summaryrefslogtreecommitdiff
path: root/python-ximilar-client.spec
blob: 566e12fef47630653f4763156cfc1442b8d383b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
%global _empty_manifest_terminate_build 0
Name:		python-ximilar-client
Version:	1.21.8
Release:	1
Summary:	The Ximilar App and Vize.ai Client.
License:	Apache 2.0
URL:		https://gitlab.com/ximilar-public/ximilar-vize-api
Source0:	https://mirrors.aliyun.com/pypi/web/packages/f9/1c/3fb4dcd03e5b42d52e644dd329c29f0627c027a386610c734a68ac74bd2d/ximilar-client-1.21.8.tar.gz
BuildArch:	noarch

Requires:	python3-requests
Requires:	python3-opencv-contrib-python-headless
Requires:	python3-pytest
Requires:	python3-tqdm

%description
# Ximilar API Python Client

![](logo.png)

This Python 3.X Client library is lightweight wrapper for `ximilar.com` and `vize.ai`. 

## Installation

PyPI (https://pypi.org/project/ximilar-client/):

    # we recommend to install ximilar-client to new virtualenv
    pip install ximilar-client

Manual installation with latest changes:

    1. Cloning the repo
    git clone https://gitlab.com/ximilar-public/ximilar-client.git
    2. Install it with pip to your virtualenv
    pip install -e ximilar-client


This will install also python-opencv, numpy, requests, tqdm and pytest library.

##  Usage

First you need to register via `app.ximilar.com` and obtain your `API TOKEN` for communication with ximilar rest endpoints. You can obtain the token from the [Ximilar App](https://app.ximilar.com/) at your profile page. 
After you obtain the token, the usage is quite straightforward. First, import this package and create specific rest client (reconition/vize, tagging, colors, search, ...).  In following example we will create client for `Ximilar Recognition Service` (vize.ai). For all other Ximilar Services as Tagging, Custom Object Detection you will need to contact `tech@ximilar.com` first, so they will provide you access to the service: 

```python
from ximilar.client import RecognitionClient, DetectionClient
from ximilar.client import DominantColorProductClient, DominantColorGenericClient
from ximilar.client import FashionTaggingClient, GenericTaggingClient

app_client = RecognitionClient(token="__API_TOKEN__")
detect_client = DetectionClient(token="__API_TOKEN__")
...
```

## Workspaces

With a new version of Ximilar App you are able to work also with workspaces. Workspaces are entities where all your task, labels and images live. Each user has by default workspace with name `Default` (it will be used if you do not specify workspace when working with Image, Label, Task). However you can specify id of workspace in the constructor.

```python
client = RecognitionClient(token="__API_TOKEN__", workspace='__UUID_OF_YOUR_WORKSPACE__')
client = DetectionClient(token="__API_TOKEN__", workspace='__UUID_OF_YOUR_WORKSPACE__')
```

## Ximilar Recognition
This client allows you to work with Ximilar Recognition Service. With this client you are able to create classification or tagging tasks based on latest trends in machine learning and neural networks.
After creating client object you can for example load your existing task and call train:

```python
task, status = client.get_task(task_id='__ID_TASK_')

# Every label in the task must have at least 20 images before training.
# The training can take up to several hours as we are trying to achieve really high quality
# solution. This endpoint will immediately return success if your task is in training queue.
task.train() 

# or you can list all your available tasks
tasks, status = client.get_all_tasks()

# or you can create new classification task
# each Task, Image, Label is identified by unique ID
task, status = client.create_task('__TASK_NAME__')
```

#### Task

Currently there are two types of task to create. User can select 'multi_class' (default) or 'multi_label'. See ximilar.docs for more info.

```python
# categorization/classification or multi class task means that image is assigned to exactly one label
# labels are exclusive which means image can contain only 'cat' or only 'dog'
classification_task, status = client.create_task('__TASK_NAME__')

# tagging or multi label task means that image can have one or more labels
# for example image can contain 'cat', 'dog' and 'animal' labels if there are on the picture
tagging_task, status = client.create_task('__TASK_NAME__', type='multi_label')

# removing task is possible through client object or task itself
client.remove_task(task.id)
task.remove()
```

#### Classify

Suppose you want to use the task to predict the result on your images. Please, always try to send image bigger than 200px and lower than 600px for quality and speed:

```python
# you can send image in _file, _url or _base64 format
# the _file format is intenally converted to _base64 as rgb image
result = task.classify([{'_url': '__URL_PATH_TO_IMG__'}, {'_file', '__LOCAL_FILE_PATH__'}, {'_base64': '__BASE64_DATA__'}])

# the result is in json/dictionary format and you can access it in following way:
best_label = result['records'][0]['best_label']
```

#### Labels

Labels are connected to the task. Depends which task you are working with (Tagging/multi_label or Categorization/multi_class) you can create Tag or Category labels. Working with the labels are pretty simple:

```python
# getting existing label
existing_label, status = client.get_label('__ID_LABEL__')

# creating new label (CATEGORY, which is default) and attaching it to existing Categorization task (multi class)
label, status = client.create_label(name='__NEW_LABEL_NAME__')
task.add_label(label.id)

# creating new label (TAG) for Tagging task (multi label)
label, status = client.create_label(name='__NEW_LABEL_NAME__', label_type='tag')

# get all labels which are connected to the task
labels, status = task.get_labels()

for label in labels:
    print(label.id, label.name)

# get label with exact name which is also connected to specific task
label, status = task.get_label_by_name(name='__LABEL_NAME__')

# detaching (not deleting) existing label from existing task
task.detach_label(label.id)

# remove label (which also detach label from all tasks)
client.remove_label(label.id)

# detach image from label
label.detach_image(image.id)

# search labels which contains given substring in name
labels, status = client.get_labels_by_substring('__LABEL_NAME__')
```

#### Working with training images

Image is main entity in Ximilar system. Every image can have multiple labels (Recognition service) or multiple objects (Detection service).

```python
# getting all images of label (paginated result)
images, next_page, status = label.get_training_images()
while images:
    for image in images:
        print(str(image.id))

    if not next_page:
        break
    images, next_page, status = label.get_training_images(next_page)

# basic operations
image, status = client.get_image(image_id=image.id)
image.add_label(label.id)

# detach label from image
image.detach_label(label.id)

# deleting image 
client.remove_image(image.id)
```

Let's say you want to upload a training image and add several labels to this image:

```python
images, status = client.upload_images([{'_url': '__URL_PATH_TO_IMAGE__', 'labels': [label.id for label in labels], "meta_data": {"field": "key"}},
                                       {'_file': '__LOCAL_FILE_PATH__', 'labels': [label.id for label in labels]},
                                       {'_base64': '__BASE64_DATA__', 'labels': [label.id for label in labels]}])

# and maybe add another label to the first image
images[0].add_label("__SOME_LABEL_ID__")
```

Upload image without resizing it (for example Custom Object Detection requires high resolution images):

```python
images, status = client.upload_images([{'_url': '__URL_PATH_TO_IMAGE__', "noresize": True}])
```

Every image can have some meta data stored:

```python
image.add_meta_data({"__KEY_1__": "value", "__KEY_2__": {"THIS CAB BE":"COMPLEX"}})
image.clear_meta_data()
```

Every image can be marked with **test** flag (for evaluation on independent test dataset only):

```python
image.set_test(True)
```

Every image can be marked as real (default) or product. Product image should be images where is dominant one object on nice solid background. We can do more augmentations on these images.

```python
image.set_real(False) # will mark image as product
```

## Ximilar Flows

The client is able to get flow of the json or process images/records by the flow.

```python
from ximilar.client import FlowsClient

client = FlowsClient("__API_TOKEN__")

# get flow
flow, _ = client.get_flow("__FLOW_ID__")

# two way to call the flow on records
client.process_flow(flow.id, records)
flow.proces(records)
```


## Ximilar Object Detection

Ximilar Object Detection is service which will help you find exact location (Bounding Box/Object with four coordinates xmin, ymin, xmax, ymax).
In similar way as Ximilar Recognition, here we also have Tasks, Labels and Images. However one more entity called Object is present in Ximilar Object Detection.

First you need to create/get Detection Task:

```python
client = DetectionClient("__API_TOKEN__")
detection_task, status = client.create_task("__DETECTION_TASK_NAME__")
detection_task, status = client.get_task(task.id)
```

Second you need to create Detection Label and connect it to the task:

```python
detection_label, status = client.create_label("__DETECTION_LABEL_NAME__")
detection_label, status = client.get_label("__DETECTION_LABEL_ID__")

detection_task.add_label(detection_label.id)
```

Lastly you need to create Objects/Bounding box annotations of some type (Label) on the images:

```python
image, status = client.get_image("__IMAGE_ID__")
d_object, status = client.create_object("__DETECTION_LABEL_ID__", "__IMAGE_ID__", [xmin, ymin, xmax, ymax])
d_object, status = client.get_object(d_object.id)

# get all objects of image
d_objects, status = client.get_objects_of_image("__IMAGE_ID__")
```

Then you can create your task:

```python
detection_task.train()
```

Removing entities is same as in recognition client:

```python
client.remove_task("__DETECTION_TASK_ID__")
client.remove_label("__DETECTION_LABEL_ID__") # this will delete all objects which were created as this label
client.remove_object("__DETECTION_OBJECT_ID__")
client.remove_image("__IMAGE_ID__")

task.remove()
label.remove()

object1 = client.get_object("__DETECTION_OBJECT_ID__")
object1.remove()
image.remove()
```

Getting Detection Result:

```python
result = detection_task.detect([{"_url": "__URL_PATH_TO_IMAGE__"}])
```

Extracting object from image:

```python
image,  status = client.get_image("59f7240d-ca86-436b-b0cd-30f4b94705df")

object1, status = client.get_object("__DETECTION_OBJECT_ID__")
extracted_image_record = image.extract_object_data(object1.data)
```

## Speeding it up with Parallel Processing

If you are uploading/classifying thousands of images and really need to speed it up, then you can use method parallel_records_processing:

```python
# classifying images in Ximilar Custom Recognition service
result = client.parallel_records_processing([{"_url": image} for image in images], method=task.classify, output=True, max_workers=3)

# detection images in Ximilar Custom Object Detection
result = client.parallel_records_processing([{"_url": image} for image in images], method=task.detect, output=True, max_workers=3)

# uploading images
result = client.parallel_records_processing([{"_url": image, "labels": ["__LABEL_ID_1__"]} for image in images], method=client.upload_images, output=True)
```

This method works only for getting result for classification, tagging, detection, color extraction or uploading images (All methods which use json records as input).

## Ximilar Visual Search

Service for visual fashion search. For more information see docs.ximilar.com

```python
from ximilar.client.visual import SimilarityFashionClient

client = SimilarityFashionClient(token='__API_TOKEN__', collection_id='__COLLECTION_ID__')

# inserting image requires _id and product_id
client.insert([{"_id": "__IMAGE_ID__", "product_id": "__PRODUCT_ID__", "_url": "__URL_PATH_TO_IMAGE__"}])
result = client.detect([{"_url": "__URL_PATH_TO_IMAGE__"}])

# search in collection
result = client.search([{"_url": "__URL_PATH_TO_IMAGE__"}])
```


## Ximilar Dominant Colors

You can select the service for extracting dominant colors by type of your image. If the image is from Product/Fashion domain, which means that product is tipically on some solid background then us `DominanColorProductClient`.

```python
from ximilar.client import DominantColorProductClient, DominantColorGenericClient

product_client = DominantColorProductClient(token="__API_TOKEN__")
generic_client = DominantColorGenericClient(token="__API_TOKEN__")

result = product_client.dominantcolor([{"_url": "__URL_PATH_TO_IMAGE__"}])
print(result['records'][0]['_dominant_colors'])
```

## Ximilar Generic and Fashion Tagging

Tagging contains two clients in similar way as DominanColors do.

```python
from ximilar.client import FashionTaggingClient, GenericTaggingClient

fashion_client = FashionTaggingClient(token="__API_TOKEN__")
generic_client = GenericTaggingClient(token="__API_TOKEN__")

result = generic_client.tags([{"_url": "__URL_PATH_TO_IMAGE__"}])
print(result['records'][0]['_tags'])

result = fashion_client.tags([{"_url": "__URL_PATH_TO_IMAGE__"}])
print(result['records'][0]['_tags'])

result = fashion_client.meta_tags([{"_url": "__URL_PATH_TO_IMAGE__"}])
print(result['records'][0]['_tags_meta_simple'])

```

## Ximilar Photo and Product similarity

These two services provides visual search (similarity search) for generic (stock) photos or products (e-commerce, fashion, ...).
When initializing client you need to specify both `token` and your `collection_id` that we created for you.

```python
from ximilar.client.search import SimilarityPhotosClient, SimilarityProductsClient

client = SimilarityPhotosClient(token='__API_TOKEN__', collection_id='__COLLECTION_ID__')
client = SimilarityProductsClient(token='__API_TOKEN__', collection_id='__COLLECTION_ID__')

# get random 7 items from database and return also _url if is present in item
result = client.random(count=7, fields_to_return=['_id', '_url'])

# search 10 most visually similar items for item in your index
result = client.search({'_id': '__ITEM_ID__'}, k=10)

# search 5 most visually similar items for external item (not in index) defined by _url field
result = client.search({'_url': '__URL_PATH_TO_IMAGE__'}, k=5)

# search visually similar items, return also _url field if present in item and 
# search only for items defined by filter (mongodb syntax)
result = client.search({'_id': '__ITEM_ID__'}, fields_to_return=['_id', '_url'],
                       filter={
                            'meta-category-x': { '$in': ['__SOME_VALUE_1__', '__SOME_VALUE_2__']},
                            'some-field': '__SOME_VALUE__'
                       })
```

All crud operations:

```python
# get list of items from index
result = client.get_records([{'_id': '__ITEM_ID__'}, {'_id': '__ITEM_ID__'}])

# insert item tot he index with your _id, and onr of _url | _base64, and other fields (meta-info) which you can 
# then use when applying filter in search or random menthods
result = client.insert([{'_id': '__ITEM_ID__', '_url': '__URL_PATH_TO_IMAGE__',
                         'meta-category-x': '__CATEGORY_OF_ITEM__',
                         'meta-info-y': '__ANOTHER_META_INFO__'}])

# delete item from id
result = client.remove([{'_id': '__ITEM_ID__'}])

# update item in index with all additional fields and meta-info
result = client.update([{'_id': '__ITEM_ID__', 'some-additional-field': '__VALUE__'}])
```

## Custom Similarity

This service let you train your custom image similarity model.

Creating entities is similar to recognition or detection service.

```python
from ximilar.client.similarity import CustomSimilarityClient
client = CustomSimilarityClient("__API__TOKEN__")
tasks, _ = client.get_all_tasks()

task, _ = client.create_task("__NAME__",  "__DESCRIPTION__")
type1, _ = client.create_type("__NAME__", "__DESCRIPTION__")
group, _ = client.create_group("__NAME__", "__DESCRIPTION__", type1.id)
```

Add/Remove types to/from task:

```python
task.add_type(type1.id)
task.remove_type(type1.id)
```

Add/Remove images to/from group:

```python
group.add_images(["__IMAGE_ID_1__"])
group.remove_images(["__IMAGE_ID_1__"])
group.refresh()
```

Add/Remove groups to/from group:

```python
group.add_groups(["__GROUP_ID_1__"])
group.remove_groups(["__GROUP_ID_1__"])
group.refresh()
```

Set unset group as test (test flag is for evaluation dataset):

```python
group.set_test(True) # or False if unsetting from eval dataset
group.refresh()
```

Searching groups with name:

```python
client.get_all_groups_by_name("__NAME__")
```

# Tools

In our `tools` folder you can find some useful scripts for:

* `uploader.py` for uploading all images from specific folder
* `data_saver.py` for saving entire recognition and detection workspace including images
* `data_wiper.py` for removing entire workspace and all your data in workspace
* `detection_cutter.py` cutting objects from images




%package -n python3-ximilar-client
Summary:	The Ximilar App and Vize.ai Client.
Provides:	python-ximilar-client
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-ximilar-client
# Ximilar API Python Client

![](logo.png)

This Python 3.X Client library is lightweight wrapper for `ximilar.com` and `vize.ai`. 

## Installation

PyPI (https://pypi.org/project/ximilar-client/):

    # we recommend to install ximilar-client to new virtualenv
    pip install ximilar-client

Manual installation with latest changes:

    1. Cloning the repo
    git clone https://gitlab.com/ximilar-public/ximilar-client.git
    2. Install it with pip to your virtualenv
    pip install -e ximilar-client


This will install also python-opencv, numpy, requests, tqdm and pytest library.

##  Usage

First you need to register via `app.ximilar.com` and obtain your `API TOKEN` for communication with ximilar rest endpoints. You can obtain the token from the [Ximilar App](https://app.ximilar.com/) at your profile page. 
After you obtain the token, the usage is quite straightforward. First, import this package and create specific rest client (reconition/vize, tagging, colors, search, ...).  In following example we will create client for `Ximilar Recognition Service` (vize.ai). For all other Ximilar Services as Tagging, Custom Object Detection you will need to contact `tech@ximilar.com` first, so they will provide you access to the service: 

```python
from ximilar.client import RecognitionClient, DetectionClient
from ximilar.client import DominantColorProductClient, DominantColorGenericClient
from ximilar.client import FashionTaggingClient, GenericTaggingClient

app_client = RecognitionClient(token="__API_TOKEN__")
detect_client = DetectionClient(token="__API_TOKEN__")
...
```

## Workspaces

With a new version of Ximilar App you are able to work also with workspaces. Workspaces are entities where all your task, labels and images live. Each user has by default workspace with name `Default` (it will be used if you do not specify workspace when working with Image, Label, Task). However you can specify id of workspace in the constructor.

```python
client = RecognitionClient(token="__API_TOKEN__", workspace='__UUID_OF_YOUR_WORKSPACE__')
client = DetectionClient(token="__API_TOKEN__", workspace='__UUID_OF_YOUR_WORKSPACE__')
```

## Ximilar Recognition
This client allows you to work with Ximilar Recognition Service. With this client you are able to create classification or tagging tasks based on latest trends in machine learning and neural networks.
After creating client object you can for example load your existing task and call train:

```python
task, status = client.get_task(task_id='__ID_TASK_')

# Every label in the task must have at least 20 images before training.
# The training can take up to several hours as we are trying to achieve really high quality
# solution. This endpoint will immediately return success if your task is in training queue.
task.train() 

# or you can list all your available tasks
tasks, status = client.get_all_tasks()

# or you can create new classification task
# each Task, Image, Label is identified by unique ID
task, status = client.create_task('__TASK_NAME__')
```

#### Task

Currently there are two types of task to create. User can select 'multi_class' (default) or 'multi_label'. See ximilar.docs for more info.

```python
# categorization/classification or multi class task means that image is assigned to exactly one label
# labels are exclusive which means image can contain only 'cat' or only 'dog'
classification_task, status = client.create_task('__TASK_NAME__')

# tagging or multi label task means that image can have one or more labels
# for example image can contain 'cat', 'dog' and 'animal' labels if there are on the picture
tagging_task, status = client.create_task('__TASK_NAME__', type='multi_label')

# removing task is possible through client object or task itself
client.remove_task(task.id)
task.remove()
```

#### Classify

Suppose you want to use the task to predict the result on your images. Please, always try to send image bigger than 200px and lower than 600px for quality and speed:

```python
# you can send image in _file, _url or _base64 format
# the _file format is intenally converted to _base64 as rgb image
result = task.classify([{'_url': '__URL_PATH_TO_IMG__'}, {'_file', '__LOCAL_FILE_PATH__'}, {'_base64': '__BASE64_DATA__'}])

# the result is in json/dictionary format and you can access it in following way:
best_label = result['records'][0]['best_label']
```

#### Labels

Labels are connected to the task. Depends which task you are working with (Tagging/multi_label or Categorization/multi_class) you can create Tag or Category labels. Working with the labels are pretty simple:

```python
# getting existing label
existing_label, status = client.get_label('__ID_LABEL__')

# creating new label (CATEGORY, which is default) and attaching it to existing Categorization task (multi class)
label, status = client.create_label(name='__NEW_LABEL_NAME__')
task.add_label(label.id)

# creating new label (TAG) for Tagging task (multi label)
label, status = client.create_label(name='__NEW_LABEL_NAME__', label_type='tag')

# get all labels which are connected to the task
labels, status = task.get_labels()

for label in labels:
    print(label.id, label.name)

# get label with exact name which is also connected to specific task
label, status = task.get_label_by_name(name='__LABEL_NAME__')

# detaching (not deleting) existing label from existing task
task.detach_label(label.id)

# remove label (which also detach label from all tasks)
client.remove_label(label.id)

# detach image from label
label.detach_image(image.id)

# search labels which contains given substring in name
labels, status = client.get_labels_by_substring('__LABEL_NAME__')
```

#### Working with training images

Image is main entity in Ximilar system. Every image can have multiple labels (Recognition service) or multiple objects (Detection service).

```python
# getting all images of label (paginated result)
images, next_page, status = label.get_training_images()
while images:
    for image in images:
        print(str(image.id))

    if not next_page:
        break
    images, next_page, status = label.get_training_images(next_page)

# basic operations
image, status = client.get_image(image_id=image.id)
image.add_label(label.id)

# detach label from image
image.detach_label(label.id)

# deleting image 
client.remove_image(image.id)
```

Let's say you want to upload a training image and add several labels to this image:

```python
images, status = client.upload_images([{'_url': '__URL_PATH_TO_IMAGE__', 'labels': [label.id for label in labels], "meta_data": {"field": "key"}},
                                       {'_file': '__LOCAL_FILE_PATH__', 'labels': [label.id for label in labels]},
                                       {'_base64': '__BASE64_DATA__', 'labels': [label.id for label in labels]}])

# and maybe add another label to the first image
images[0].add_label("__SOME_LABEL_ID__")
```

Upload image without resizing it (for example Custom Object Detection requires high resolution images):

```python
images, status = client.upload_images([{'_url': '__URL_PATH_TO_IMAGE__', "noresize": True}])
```

Every image can have some meta data stored:

```python
image.add_meta_data({"__KEY_1__": "value", "__KEY_2__": {"THIS CAB BE":"COMPLEX"}})
image.clear_meta_data()
```

Every image can be marked with **test** flag (for evaluation on independent test dataset only):

```python
image.set_test(True)
```

Every image can be marked as real (default) or product. Product image should be images where is dominant one object on nice solid background. We can do more augmentations on these images.

```python
image.set_real(False) # will mark image as product
```

## Ximilar Flows

The client is able to get flow of the json or process images/records by the flow.

```python
from ximilar.client import FlowsClient

client = FlowsClient("__API_TOKEN__")

# get flow
flow, _ = client.get_flow("__FLOW_ID__")

# two way to call the flow on records
client.process_flow(flow.id, records)
flow.proces(records)
```


## Ximilar Object Detection

Ximilar Object Detection is service which will help you find exact location (Bounding Box/Object with four coordinates xmin, ymin, xmax, ymax).
In similar way as Ximilar Recognition, here we also have Tasks, Labels and Images. However one more entity called Object is present in Ximilar Object Detection.

First you need to create/get Detection Task:

```python
client = DetectionClient("__API_TOKEN__")
detection_task, status = client.create_task("__DETECTION_TASK_NAME__")
detection_task, status = client.get_task(task.id)
```

Second you need to create Detection Label and connect it to the task:

```python
detection_label, status = client.create_label("__DETECTION_LABEL_NAME__")
detection_label, status = client.get_label("__DETECTION_LABEL_ID__")

detection_task.add_label(detection_label.id)
```

Lastly you need to create Objects/Bounding box annotations of some type (Label) on the images:

```python
image, status = client.get_image("__IMAGE_ID__")
d_object, status = client.create_object("__DETECTION_LABEL_ID__", "__IMAGE_ID__", [xmin, ymin, xmax, ymax])
d_object, status = client.get_object(d_object.id)

# get all objects of image
d_objects, status = client.get_objects_of_image("__IMAGE_ID__")
```

Then you can create your task:

```python
detection_task.train()
```

Removing entities is same as in recognition client:

```python
client.remove_task("__DETECTION_TASK_ID__")
client.remove_label("__DETECTION_LABEL_ID__") # this will delete all objects which were created as this label
client.remove_object("__DETECTION_OBJECT_ID__")
client.remove_image("__IMAGE_ID__")

task.remove()
label.remove()

object1 = client.get_object("__DETECTION_OBJECT_ID__")
object1.remove()
image.remove()
```

Getting Detection Result:

```python
result = detection_task.detect([{"_url": "__URL_PATH_TO_IMAGE__"}])
```

Extracting object from image:

```python
image,  status = client.get_image("59f7240d-ca86-436b-b0cd-30f4b94705df")

object1, status = client.get_object("__DETECTION_OBJECT_ID__")
extracted_image_record = image.extract_object_data(object1.data)
```

## Speeding it up with Parallel Processing

If you are uploading/classifying thousands of images and really need to speed it up, then you can use method parallel_records_processing:

```python
# classifying images in Ximilar Custom Recognition service
result = client.parallel_records_processing([{"_url": image} for image in images], method=task.classify, output=True, max_workers=3)

# detection images in Ximilar Custom Object Detection
result = client.parallel_records_processing([{"_url": image} for image in images], method=task.detect, output=True, max_workers=3)

# uploading images
result = client.parallel_records_processing([{"_url": image, "labels": ["__LABEL_ID_1__"]} for image in images], method=client.upload_images, output=True)
```

This method works only for getting result for classification, tagging, detection, color extraction or uploading images (All methods which use json records as input).

## Ximilar Visual Search

Service for visual fashion search. For more information see docs.ximilar.com

```python
from ximilar.client.visual import SimilarityFashionClient

client = SimilarityFashionClient(token='__API_TOKEN__', collection_id='__COLLECTION_ID__')

# inserting image requires _id and product_id
client.insert([{"_id": "__IMAGE_ID__", "product_id": "__PRODUCT_ID__", "_url": "__URL_PATH_TO_IMAGE__"}])
result = client.detect([{"_url": "__URL_PATH_TO_IMAGE__"}])

# search in collection
result = client.search([{"_url": "__URL_PATH_TO_IMAGE__"}])
```


## Ximilar Dominant Colors

You can select the service for extracting dominant colors by type of your image. If the image is from Product/Fashion domain, which means that product is tipically on some solid background then us `DominanColorProductClient`.

```python
from ximilar.client import DominantColorProductClient, DominantColorGenericClient

product_client = DominantColorProductClient(token="__API_TOKEN__")
generic_client = DominantColorGenericClient(token="__API_TOKEN__")

result = product_client.dominantcolor([{"_url": "__URL_PATH_TO_IMAGE__"}])
print(result['records'][0]['_dominant_colors'])
```

## Ximilar Generic and Fashion Tagging

Tagging contains two clients in similar way as DominanColors do.

```python
from ximilar.client import FashionTaggingClient, GenericTaggingClient

fashion_client = FashionTaggingClient(token="__API_TOKEN__")
generic_client = GenericTaggingClient(token="__API_TOKEN__")

result = generic_client.tags([{"_url": "__URL_PATH_TO_IMAGE__"}])
print(result['records'][0]['_tags'])

result = fashion_client.tags([{"_url": "__URL_PATH_TO_IMAGE__"}])
print(result['records'][0]['_tags'])

result = fashion_client.meta_tags([{"_url": "__URL_PATH_TO_IMAGE__"}])
print(result['records'][0]['_tags_meta_simple'])

```

## Ximilar Photo and Product similarity

These two services provides visual search (similarity search) for generic (stock) photos or products (e-commerce, fashion, ...).
When initializing client you need to specify both `token` and your `collection_id` that we created for you.

```python
from ximilar.client.search import SimilarityPhotosClient, SimilarityProductsClient

client = SimilarityPhotosClient(token='__API_TOKEN__', collection_id='__COLLECTION_ID__')
client = SimilarityProductsClient(token='__API_TOKEN__', collection_id='__COLLECTION_ID__')

# get random 7 items from database and return also _url if is present in item
result = client.random(count=7, fields_to_return=['_id', '_url'])

# search 10 most visually similar items for item in your index
result = client.search({'_id': '__ITEM_ID__'}, k=10)

# search 5 most visually similar items for external item (not in index) defined by _url field
result = client.search({'_url': '__URL_PATH_TO_IMAGE__'}, k=5)

# search visually similar items, return also _url field if present in item and 
# search only for items defined by filter (mongodb syntax)
result = client.search({'_id': '__ITEM_ID__'}, fields_to_return=['_id', '_url'],
                       filter={
                            'meta-category-x': { '$in': ['__SOME_VALUE_1__', '__SOME_VALUE_2__']},
                            'some-field': '__SOME_VALUE__'
                       })
```

All crud operations:

```python
# get list of items from index
result = client.get_records([{'_id': '__ITEM_ID__'}, {'_id': '__ITEM_ID__'}])

# insert item tot he index with your _id, and onr of _url | _base64, and other fields (meta-info) which you can 
# then use when applying filter in search or random menthods
result = client.insert([{'_id': '__ITEM_ID__', '_url': '__URL_PATH_TO_IMAGE__',
                         'meta-category-x': '__CATEGORY_OF_ITEM__',
                         'meta-info-y': '__ANOTHER_META_INFO__'}])

# delete item from id
result = client.remove([{'_id': '__ITEM_ID__'}])

# update item in index with all additional fields and meta-info
result = client.update([{'_id': '__ITEM_ID__', 'some-additional-field': '__VALUE__'}])
```

## Custom Similarity

This service let you train your custom image similarity model.

Creating entities is similar to recognition or detection service.

```python
from ximilar.client.similarity import CustomSimilarityClient
client = CustomSimilarityClient("__API__TOKEN__")
tasks, _ = client.get_all_tasks()

task, _ = client.create_task("__NAME__",  "__DESCRIPTION__")
type1, _ = client.create_type("__NAME__", "__DESCRIPTION__")
group, _ = client.create_group("__NAME__", "__DESCRIPTION__", type1.id)
```

Add/Remove types to/from task:

```python
task.add_type(type1.id)
task.remove_type(type1.id)
```

Add/Remove images to/from group:

```python
group.add_images(["__IMAGE_ID_1__"])
group.remove_images(["__IMAGE_ID_1__"])
group.refresh()
```

Add/Remove groups to/from group:

```python
group.add_groups(["__GROUP_ID_1__"])
group.remove_groups(["__GROUP_ID_1__"])
group.refresh()
```

Set unset group as test (test flag is for evaluation dataset):

```python
group.set_test(True) # or False if unsetting from eval dataset
group.refresh()
```

Searching groups with name:

```python
client.get_all_groups_by_name("__NAME__")
```

# Tools

In our `tools` folder you can find some useful scripts for:

* `uploader.py` for uploading all images from specific folder
* `data_saver.py` for saving entire recognition and detection workspace including images
* `data_wiper.py` for removing entire workspace and all your data in workspace
* `detection_cutter.py` cutting objects from images




%package help
Summary:	Development documents and examples for ximilar-client
Provides:	python3-ximilar-client-doc
%description help
# Ximilar API Python Client

![](logo.png)

This Python 3.X Client library is lightweight wrapper for `ximilar.com` and `vize.ai`. 

## Installation

PyPI (https://pypi.org/project/ximilar-client/):

    # we recommend to install ximilar-client to new virtualenv
    pip install ximilar-client

Manual installation with latest changes:

    1. Cloning the repo
    git clone https://gitlab.com/ximilar-public/ximilar-client.git
    2. Install it with pip to your virtualenv
    pip install -e ximilar-client


This will install also python-opencv, numpy, requests, tqdm and pytest library.

##  Usage

First you need to register via `app.ximilar.com` and obtain your `API TOKEN` for communication with ximilar rest endpoints. You can obtain the token from the [Ximilar App](https://app.ximilar.com/) at your profile page. 
After you obtain the token, the usage is quite straightforward. First, import this package and create specific rest client (reconition/vize, tagging, colors, search, ...).  In following example we will create client for `Ximilar Recognition Service` (vize.ai). For all other Ximilar Services as Tagging, Custom Object Detection you will need to contact `tech@ximilar.com` first, so they will provide you access to the service: 

```python
from ximilar.client import RecognitionClient, DetectionClient
from ximilar.client import DominantColorProductClient, DominantColorGenericClient
from ximilar.client import FashionTaggingClient, GenericTaggingClient

app_client = RecognitionClient(token="__API_TOKEN__")
detect_client = DetectionClient(token="__API_TOKEN__")
...
```

## Workspaces

With a new version of Ximilar App you are able to work also with workspaces. Workspaces are entities where all your task, labels and images live. Each user has by default workspace with name `Default` (it will be used if you do not specify workspace when working with Image, Label, Task). However you can specify id of workspace in the constructor.

```python
client = RecognitionClient(token="__API_TOKEN__", workspace='__UUID_OF_YOUR_WORKSPACE__')
client = DetectionClient(token="__API_TOKEN__", workspace='__UUID_OF_YOUR_WORKSPACE__')
```

## Ximilar Recognition
This client allows you to work with Ximilar Recognition Service. With this client you are able to create classification or tagging tasks based on latest trends in machine learning and neural networks.
After creating client object you can for example load your existing task and call train:

```python
task, status = client.get_task(task_id='__ID_TASK_')

# Every label in the task must have at least 20 images before training.
# The training can take up to several hours as we are trying to achieve really high quality
# solution. This endpoint will immediately return success if your task is in training queue.
task.train() 

# or you can list all your available tasks
tasks, status = client.get_all_tasks()

# or you can create new classification task
# each Task, Image, Label is identified by unique ID
task, status = client.create_task('__TASK_NAME__')
```

#### Task

Currently there are two types of task to create. User can select 'multi_class' (default) or 'multi_label'. See ximilar.docs for more info.

```python
# categorization/classification or multi class task means that image is assigned to exactly one label
# labels are exclusive which means image can contain only 'cat' or only 'dog'
classification_task, status = client.create_task('__TASK_NAME__')

# tagging or multi label task means that image can have one or more labels
# for example image can contain 'cat', 'dog' and 'animal' labels if there are on the picture
tagging_task, status = client.create_task('__TASK_NAME__', type='multi_label')

# removing task is possible through client object or task itself
client.remove_task(task.id)
task.remove()
```

#### Classify

Suppose you want to use the task to predict the result on your images. Please, always try to send image bigger than 200px and lower than 600px for quality and speed:

```python
# you can send image in _file, _url or _base64 format
# the _file format is intenally converted to _base64 as rgb image
result = task.classify([{'_url': '__URL_PATH_TO_IMG__'}, {'_file', '__LOCAL_FILE_PATH__'}, {'_base64': '__BASE64_DATA__'}])

# the result is in json/dictionary format and you can access it in following way:
best_label = result['records'][0]['best_label']
```

#### Labels

Labels are connected to the task. Depends which task you are working with (Tagging/multi_label or Categorization/multi_class) you can create Tag or Category labels. Working with the labels are pretty simple:

```python
# getting existing label
existing_label, status = client.get_label('__ID_LABEL__')

# creating new label (CATEGORY, which is default) and attaching it to existing Categorization task (multi class)
label, status = client.create_label(name='__NEW_LABEL_NAME__')
task.add_label(label.id)

# creating new label (TAG) for Tagging task (multi label)
label, status = client.create_label(name='__NEW_LABEL_NAME__', label_type='tag')

# get all labels which are connected to the task
labels, status = task.get_labels()

for label in labels:
    print(label.id, label.name)

# get label with exact name which is also connected to specific task
label, status = task.get_label_by_name(name='__LABEL_NAME__')

# detaching (not deleting) existing label from existing task
task.detach_label(label.id)

# remove label (which also detach label from all tasks)
client.remove_label(label.id)

# detach image from label
label.detach_image(image.id)

# search labels which contains given substring in name
labels, status = client.get_labels_by_substring('__LABEL_NAME__')
```

#### Working with training images

Image is main entity in Ximilar system. Every image can have multiple labels (Recognition service) or multiple objects (Detection service).

```python
# getting all images of label (paginated result)
images, next_page, status = label.get_training_images()
while images:
    for image in images:
        print(str(image.id))

    if not next_page:
        break
    images, next_page, status = label.get_training_images(next_page)

# basic operations
image, status = client.get_image(image_id=image.id)
image.add_label(label.id)

# detach label from image
image.detach_label(label.id)

# deleting image 
client.remove_image(image.id)
```

Let's say you want to upload a training image and add several labels to this image:

```python
images, status = client.upload_images([{'_url': '__URL_PATH_TO_IMAGE__', 'labels': [label.id for label in labels], "meta_data": {"field": "key"}},
                                       {'_file': '__LOCAL_FILE_PATH__', 'labels': [label.id for label in labels]},
                                       {'_base64': '__BASE64_DATA__', 'labels': [label.id for label in labels]}])

# and maybe add another label to the first image
images[0].add_label("__SOME_LABEL_ID__")
```

Upload image without resizing it (for example Custom Object Detection requires high resolution images):

```python
images, status = client.upload_images([{'_url': '__URL_PATH_TO_IMAGE__', "noresize": True}])
```

Every image can have some meta data stored:

```python
image.add_meta_data({"__KEY_1__": "value", "__KEY_2__": {"THIS CAB BE":"COMPLEX"}})
image.clear_meta_data()
```

Every image can be marked with **test** flag (for evaluation on independent test dataset only):

```python
image.set_test(True)
```

Every image can be marked as real (default) or product. Product image should be images where is dominant one object on nice solid background. We can do more augmentations on these images.

```python
image.set_real(False) # will mark image as product
```

## Ximilar Flows

The client is able to get flow of the json or process images/records by the flow.

```python
from ximilar.client import FlowsClient

client = FlowsClient("__API_TOKEN__")

# get flow
flow, _ = client.get_flow("__FLOW_ID__")

# two way to call the flow on records
client.process_flow(flow.id, records)
flow.proces(records)
```


## Ximilar Object Detection

Ximilar Object Detection is service which will help you find exact location (Bounding Box/Object with four coordinates xmin, ymin, xmax, ymax).
In similar way as Ximilar Recognition, here we also have Tasks, Labels and Images. However one more entity called Object is present in Ximilar Object Detection.

First you need to create/get Detection Task:

```python
client = DetectionClient("__API_TOKEN__")
detection_task, status = client.create_task("__DETECTION_TASK_NAME__")
detection_task, status = client.get_task(task.id)
```

Second you need to create Detection Label and connect it to the task:

```python
detection_label, status = client.create_label("__DETECTION_LABEL_NAME__")
detection_label, status = client.get_label("__DETECTION_LABEL_ID__")

detection_task.add_label(detection_label.id)
```

Lastly you need to create Objects/Bounding box annotations of some type (Label) on the images:

```python
image, status = client.get_image("__IMAGE_ID__")
d_object, status = client.create_object("__DETECTION_LABEL_ID__", "__IMAGE_ID__", [xmin, ymin, xmax, ymax])
d_object, status = client.get_object(d_object.id)

# get all objects of image
d_objects, status = client.get_objects_of_image("__IMAGE_ID__")
```

Then you can create your task:

```python
detection_task.train()
```

Removing entities is same as in recognition client:

```python
client.remove_task("__DETECTION_TASK_ID__")
client.remove_label("__DETECTION_LABEL_ID__") # this will delete all objects which were created as this label
client.remove_object("__DETECTION_OBJECT_ID__")
client.remove_image("__IMAGE_ID__")

task.remove()
label.remove()

object1 = client.get_object("__DETECTION_OBJECT_ID__")
object1.remove()
image.remove()
```

Getting Detection Result:

```python
result = detection_task.detect([{"_url": "__URL_PATH_TO_IMAGE__"}])
```

Extracting object from image:

```python
image,  status = client.get_image("59f7240d-ca86-436b-b0cd-30f4b94705df")

object1, status = client.get_object("__DETECTION_OBJECT_ID__")
extracted_image_record = image.extract_object_data(object1.data)
```

## Speeding it up with Parallel Processing

If you are uploading/classifying thousands of images and really need to speed it up, then you can use method parallel_records_processing:

```python
# classifying images in Ximilar Custom Recognition service
result = client.parallel_records_processing([{"_url": image} for image in images], method=task.classify, output=True, max_workers=3)

# detection images in Ximilar Custom Object Detection
result = client.parallel_records_processing([{"_url": image} for image in images], method=task.detect, output=True, max_workers=3)

# uploading images
result = client.parallel_records_processing([{"_url": image, "labels": ["__LABEL_ID_1__"]} for image in images], method=client.upload_images, output=True)
```

This method works only for getting result for classification, tagging, detection, color extraction or uploading images (All methods which use json records as input).

## Ximilar Visual Search

Service for visual fashion search. For more information see docs.ximilar.com

```python
from ximilar.client.visual import SimilarityFashionClient

client = SimilarityFashionClient(token='__API_TOKEN__', collection_id='__COLLECTION_ID__')

# inserting image requires _id and product_id
client.insert([{"_id": "__IMAGE_ID__", "product_id": "__PRODUCT_ID__", "_url": "__URL_PATH_TO_IMAGE__"}])
result = client.detect([{"_url": "__URL_PATH_TO_IMAGE__"}])

# search in collection
result = client.search([{"_url": "__URL_PATH_TO_IMAGE__"}])
```


## Ximilar Dominant Colors

You can select the service for extracting dominant colors by type of your image. If the image is from Product/Fashion domain, which means that product is tipically on some solid background then us `DominanColorProductClient`.

```python
from ximilar.client import DominantColorProductClient, DominantColorGenericClient

product_client = DominantColorProductClient(token="__API_TOKEN__")
generic_client = DominantColorGenericClient(token="__API_TOKEN__")

result = product_client.dominantcolor([{"_url": "__URL_PATH_TO_IMAGE__"}])
print(result['records'][0]['_dominant_colors'])
```

## Ximilar Generic and Fashion Tagging

Tagging contains two clients in similar way as DominanColors do.

```python
from ximilar.client import FashionTaggingClient, GenericTaggingClient

fashion_client = FashionTaggingClient(token="__API_TOKEN__")
generic_client = GenericTaggingClient(token="__API_TOKEN__")

result = generic_client.tags([{"_url": "__URL_PATH_TO_IMAGE__"}])
print(result['records'][0]['_tags'])

result = fashion_client.tags([{"_url": "__URL_PATH_TO_IMAGE__"}])
print(result['records'][0]['_tags'])

result = fashion_client.meta_tags([{"_url": "__URL_PATH_TO_IMAGE__"}])
print(result['records'][0]['_tags_meta_simple'])

```

## Ximilar Photo and Product similarity

These two services provides visual search (similarity search) for generic (stock) photos or products (e-commerce, fashion, ...).
When initializing client you need to specify both `token` and your `collection_id` that we created for you.

```python
from ximilar.client.search import SimilarityPhotosClient, SimilarityProductsClient

client = SimilarityPhotosClient(token='__API_TOKEN__', collection_id='__COLLECTION_ID__')
client = SimilarityProductsClient(token='__API_TOKEN__', collection_id='__COLLECTION_ID__')

# get random 7 items from database and return also _url if is present in item
result = client.random(count=7, fields_to_return=['_id', '_url'])

# search 10 most visually similar items for item in your index
result = client.search({'_id': '__ITEM_ID__'}, k=10)

# search 5 most visually similar items for external item (not in index) defined by _url field
result = client.search({'_url': '__URL_PATH_TO_IMAGE__'}, k=5)

# search visually similar items, return also _url field if present in item and 
# search only for items defined by filter (mongodb syntax)
result = client.search({'_id': '__ITEM_ID__'}, fields_to_return=['_id', '_url'],
                       filter={
                            'meta-category-x': { '$in': ['__SOME_VALUE_1__', '__SOME_VALUE_2__']},
                            'some-field': '__SOME_VALUE__'
                       })
```

All crud operations:

```python
# get list of items from index
result = client.get_records([{'_id': '__ITEM_ID__'}, {'_id': '__ITEM_ID__'}])

# insert item tot he index with your _id, and onr of _url | _base64, and other fields (meta-info) which you can 
# then use when applying filter in search or random menthods
result = client.insert([{'_id': '__ITEM_ID__', '_url': '__URL_PATH_TO_IMAGE__',
                         'meta-category-x': '__CATEGORY_OF_ITEM__',
                         'meta-info-y': '__ANOTHER_META_INFO__'}])

# delete item from id
result = client.remove([{'_id': '__ITEM_ID__'}])

# update item in index with all additional fields and meta-info
result = client.update([{'_id': '__ITEM_ID__', 'some-additional-field': '__VALUE__'}])
```

## Custom Similarity

This service let you train your custom image similarity model.

Creating entities is similar to recognition or detection service.

```python
from ximilar.client.similarity import CustomSimilarityClient
client = CustomSimilarityClient("__API__TOKEN__")
tasks, _ = client.get_all_tasks()

task, _ = client.create_task("__NAME__",  "__DESCRIPTION__")
type1, _ = client.create_type("__NAME__", "__DESCRIPTION__")
group, _ = client.create_group("__NAME__", "__DESCRIPTION__", type1.id)
```

Add/Remove types to/from task:

```python
task.add_type(type1.id)
task.remove_type(type1.id)
```

Add/Remove images to/from group:

```python
group.add_images(["__IMAGE_ID_1__"])
group.remove_images(["__IMAGE_ID_1__"])
group.refresh()
```

Add/Remove groups to/from group:

```python
group.add_groups(["__GROUP_ID_1__"])
group.remove_groups(["__GROUP_ID_1__"])
group.refresh()
```

Set unset group as test (test flag is for evaluation dataset):

```python
group.set_test(True) # or False if unsetting from eval dataset
group.refresh()
```

Searching groups with name:

```python
client.get_all_groups_by_name("__NAME__")
```

# Tools

In our `tools` folder you can find some useful scripts for:

* `uploader.py` for uploading all images from specific folder
* `data_saver.py` for saving entire recognition and detection workspace including images
* `data_wiper.py` for removing entire workspace and all your data in workspace
* `detection_cutter.py` cutting objects from images




%prep
%autosetup -n ximilar-client-1.21.8

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-ximilar-client -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.21.8-1
- Package Spec generated