ea4a7cda4bd91/wombat_db-0.0.18.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-pyarrow

%description
# Wombat
Wombat is Python libary for data crunching operations directly on the pyarrow.Table class, implemented in numpy & Cython. For convenience, function naming and behavior tries to replicates that of the Pandas API / Postgresql language.

Current features:
- Engine API (lazy execution):
    - Operate directly on Pyarrow tables and datasets
    - Filter push-downs to optimize speed (only read subset of partitions)
    - Column tracking: only read subset of columns in data
    - Many operations (join, aggregate, filters, drop_duplicates, ...)
    - Numerical / logical operations on Column references
    - Caching based on hashed subtrees and reference counting
    - Visualize Plan using df.plot(file) (required graphviz)
- Operation API (direct execution): 
    - Data operations like joins, aggregations, filters & drop_duplicates
- ML preprocessing API: 
    - Categorical, numericals and one-hot processing directly on pa.Tables
    - Reusable: Serialize cleaners to JSON for using in inference
- SQL API (under construction)
- DB Management API (under construction)

## Installation

Use the package manager [pip](https://pip.pypa.io/en/stable/) to install wombat.

```bash
pip install wombat_db
```

## Usage
See tests folder for more code examples

Dataframe API:
```python
from wombat import Engine, head
import pyarrow.parquet as pq

# Create Engine and register_dataset/table
db = Engine(cache_memory=1e9)
db.register_dataset('skus', pq.ParquetDataset('data/skus'))
db.register_dataset('stock_current', pq.ParquetDataset('data/stock_current'))

# Selecting a table from db generates a Plan object
df = db['stock_current']

# Operations can be chained, adding nodes to the Plan
df = df.filter([('org_key', '=', 0), ('store_key', '<=', 200)]) \
    .join(db['skus'], on=['org_key', 'sku_key']) \
    .aggregate(by=['option_key'], methods={'economical': 'sum', 'technical':'max'})

# Selecting strings from the Dataframe object, yields a column reference
df['stock'] = df['economical'].coalesce(0).least(df['technical']).greatest(0)

# A column reference can be used for numerical & logical operations
df['calculated'] = ((df['stock'] - 100) ** 2 / 5000 - df['stock']).clip(None, 5000)
df['check'] = ~(df['calculated'] == 5000) and (df['stock'] > 10000)

# We can filter using the boolean column as value
df[~(df['calculated'] == 5000)]

# Register UDF (pa.array -> pa.array)
db.register_udf('power', lambda arr: pa.array(arr.to_numpy() ** 2))
df['economical ** 2'] = df.udf('power', df['economical'])

# Rename columns
df.rename({'economical': 'economical_sum', 'technical': 'technical_max'})

# Select a subselection of columns (not necessary)
df.select(['option_key', 'economical_sum', 'calculated', 'check', 'economical ** 2'])

# You do not need to catch the return for chaining of operations
df.orderby('calculated', ascending=False)

# Collect is used to execute the plan
r = df.collect(verbose=True)
head(r)

# Cache is hit when same operations are repeated
# JOIN hits cache here, as filters are propagated down
df = db['stock_current'] \
    .join(db['skus'], on=['org_key', 'sku_key']) \
    .filter([('org_key', '=', 0), ('store_key', '<=', 200)]) \
    .aggregate(by=['option_key'], methods={'economical': 'max', 'technical':'sum'}) \
    .orderby('economical', ascending=False)
r = df.collect(verbose=True)
head(r)
```

### To Do's
- [ ] Add unit tests using pytest
- [ ] Add more join options (left, right, outer, full, cross)
- [ ] Track schema in forward pass
- [ ] Improve groupify operation for multi columns joins / groups
- [ ] Serialize cache (to disk)
- [ ] Serialize database (to disk)

## Contributing
Pull requests are very welcome, however I believe in 80% of the utility in 20% of the code. I personally get lost reading the tranches of complicated code bases. If you would like to seriously improve this work, please let me know!



%package -n python3-wombat-db
Summary:	Useful data crunching tools for pyarrow
Provides:	python-wombat-db
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-wombat-db
# Wombat
Wombat is Python libary for data crunching operations directly on the pyarrow.Table class, implemented in numpy & Cython. For convenience, function naming and behavior tries to replicates that of the Pandas API / Postgresql language.

Current features:
- Engine API (lazy execution):
    - Operate directly on Pyarrow tables and datasets
    - Filter push-downs to optimize speed (only read subset of partitions)
    - Column tracking: only read subset of columns in data
    - Many operations (join, aggregate, filters, drop_duplicates, ...)
    - Numerical / logical operations on Column references
    - Caching based on hashed subtrees and reference counting
    - Visualize Plan using df.plot(file) (required graphviz)
- Operation API (direct execution): 
    - Data operations like joins, aggregations, filters & drop_duplicates
- ML preprocessing API: 
    - Categorical, numericals and one-hot processing directly on pa.Tables
    - Reusable: Serialize cleaners to JSON for using in inference
- SQL API (under construction)
- DB Management API (under construction)

## Installation

Use the package manager [pip](https://pip.pypa.io/en/stable/) to install wombat.

```bash
pip install wombat_db
```

## Usage
See tests folder for more code examples

Dataframe API:
```python
from wombat import Engine, head
import pyarrow.parquet as pq

# Create Engine and register_dataset/table
db = Engine(cache_memory=1e9)
db.register_dataset('skus', pq.ParquetDataset('data/skus'))
db.register_dataset('stock_current', pq.ParquetDataset('data/stock_current'))

# Selecting a table from db generates a Plan object
df = db['stock_current']

# Operations can be chained, adding nodes to the Plan
df = df.filter([('org_key', '=', 0), ('store_key', '<=', 200)]) \
    .join(db['skus'], on=['org_key', 'sku_key']) \
    .aggregate(by=['option_key'], methods={'economical': 'sum', 'technical':'max'})

# Selecting strings from the Dataframe object, yields a column reference
df['stock'] = df['economical'].coalesce(0).least(df['technical']).greatest(0)

# A column reference can be used for numerical & logical operations
df['calculated'] = ((df['stock'] - 100) ** 2 / 5000 - df['stock']).clip(None, 5000)
df['check'] = ~(df['calculated'] == 5000) and (df['stock'] > 10000)

# We can filter using the boolean column as value
df[~(df['calculated'] == 5000)]

# Register UDF (pa.array -> pa.array)
db.register_udf('power', lambda arr: pa.array(arr.to_numpy() ** 2))
df['economical ** 2'] = df.udf('power', df['economical'])

# Rename columns
df.rename({'economical': 'economical_sum', 'technical': 'technical_max'})

# Select a subselection of columns (not necessary)
df.select(['option_key', 'economical_sum', 'calculated', 'check', 'economical ** 2'])

# You do not need to catch the return for chaining of operations
df.orderby('calculated', ascending=False)

# Collect is used to execute the plan
r = df.collect(verbose=True)
head(r)

# Cache is hit when same operations are repeated
# JOIN hits cache here, as filters are propagated down
df = db['stock_current'] \
    .join(db['skus'], on=['org_key', 'sku_key']) \
    .filter([('org_key', '=', 0), ('store_key', '<=', 200)]) \
    .aggregate(by=['option_key'], methods={'economical': 'max', 'technical':'sum'}) \
    .orderby('economical', ascending=False)
r = df.collect(verbose=True)
head(r)
```

### To Do's
- [ ] Add unit tests using pytest
- [ ] Add more join options (left, right, outer, full, cross)
- [ ] Track schema in forward pass
- [ ] Improve groupify operation for multi columns joins / groups
- [ ] Serialize cache (to disk)
- [ ] Serialize database (to disk)

## Contributing
Pull requests are very welcome, however I believe in 80% of the utility in 20% of the code. I personally get lost reading the tranches of complicated code bases. If you would like to seriously improve this work, please let me know!



%package help
Summary:	Development documents and examples for wombat-db
Provides:	python3-wombat-db-doc
%description help
# Wombat
Wombat is Python libary for data crunching operations directly on the pyarrow.Table class, implemented in numpy & Cython. For convenience, function naming and behavior tries to replicates that of the Pandas API / Postgresql language.

Current features:
- Engine API (lazy execution):
    - Operate directly on Pyarrow tables and datasets
    - Filter push-downs to optimize speed (only read subset of partitions)
    - Column tracking: only read subset of columns in data
    - Many operations (join, aggregate, filters, drop_duplicates, ...)
    - Numerical / logical operations on Column references
    - Caching based on hashed subtrees and reference counting
    - Visualize Plan using df.plot(file) (required graphviz)
- Operation API (direct execution): 
    - Data operations like joins, aggregations, filters & drop_duplicates
- ML preprocessing API: 
    - Categorical, numericals and one-hot processing directly on pa.Tables
    - Reusable: Serialize cleaners to JSON for using in inference
- SQL API (under construction)
- DB Management API (under construction)

## Installation

Use the package manager [pip](https://pip.pypa.io/en/stable/) to install wombat.

```bash
pip install wombat_db
```

## Usage
See tests folder for more code examples

Dataframe API:
```python
from wombat import Engine, head
import pyarrow.parquet as pq

# Create Engine and register_dataset/table
db = Engine(cache_memory=1e9)
db.register_dataset('skus', pq.ParquetDataset('data/skus'))
db.register_dataset('stock_current', pq.ParquetDataset('data/stock_current'))

# Selecting a table from db generates a Plan object
df = db['stock_current']

# Operations can be chained, adding nodes to the Plan
df = df.filter([('org_key', '=', 0), ('store_key', '<=', 200)]) \
    .join(db['skus'], on=['org_key', 'sku_key']) \
    .aggregate(by=['option_key'], methods={'economical': 'sum', 'technical':'max'})

# Selecting strings from the Dataframe object, yields a column reference
df['stock'] = df['economical'].coalesce(0).least(df['technical']).greatest(0)

# A column reference can be used for numerical & logical operations
df['calculated'] = ((df['stock'] - 100) ** 2 / 5000 - df['stock']).clip(None, 5000)
df['check'] = ~(df['calculated'] == 5000) and (df['stock'] > 10000)

# We can filter using the boolean column as value
df[~(df['calculated'] == 5000)]

# Register UDF (pa.array -> pa.array)
db.register_udf('power', lambda arr: pa.array(arr.to_numpy() ** 2))
df['economical ** 2'] = df.udf('power', df['economical'])

# Rename columns
df.rename({'economical': 'economical_sum', 'technical': 'technical_max'})

# Select a subselection of columns (not necessary)
df.select(['option_key', 'economical_sum', 'calculated', 'check', 'economical ** 2'])

# You do not need to catch the return for chaining of operations
df.orderby('calculated', ascending=False)

# Collect is used to execute the plan
r = df.collect(verbose=True)
head(r)

# Cache is hit when same operations are repeated
# JOIN hits cache here, as filters are propagated down
df = db['stock_current'] \
    .join(db['skus'], on=['org_key', 'sku_key']) \
    .filter([('org_key', '=', 0), ('store_key', '<=', 200)]) \
    .aggregate(by=['option_key'], methods={'economical': 'max', 'technical':'sum'}) \
    .orderby('economical', ascending=False)
r = df.collect(verbose=True)
head(r)
```

### To Do's
- [ ] Add unit tests using pytest
- [ ] Add more join options (left, right, outer, full, cross)
- [ ] Track schema in forward pass
- [ ] Improve groupify operation for multi columns joins / groups
- [ ] Serialize cache (to disk)
- [ ] Serialize database (to disk)

## Contributing
Pull requests are very welcome, however I believe in 80% of the utility in 20% of the code. I personally get lost reading the tranches of complicated code bases. If you would like to seriously improve this work, please let me know!



%prep
%autosetup -n wombat-db-0.0.18

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-wombat-db -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.18-1
- Package Spec generated