summaryrefslogtreecommitdiff
path: root/python-woodwork.spec
blob: 82f216b10c5f34d8f0f280428ff581c4448df8c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
%global _empty_manifest_terminate_build 0
Name:		python-woodwork
Version:	0.22.0
Release:	1
Summary:	a data typing library for machine learning
License:	BSD 3-Clause License  Copyright (c) 2019, Alteryx, Inc. All rights reserved.  Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:  * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.  * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.  * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
URL:		https://pypi.org/project/woodwork/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/ee/8f/75b7a6e086df46ad47fd6f482108b673f9ecbe74660cad2f26a3984f5a74/woodwork-0.22.0.tar.gz
BuildArch:	noarch

Requires:	python3-pandas
Requires:	python3-scikit-learn
Requires:	python3-dateutil
Requires:	python3-scipy
Requires:	python3-importlib-resources
Requires:	python3-numpy
Requires:	python3-woodwork[dask,spark,updater]
Requires:	python3-dask[dataframe]
Requires:	python3-ruff
Requires:	python3-black[jupyter]
Requires:	python3-pre-commit
Requires:	python3-click
Requires:	python3-woodwork[dask,docs,spark,test]
Requires:	python3-Sphinx
Requires:	python3-nbsphinx
Requires:	python3-pydata-sphinx-theme
Requires:	python3-sphinx-inline-tabs
Requires:	python3-sphinx-copybutton
Requires:	python3-myst-parser
Requires:	python3-nbconvert
Requires:	python3-ipython
Requires:	python3-jupyter
Requires:	python3-woodwork[dask,spark,test]
Requires:	python3-pyspark
Requires:	python3-pandas
Requires:	python3-numpy
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-pytest-xdist
Requires:	python3-boto3
Requires:	python3-moto[all]
Requires:	python3-smart-open
Requires:	python3-pyarrow
Requires:	python3-alteryx-open-src-update-checker

%description
<p align="center"><img width=50% src="https://woodwork-web-images.s3.amazonaws.com/woodwork.svg" alt="Woodwork" /></p>
<p align="center">
    <a href="https://github.com/alteryx/woodwork/actions?query=branch%3Amain+workflow%3ATests" target="_blank">
        <img src="https://github.com/alteryx/woodwork/workflows/Tests/badge.svg?branch=main" alt="Tests" />
    </a>
    <a href="https://codecov.io/gh/alteryx/woodwork">
        <img src="https://codecov.io/gh/alteryx/woodwork/branch/main/graph/badge.svg?token=KJCKMREBDP"/>
    </a>
    <a href="https://woodwork.alteryx.com/en/latest/?badge=stable" target="_blank">
        <img src="https://readthedocs.com/projects/feature-labs-inc-datatables/badge/?version=stable" alt="Documentation Status" />
    </a>
    <a href="https://badge.fury.io/py/woodwork" target="_blank">
        <img src="https://badge.fury.io/py/woodwork.svg?maxAge=2592000" alt="PyPI Version" />
    </a>
    <a href="https://anaconda.org/conda-forge/woodwork" target="_blank">
        <img src="https://anaconda.org/conda-forge/woodwork/badges/version.svg" alt="Anaconda Version" />
    </a>
    <a href="https://pepy.tech/project/woodwork" target="_blank">
        <img src="https://pepy.tech/badge/woodwork/month" alt="PyPI Downloads" />
    </a>
</p>
<hr>

Woodwork provides a common typing namespace for using your existing DataFrames in Featuretools, EvalML, and general ML. A Woodwork
DataFrame stores the physical, logical, and semantic data types present in the data. In addition, it can store metadata about the data, allowing you to store specific information you might need for your application.

## Installation

Install with pip:

```bash
python -m pip install woodwork
```

or from the conda-forge channel on [conda](https://anaconda.org/conda-forge/woodwork):

```bash
conda install -c conda-forge woodwork
```

### Add-ons
**Update checker** - Receive automatic notifications of new Woodwork releases
```bash
python -m pip install "woodwork[updater]"
```

## Example

Below is an example of using Woodwork. In this example, a sample dataset of order items is used to create a Woodwork `DataFrame`, specifying the `LogicalType` for five of the columns.

```python
import pandas as pd
import woodwork as ww

df = pd.read_csv("https://oss.alteryx.com/datasets/online-retail-logs-2018-08-28.csv")
df.ww.init(name='retail')
df.ww.set_types(logical_types={
    'quantity': 'Integer',
    'customer_name': 'PersonFullName',
    'country': 'Categorical',
    'order_id': 'Categorical',
    'description': 'NaturalLanguage',
})
df.ww
```

```
                   Physical Type     Logical Type Semantic Tag(s)
Column
order_id                category      Categorical    ['category']
product_id              category      Categorical    ['category']
description               string  NaturalLanguage              []
quantity                   int64          Integer     ['numeric']
order_date        datetime64[ns]         Datetime              []
unit_price               float64           Double     ['numeric']
customer_name             string   PersonFullName              []
country                 category      Categorical    ['category']
total                    float64           Double     ['numeric']
cancelled                   bool          Boolean              []
```

We now have initialized Woodwork on the DataFrame with the specified logical types assigned. For columns that did not have a specified logical type value, Woodwork has automatically inferred the logical type based on the underlying data. Additionally, Woodwork has automatically assigned semantic tags to some of the columns, based on the inferred or assigned logical type.

If we wanted to do further analysis on only the columns in this table that have a logical type of `Boolean` or a semantic tag of `numeric` we can simply select those columns and access a dataframe containing just those columns:

```python
filtered_df = df.ww.select(include=['Boolean', 'numeric'])
filtered_df
```

```
    quantity  unit_price   total  cancelled
0          6      4.2075  25.245      False
1          6      5.5935  33.561      False
2          8      4.5375  36.300      False
3          6      5.5935  33.561      False
4          6      5.5935  33.561      False
..       ...         ...     ...        ...
95         6      4.2075  25.245      False
96       120      0.6930  83.160      False
97        24      0.9075  21.780      False
98        24      0.9075  21.780      False
99        24      0.9075  21.780      False
```

As you can see, Woodwork makes it easy to manage typing information for your data, and provides simple interfaces to access only the data you need based on the logical types or semantic tags. Please refer to the [Woodwork documentation](https://woodwork.alteryx.com/) for more detail on working with a Woodwork DataFrame.

## Support
The Woodwork community is happy to provide support to users of Woodwork. Project support can be found in four places depending on the type of question:
1. For usage questions, use [Stack Overflow](https://stackoverflow.com/questions/tagged/woodwork) with the `woodwork` tag.
2. For bugs, issues, or feature requests start a [Github issue](https://github.com/alteryx/woodwork/issues).
3. For discussion regarding development on the core library, use [Slack](https://join.slack.com/t/alteryx-oss/shared_invite/zt-182tyvuxv-NzIn6eiCEf8TBziuKp0bNA).
4. For everything else, the core developers can be reached by email at open_source_support@alteryx.com

## Built at Alteryx

**Woodwork** is an open source project built by [Alteryx](https://www.alteryx.com). To see the other open source projects we’re working on visit [Alteryx Open Source](https://www.alteryx.com/open-source). If building impactful data science pipelines is important to you or your business, please get in touch.

<p align="center">
  <a href="https://www.alteryx.com/open-source">
    <img src="https://alteryx-oss-web-images.s3.amazonaws.com/OpenSource_Logo-01.png" alt="Alteryx Open Source" width="800"/>
  </a>
</p>


%package -n python3-woodwork
Summary:	a data typing library for machine learning
Provides:	python-woodwork
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-woodwork
<p align="center"><img width=50% src="https://woodwork-web-images.s3.amazonaws.com/woodwork.svg" alt="Woodwork" /></p>
<p align="center">
    <a href="https://github.com/alteryx/woodwork/actions?query=branch%3Amain+workflow%3ATests" target="_blank">
        <img src="https://github.com/alteryx/woodwork/workflows/Tests/badge.svg?branch=main" alt="Tests" />
    </a>
    <a href="https://codecov.io/gh/alteryx/woodwork">
        <img src="https://codecov.io/gh/alteryx/woodwork/branch/main/graph/badge.svg?token=KJCKMREBDP"/>
    </a>
    <a href="https://woodwork.alteryx.com/en/latest/?badge=stable" target="_blank">
        <img src="https://readthedocs.com/projects/feature-labs-inc-datatables/badge/?version=stable" alt="Documentation Status" />
    </a>
    <a href="https://badge.fury.io/py/woodwork" target="_blank">
        <img src="https://badge.fury.io/py/woodwork.svg?maxAge=2592000" alt="PyPI Version" />
    </a>
    <a href="https://anaconda.org/conda-forge/woodwork" target="_blank">
        <img src="https://anaconda.org/conda-forge/woodwork/badges/version.svg" alt="Anaconda Version" />
    </a>
    <a href="https://pepy.tech/project/woodwork" target="_blank">
        <img src="https://pepy.tech/badge/woodwork/month" alt="PyPI Downloads" />
    </a>
</p>
<hr>

Woodwork provides a common typing namespace for using your existing DataFrames in Featuretools, EvalML, and general ML. A Woodwork
DataFrame stores the physical, logical, and semantic data types present in the data. In addition, it can store metadata about the data, allowing you to store specific information you might need for your application.

## Installation

Install with pip:

```bash
python -m pip install woodwork
```

or from the conda-forge channel on [conda](https://anaconda.org/conda-forge/woodwork):

```bash
conda install -c conda-forge woodwork
```

### Add-ons
**Update checker** - Receive automatic notifications of new Woodwork releases
```bash
python -m pip install "woodwork[updater]"
```

## Example

Below is an example of using Woodwork. In this example, a sample dataset of order items is used to create a Woodwork `DataFrame`, specifying the `LogicalType` for five of the columns.

```python
import pandas as pd
import woodwork as ww

df = pd.read_csv("https://oss.alteryx.com/datasets/online-retail-logs-2018-08-28.csv")
df.ww.init(name='retail')
df.ww.set_types(logical_types={
    'quantity': 'Integer',
    'customer_name': 'PersonFullName',
    'country': 'Categorical',
    'order_id': 'Categorical',
    'description': 'NaturalLanguage',
})
df.ww
```

```
                   Physical Type     Logical Type Semantic Tag(s)
Column
order_id                category      Categorical    ['category']
product_id              category      Categorical    ['category']
description               string  NaturalLanguage              []
quantity                   int64          Integer     ['numeric']
order_date        datetime64[ns]         Datetime              []
unit_price               float64           Double     ['numeric']
customer_name             string   PersonFullName              []
country                 category      Categorical    ['category']
total                    float64           Double     ['numeric']
cancelled                   bool          Boolean              []
```

We now have initialized Woodwork on the DataFrame with the specified logical types assigned. For columns that did not have a specified logical type value, Woodwork has automatically inferred the logical type based on the underlying data. Additionally, Woodwork has automatically assigned semantic tags to some of the columns, based on the inferred or assigned logical type.

If we wanted to do further analysis on only the columns in this table that have a logical type of `Boolean` or a semantic tag of `numeric` we can simply select those columns and access a dataframe containing just those columns:

```python
filtered_df = df.ww.select(include=['Boolean', 'numeric'])
filtered_df
```

```
    quantity  unit_price   total  cancelled
0          6      4.2075  25.245      False
1          6      5.5935  33.561      False
2          8      4.5375  36.300      False
3          6      5.5935  33.561      False
4          6      5.5935  33.561      False
..       ...         ...     ...        ...
95         6      4.2075  25.245      False
96       120      0.6930  83.160      False
97        24      0.9075  21.780      False
98        24      0.9075  21.780      False
99        24      0.9075  21.780      False
```

As you can see, Woodwork makes it easy to manage typing information for your data, and provides simple interfaces to access only the data you need based on the logical types or semantic tags. Please refer to the [Woodwork documentation](https://woodwork.alteryx.com/) for more detail on working with a Woodwork DataFrame.

## Support
The Woodwork community is happy to provide support to users of Woodwork. Project support can be found in four places depending on the type of question:
1. For usage questions, use [Stack Overflow](https://stackoverflow.com/questions/tagged/woodwork) with the `woodwork` tag.
2. For bugs, issues, or feature requests start a [Github issue](https://github.com/alteryx/woodwork/issues).
3. For discussion regarding development on the core library, use [Slack](https://join.slack.com/t/alteryx-oss/shared_invite/zt-182tyvuxv-NzIn6eiCEf8TBziuKp0bNA).
4. For everything else, the core developers can be reached by email at open_source_support@alteryx.com

## Built at Alteryx

**Woodwork** is an open source project built by [Alteryx](https://www.alteryx.com). To see the other open source projects we’re working on visit [Alteryx Open Source](https://www.alteryx.com/open-source). If building impactful data science pipelines is important to you or your business, please get in touch.

<p align="center">
  <a href="https://www.alteryx.com/open-source">
    <img src="https://alteryx-oss-web-images.s3.amazonaws.com/OpenSource_Logo-01.png" alt="Alteryx Open Source" width="800"/>
  </a>
</p>


%package help
Summary:	Development documents and examples for woodwork
Provides:	python3-woodwork-doc
%description help
<p align="center"><img width=50% src="https://woodwork-web-images.s3.amazonaws.com/woodwork.svg" alt="Woodwork" /></p>
<p align="center">
    <a href="https://github.com/alteryx/woodwork/actions?query=branch%3Amain+workflow%3ATests" target="_blank">
        <img src="https://github.com/alteryx/woodwork/workflows/Tests/badge.svg?branch=main" alt="Tests" />
    </a>
    <a href="https://codecov.io/gh/alteryx/woodwork">
        <img src="https://codecov.io/gh/alteryx/woodwork/branch/main/graph/badge.svg?token=KJCKMREBDP"/>
    </a>
    <a href="https://woodwork.alteryx.com/en/latest/?badge=stable" target="_blank">
        <img src="https://readthedocs.com/projects/feature-labs-inc-datatables/badge/?version=stable" alt="Documentation Status" />
    </a>
    <a href="https://badge.fury.io/py/woodwork" target="_blank">
        <img src="https://badge.fury.io/py/woodwork.svg?maxAge=2592000" alt="PyPI Version" />
    </a>
    <a href="https://anaconda.org/conda-forge/woodwork" target="_blank">
        <img src="https://anaconda.org/conda-forge/woodwork/badges/version.svg" alt="Anaconda Version" />
    </a>
    <a href="https://pepy.tech/project/woodwork" target="_blank">
        <img src="https://pepy.tech/badge/woodwork/month" alt="PyPI Downloads" />
    </a>
</p>
<hr>

Woodwork provides a common typing namespace for using your existing DataFrames in Featuretools, EvalML, and general ML. A Woodwork
DataFrame stores the physical, logical, and semantic data types present in the data. In addition, it can store metadata about the data, allowing you to store specific information you might need for your application.

## Installation

Install with pip:

```bash
python -m pip install woodwork
```

or from the conda-forge channel on [conda](https://anaconda.org/conda-forge/woodwork):

```bash
conda install -c conda-forge woodwork
```

### Add-ons
**Update checker** - Receive automatic notifications of new Woodwork releases
```bash
python -m pip install "woodwork[updater]"
```

## Example

Below is an example of using Woodwork. In this example, a sample dataset of order items is used to create a Woodwork `DataFrame`, specifying the `LogicalType` for five of the columns.

```python
import pandas as pd
import woodwork as ww

df = pd.read_csv("https://oss.alteryx.com/datasets/online-retail-logs-2018-08-28.csv")
df.ww.init(name='retail')
df.ww.set_types(logical_types={
    'quantity': 'Integer',
    'customer_name': 'PersonFullName',
    'country': 'Categorical',
    'order_id': 'Categorical',
    'description': 'NaturalLanguage',
})
df.ww
```

```
                   Physical Type     Logical Type Semantic Tag(s)
Column
order_id                category      Categorical    ['category']
product_id              category      Categorical    ['category']
description               string  NaturalLanguage              []
quantity                   int64          Integer     ['numeric']
order_date        datetime64[ns]         Datetime              []
unit_price               float64           Double     ['numeric']
customer_name             string   PersonFullName              []
country                 category      Categorical    ['category']
total                    float64           Double     ['numeric']
cancelled                   bool          Boolean              []
```

We now have initialized Woodwork on the DataFrame with the specified logical types assigned. For columns that did not have a specified logical type value, Woodwork has automatically inferred the logical type based on the underlying data. Additionally, Woodwork has automatically assigned semantic tags to some of the columns, based on the inferred or assigned logical type.

If we wanted to do further analysis on only the columns in this table that have a logical type of `Boolean` or a semantic tag of `numeric` we can simply select those columns and access a dataframe containing just those columns:

```python
filtered_df = df.ww.select(include=['Boolean', 'numeric'])
filtered_df
```

```
    quantity  unit_price   total  cancelled
0          6      4.2075  25.245      False
1          6      5.5935  33.561      False
2          8      4.5375  36.300      False
3          6      5.5935  33.561      False
4          6      5.5935  33.561      False
..       ...         ...     ...        ...
95         6      4.2075  25.245      False
96       120      0.6930  83.160      False
97        24      0.9075  21.780      False
98        24      0.9075  21.780      False
99        24      0.9075  21.780      False
```

As you can see, Woodwork makes it easy to manage typing information for your data, and provides simple interfaces to access only the data you need based on the logical types or semantic tags. Please refer to the [Woodwork documentation](https://woodwork.alteryx.com/) for more detail on working with a Woodwork DataFrame.

## Support
The Woodwork community is happy to provide support to users of Woodwork. Project support can be found in four places depending on the type of question:
1. For usage questions, use [Stack Overflow](https://stackoverflow.com/questions/tagged/woodwork) with the `woodwork` tag.
2. For bugs, issues, or feature requests start a [Github issue](https://github.com/alteryx/woodwork/issues).
3. For discussion regarding development on the core library, use [Slack](https://join.slack.com/t/alteryx-oss/shared_invite/zt-182tyvuxv-NzIn6eiCEf8TBziuKp0bNA).
4. For everything else, the core developers can be reached by email at open_source_support@alteryx.com

## Built at Alteryx

**Woodwork** is an open source project built by [Alteryx](https://www.alteryx.com). To see the other open source projects we’re working on visit [Alteryx Open Source](https://www.alteryx.com/open-source). If building impactful data science pipelines is important to you or your business, please get in touch.

<p align="center">
  <a href="https://www.alteryx.com/open-source">
    <img src="https://alteryx-oss-web-images.s3.amazonaws.com/OpenSource_Logo-01.png" alt="Alteryx Open Source" width="800"/>
  </a>
</p>


%prep
%autosetup -n woodwork-0.22.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-woodwork -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.22.0-1
- Package Spec generated