1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|
%global _empty_manifest_terminate_build 0
Name: python-xarray
Version: 2023.3.0
Release: 1
Summary: N-D labeled arrays and datasets in Python
License: Apache-2.0
URL: https://github.com/pydata/xarray
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/28/d1/344827ebb99f67112599791ec21d845a54f0b6a21e33eed8787bc8e440ee/xarray-2023.3.0.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-packaging
Requires: python3-scipy
Requires: python3-bottleneck
Requires: python3-numbagg
Requires: python3-flox
Requires: python3-netCDF4
Requires: python3-h5netcdf
Requires: python3-scipy
Requires: python3-zarr
Requires: python3-fsspec
Requires: python3-cftime
Requires: python3-rasterio
Requires: python3-cfgrib
Requires: python3-pooch
Requires: python3-bottleneck
Requires: python3-numbagg
Requires: python3-flox
Requires: python3-dask[complete]
Requires: python3-matplotlib
Requires: python3-seaborn
Requires: python3-nc-time-axis
Requires: python3-pydap
Requires: python3-netCDF4
Requires: python3-h5netcdf
Requires: python3-scipy
Requires: python3-zarr
Requires: python3-fsspec
Requires: python3-cftime
Requires: python3-rasterio
Requires: python3-cfgrib
Requires: python3-pooch
Requires: python3-bottleneck
Requires: python3-numbagg
Requires: python3-flox
Requires: python3-dask[complete]
Requires: python3-matplotlib
Requires: python3-seaborn
Requires: python3-nc-time-axis
Requires: python3-sphinx-autosummary-accessors
Requires: python3-sphinx-rtd-theme
Requires: python3-ipython
Requires: python3-ipykernel
Requires: python3-jupyter-client
Requires: python3-nbsphinx
Requires: python3-scanpydoc
Requires: python3-pydap
Requires: python3-netCDF4
Requires: python3-h5netcdf
Requires: python3-scipy
Requires: python3-zarr
Requires: python3-fsspec
Requires: python3-cftime
Requires: python3-rasterio
Requires: python3-cfgrib
Requires: python3-pooch
Requires: python3-pydap
Requires: python3-dask[complete]
Requires: python3-matplotlib
Requires: python3-seaborn
Requires: python3-nc-time-axis
%description
Multi-dimensional (a.k.a. N-dimensional, ND) arrays (sometimes called
"tensors") are an essential part of computational science.
They are encountered in a wide range of fields, including physics, astronomy,
geoscience, bioinformatics, engineering, finance, and deep learning.
In Python, NumPy_ provides the fundamental data structure and API for
working with raw ND arrays.
However, real-world datasets are usually more than just raw numbers;
they have labels which encode information about how the array values map
to locations in space, time, etc.
xarray doesn't just keep track of labels on arrays -- it uses them to provide a
powerful and concise interface. For example:
- Apply operations over dimensions by name: ``x.sum('time')``.
- Select values by label instead of integer location: ``x.loc['2014-01-01']`` or ``x.sel(time='2014-01-01')``.
- Mathematical operations (e.g., ``x - y``) vectorize across multiple dimensions (array broadcasting) based on dimension names, not shape.
- Flexible split-apply-combine operations with groupby: ``x.groupby('time.dayofyear').mean()``.
- Database like alignment based on coordinate labels that smoothly handles missing values: ``x, y = xr.align(x, y, join='outer')``.
- Keep track of arbitrary metadata in the form of a Python dictionary: ``x.attrs``.
%package -n python3-xarray
Summary: N-D labeled arrays and datasets in Python
Provides: python-xarray
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-xarray
Multi-dimensional (a.k.a. N-dimensional, ND) arrays (sometimes called
"tensors") are an essential part of computational science.
They are encountered in a wide range of fields, including physics, astronomy,
geoscience, bioinformatics, engineering, finance, and deep learning.
In Python, NumPy_ provides the fundamental data structure and API for
working with raw ND arrays.
However, real-world datasets are usually more than just raw numbers;
they have labels which encode information about how the array values map
to locations in space, time, etc.
xarray doesn't just keep track of labels on arrays -- it uses them to provide a
powerful and concise interface. For example:
- Apply operations over dimensions by name: ``x.sum('time')``.
- Select values by label instead of integer location: ``x.loc['2014-01-01']`` or ``x.sel(time='2014-01-01')``.
- Mathematical operations (e.g., ``x - y``) vectorize across multiple dimensions (array broadcasting) based on dimension names, not shape.
- Flexible split-apply-combine operations with groupby: ``x.groupby('time.dayofyear').mean()``.
- Database like alignment based on coordinate labels that smoothly handles missing values: ``x, y = xr.align(x, y, join='outer')``.
- Keep track of arbitrary metadata in the form of a Python dictionary: ``x.attrs``.
%package help
Summary: Development documents and examples for xarray
Provides: python3-xarray-doc
%description help
Multi-dimensional (a.k.a. N-dimensional, ND) arrays (sometimes called
"tensors") are an essential part of computational science.
They are encountered in a wide range of fields, including physics, astronomy,
geoscience, bioinformatics, engineering, finance, and deep learning.
In Python, NumPy_ provides the fundamental data structure and API for
working with raw ND arrays.
However, real-world datasets are usually more than just raw numbers;
they have labels which encode information about how the array values map
to locations in space, time, etc.
xarray doesn't just keep track of labels on arrays -- it uses them to provide a
powerful and concise interface. For example:
- Apply operations over dimensions by name: ``x.sum('time')``.
- Select values by label instead of integer location: ``x.loc['2014-01-01']`` or ``x.sel(time='2014-01-01')``.
- Mathematical operations (e.g., ``x - y``) vectorize across multiple dimensions (array broadcasting) based on dimension names, not shape.
- Flexible split-apply-combine operations with groupby: ``x.groupby('time.dayofyear').mean()``.
- Database like alignment based on coordinate labels that smoothly handles missing values: ``x, y = xr.align(x, y, join='outer')``.
- Keep track of arbitrary metadata in the form of a Python dictionary: ``x.attrs``.
%prep
%autosetup -n xarray-2023.3.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-xarray -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 2023.3.0-1
- Package Spec generated
|