summaryrefslogtreecommitdiff
path: root/python-xraysink.spec
blob: 38bd45ce0a2da0182a332a60eeb391da28fea4c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
%global _empty_manifest_terminate_build 0
Name:		python-xraysink
Version:	1.6.1
Release:	1
Summary:	Instrument asyncio Python for distributed tracing with AWS X-Ray.
License:	Apache 2.0
URL:		https://github.com/garyd203/xraysink
Source0:	https://mirrors.aliyun.com/pypi/web/packages/cb/1e/3772d5ca59f3841fbc15cf8da520217ac4ddd7fc6a3feec89efacb7dbf64/xraysink-1.6.1.tar.gz
BuildArch:	noarch

Requires:	python3-aiohttp
Requires:	python3-async-asgi-testclient
Requires:	python3-aws_xray_sdk
Requires:	python3-black
Requires:	python3-coverage[toml]
Requires:	python3-coverage[toml]
Requires:	python3-fastapi
Requires:	python3-flake8
Requires:	python3-flake8-bugbear
Requires:	python3-flake8-builtins
Requires:	python3-flake8-comprehensions
Requires:	python3-flake8-eradicate
Requires:	python3-flake8-executable
Requires:	python3-flake8-implicit-str-concat
Requires:	python3-flake8-import-order
Requires:	python3-flake8-logging-format
Requires:	python3-flake8-print
Requires:	python3-flake8-pytest-style
Requires:	python3-flake8-simplify
Requires:	python3-flake8-string-format
Requires:	python3-flake8-use-fstring
Requires:	python3-pytest
Requires:	python3-pytest-asyncio
Requires:	python3-pytest-cov
Requires:	python3-setuptools
Requires:	python3-wrapt
Requires:	python3-yamllint
Requires:	python3-zimports

%description
# xraysink

<div align="center">
    <a href="https://pypi.org/project/xraysink/">
        <img src="https://img.shields.io/pypi/v/xraysink.svg" alt="Package version">
    </a>
    <a href="https://pypi.org/project/xraysink/">
        <img src="https://img.shields.io/pypi/pyversions/xraysink.svg" alt="Python versions">
    </a>
    <a href="https://pypi.org/project/xraysink/">
        <img src="https://img.shields.io/pypi/dm/xraysink.svg" alt="Monthly downloads">
    </a>
</div>
<div align="center">
    <!-- Coverage badge stored in our wiki by the python-coverage-comment-action plugin -->
    <a href="https://github.com/garyd203/xraysink/">
        <img src="https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/wiki/garyd203/xraysink/python-coverage-comment-action-badge.json" alt="Coverage">
    </a>
</div>

Extra AWS X-Ray instrumentation to use distributed tracing with asyncio Python
libraries that are not (yet) supported by the official
[aws_xray_sdk](https://github.com/aws/aws-xray-sdk-python) library.


## Integrations Supported
* Generic ASGI-compatible tracing middleware for *any* ASGI-compliant web
  framework. This has been tested with:
  - [aiohttp server](https://docs.aiohttp.org/en/stable/)
  - [FastAPI](https://fastapi.tiangolo.com/)
* asyncio [Task's](https://docs.python.org/3/library/asyncio-task.html)
* Background jobs/tasks

## Installation
xraysink is distributed as a standard python package through
[pypi](https://pypi.org/), so you can install it with your favourite Python
package manager. For example:

    pip install xraysink


## How to use
`xraysink` augments the functionality provided by `aws_xray_sdk`. Before
using the tools in `xraysink`, you first need to configure `aws_xray_sdk` -
this will probably involve calling `xray_recorder.configure()` when your
process starts, and optionally `aws_xray_sdk.core.patch()`.

Extra instrumentation provided by `xraysink` is described below.

### FastAPI
Instrument incoming requests in your FastAPI web server by adding the
`xray_middleware` to your app. For example, you could do:

    from starlette.middleware.base import BaseHTTPMiddleware
    from xraysink.asgi.middleware import xray_middleware
    
    # Standard asyncio X-Ray configuration, customise as you choose
    xray_recorder.configure(context=AsyncContext(), service="my-cute-little-service")
    
    # Create a FastAPI app with various middleware
    app = FastAPI()
    app.add_middleware(MyTracingDependentMiddleware)  # Any middleware that is added earlier will have the X-Ray tracing context available to it
    app.add_middleware(BaseHTTPMiddleware, dispatch=xray_middleware)


### Asyncio Tasks
If you start asyncio [Task's](https://docs.python.org/3/library/asyncio-task.html)
from a standard request handler, then the AWS X-Ray SDK will not correctly
instrument any outgoing requests made inside those Tasks.

Use the fixed `AsyncContext` from `xraysink` as a drop-in replacement, like so:

    from aws_xray_sdk.core import xray_recorder
    from xraysink.context import AsyncContext  # NB: Use the AsyncContext from xraysink
    
    # Use the fixed AsyncContext when configuring X-Ray,
    # and customise other configuration as you choose.
    xray_recorder.configure(context=AsyncContext(use_task_factory=True))


### Background Jobs/Tasks
If your process starts background tasks that make network calls (eg. to the
database or an API in another service), then each execution of one of those
tasks should be treated as a new X-Ray trace. Indeed, if you don't do so then
you will likely get `context_missing` errors.

An async function that implements a background task can be easily instrumented
using the `@xray_task_async()` decorator, like so:

    from aws_xray_sdk.core import xray_recorder
    from xraysink.tasks import xray_task_async

    # Standard asyncio X-Ray configuration, customise as you choose
    xray_recorder.configure(context=AsyncContext(), service="my-cute-little-service")
    
    # Any call to this function will start a new X-Ray trace
    @xray_task_async()
    async def cleanup_stale_tokens():
        await database.get_table("tokens").delete(age__gt=1)
    
    # Start your background task using your scheduling system of choice :)
    schedule_recurring_task(cleanup_stale_tokens)

If your background task functions are called from a function that is already
instrumented (eg. send an email immediately after handling a request), then 
the background task will appear as a child segment of that trace. In this case,
you must ensure you use the non-buggy `AsyncContext` when configuring the recorder
(ie. `from xraysink.context import AsyncContext`)


### CloudWatch Logs integration
You can link your X-Ray traces to your CloudWatch Logs log records, which
enhances the integration with AWS CloudWatch ServiceLens. Take the following
steps:

1.  Put the X-Ray trace ID into every log message. There is no convention for
    how to do this (it just has to appear verbatim in the log message
    somewhere), but if you are using structured logging then the convention is
    to use a field called `traceId`. Here's an example
    
        trace_id = xray_recorder.get_trace_entity().trace_id
        logging.getLogger("example").info("Hello World!", extra={"traceId": trace_id})

1.  Explicitly set the name of the CloudWatch Logs log group associated with
    your process. There is no general way to detect the Log Group from inside
    the process, hence it requires manual configuration as part of your process
    initialisation (eg. in the same place where you call
    `xray_recorder.configure`).
    
        set_xray_log_group("/example/service-name")

Note that this feature relies on undocumented functionality, and is
[not yet](https://github.com/aws/aws-xray-sdk-python/issues/188)
supported by the official Python SDK.


## Licence
This project uses the Apache 2.0 licence, to make it compatible with
[aws_xray_sdk](https://github.com/aws/aws-xray-sdk-python), the
primary library for integrating with AWS X-Ray.



%package -n python3-xraysink
Summary:	Instrument asyncio Python for distributed tracing with AWS X-Ray.
Provides:	python-xraysink
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-xraysink
# xraysink

<div align="center">
    <a href="https://pypi.org/project/xraysink/">
        <img src="https://img.shields.io/pypi/v/xraysink.svg" alt="Package version">
    </a>
    <a href="https://pypi.org/project/xraysink/">
        <img src="https://img.shields.io/pypi/pyversions/xraysink.svg" alt="Python versions">
    </a>
    <a href="https://pypi.org/project/xraysink/">
        <img src="https://img.shields.io/pypi/dm/xraysink.svg" alt="Monthly downloads">
    </a>
</div>
<div align="center">
    <!-- Coverage badge stored in our wiki by the python-coverage-comment-action plugin -->
    <a href="https://github.com/garyd203/xraysink/">
        <img src="https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/wiki/garyd203/xraysink/python-coverage-comment-action-badge.json" alt="Coverage">
    </a>
</div>

Extra AWS X-Ray instrumentation to use distributed tracing with asyncio Python
libraries that are not (yet) supported by the official
[aws_xray_sdk](https://github.com/aws/aws-xray-sdk-python) library.


## Integrations Supported
* Generic ASGI-compatible tracing middleware for *any* ASGI-compliant web
  framework. This has been tested with:
  - [aiohttp server](https://docs.aiohttp.org/en/stable/)
  - [FastAPI](https://fastapi.tiangolo.com/)
* asyncio [Task's](https://docs.python.org/3/library/asyncio-task.html)
* Background jobs/tasks

## Installation
xraysink is distributed as a standard python package through
[pypi](https://pypi.org/), so you can install it with your favourite Python
package manager. For example:

    pip install xraysink


## How to use
`xraysink` augments the functionality provided by `aws_xray_sdk`. Before
using the tools in `xraysink`, you first need to configure `aws_xray_sdk` -
this will probably involve calling `xray_recorder.configure()` when your
process starts, and optionally `aws_xray_sdk.core.patch()`.

Extra instrumentation provided by `xraysink` is described below.

### FastAPI
Instrument incoming requests in your FastAPI web server by adding the
`xray_middleware` to your app. For example, you could do:

    from starlette.middleware.base import BaseHTTPMiddleware
    from xraysink.asgi.middleware import xray_middleware
    
    # Standard asyncio X-Ray configuration, customise as you choose
    xray_recorder.configure(context=AsyncContext(), service="my-cute-little-service")
    
    # Create a FastAPI app with various middleware
    app = FastAPI()
    app.add_middleware(MyTracingDependentMiddleware)  # Any middleware that is added earlier will have the X-Ray tracing context available to it
    app.add_middleware(BaseHTTPMiddleware, dispatch=xray_middleware)


### Asyncio Tasks
If you start asyncio [Task's](https://docs.python.org/3/library/asyncio-task.html)
from a standard request handler, then the AWS X-Ray SDK will not correctly
instrument any outgoing requests made inside those Tasks.

Use the fixed `AsyncContext` from `xraysink` as a drop-in replacement, like so:

    from aws_xray_sdk.core import xray_recorder
    from xraysink.context import AsyncContext  # NB: Use the AsyncContext from xraysink
    
    # Use the fixed AsyncContext when configuring X-Ray,
    # and customise other configuration as you choose.
    xray_recorder.configure(context=AsyncContext(use_task_factory=True))


### Background Jobs/Tasks
If your process starts background tasks that make network calls (eg. to the
database or an API in another service), then each execution of one of those
tasks should be treated as a new X-Ray trace. Indeed, if you don't do so then
you will likely get `context_missing` errors.

An async function that implements a background task can be easily instrumented
using the `@xray_task_async()` decorator, like so:

    from aws_xray_sdk.core import xray_recorder
    from xraysink.tasks import xray_task_async

    # Standard asyncio X-Ray configuration, customise as you choose
    xray_recorder.configure(context=AsyncContext(), service="my-cute-little-service")
    
    # Any call to this function will start a new X-Ray trace
    @xray_task_async()
    async def cleanup_stale_tokens():
        await database.get_table("tokens").delete(age__gt=1)
    
    # Start your background task using your scheduling system of choice :)
    schedule_recurring_task(cleanup_stale_tokens)

If your background task functions are called from a function that is already
instrumented (eg. send an email immediately after handling a request), then 
the background task will appear as a child segment of that trace. In this case,
you must ensure you use the non-buggy `AsyncContext` when configuring the recorder
(ie. `from xraysink.context import AsyncContext`)


### CloudWatch Logs integration
You can link your X-Ray traces to your CloudWatch Logs log records, which
enhances the integration with AWS CloudWatch ServiceLens. Take the following
steps:

1.  Put the X-Ray trace ID into every log message. There is no convention for
    how to do this (it just has to appear verbatim in the log message
    somewhere), but if you are using structured logging then the convention is
    to use a field called `traceId`. Here's an example
    
        trace_id = xray_recorder.get_trace_entity().trace_id
        logging.getLogger("example").info("Hello World!", extra={"traceId": trace_id})

1.  Explicitly set the name of the CloudWatch Logs log group associated with
    your process. There is no general way to detect the Log Group from inside
    the process, hence it requires manual configuration as part of your process
    initialisation (eg. in the same place where you call
    `xray_recorder.configure`).
    
        set_xray_log_group("/example/service-name")

Note that this feature relies on undocumented functionality, and is
[not yet](https://github.com/aws/aws-xray-sdk-python/issues/188)
supported by the official Python SDK.


## Licence
This project uses the Apache 2.0 licence, to make it compatible with
[aws_xray_sdk](https://github.com/aws/aws-xray-sdk-python), the
primary library for integrating with AWS X-Ray.



%package help
Summary:	Development documents and examples for xraysink
Provides:	python3-xraysink-doc
%description help
# xraysink

<div align="center">
    <a href="https://pypi.org/project/xraysink/">
        <img src="https://img.shields.io/pypi/v/xraysink.svg" alt="Package version">
    </a>
    <a href="https://pypi.org/project/xraysink/">
        <img src="https://img.shields.io/pypi/pyversions/xraysink.svg" alt="Python versions">
    </a>
    <a href="https://pypi.org/project/xraysink/">
        <img src="https://img.shields.io/pypi/dm/xraysink.svg" alt="Monthly downloads">
    </a>
</div>
<div align="center">
    <!-- Coverage badge stored in our wiki by the python-coverage-comment-action plugin -->
    <a href="https://github.com/garyd203/xraysink/">
        <img src="https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/wiki/garyd203/xraysink/python-coverage-comment-action-badge.json" alt="Coverage">
    </a>
</div>

Extra AWS X-Ray instrumentation to use distributed tracing with asyncio Python
libraries that are not (yet) supported by the official
[aws_xray_sdk](https://github.com/aws/aws-xray-sdk-python) library.


## Integrations Supported
* Generic ASGI-compatible tracing middleware for *any* ASGI-compliant web
  framework. This has been tested with:
  - [aiohttp server](https://docs.aiohttp.org/en/stable/)
  - [FastAPI](https://fastapi.tiangolo.com/)
* asyncio [Task's](https://docs.python.org/3/library/asyncio-task.html)
* Background jobs/tasks

## Installation
xraysink is distributed as a standard python package through
[pypi](https://pypi.org/), so you can install it with your favourite Python
package manager. For example:

    pip install xraysink


## How to use
`xraysink` augments the functionality provided by `aws_xray_sdk`. Before
using the tools in `xraysink`, you first need to configure `aws_xray_sdk` -
this will probably involve calling `xray_recorder.configure()` when your
process starts, and optionally `aws_xray_sdk.core.patch()`.

Extra instrumentation provided by `xraysink` is described below.

### FastAPI
Instrument incoming requests in your FastAPI web server by adding the
`xray_middleware` to your app. For example, you could do:

    from starlette.middleware.base import BaseHTTPMiddleware
    from xraysink.asgi.middleware import xray_middleware
    
    # Standard asyncio X-Ray configuration, customise as you choose
    xray_recorder.configure(context=AsyncContext(), service="my-cute-little-service")
    
    # Create a FastAPI app with various middleware
    app = FastAPI()
    app.add_middleware(MyTracingDependentMiddleware)  # Any middleware that is added earlier will have the X-Ray tracing context available to it
    app.add_middleware(BaseHTTPMiddleware, dispatch=xray_middleware)


### Asyncio Tasks
If you start asyncio [Task's](https://docs.python.org/3/library/asyncio-task.html)
from a standard request handler, then the AWS X-Ray SDK will not correctly
instrument any outgoing requests made inside those Tasks.

Use the fixed `AsyncContext` from `xraysink` as a drop-in replacement, like so:

    from aws_xray_sdk.core import xray_recorder
    from xraysink.context import AsyncContext  # NB: Use the AsyncContext from xraysink
    
    # Use the fixed AsyncContext when configuring X-Ray,
    # and customise other configuration as you choose.
    xray_recorder.configure(context=AsyncContext(use_task_factory=True))


### Background Jobs/Tasks
If your process starts background tasks that make network calls (eg. to the
database or an API in another service), then each execution of one of those
tasks should be treated as a new X-Ray trace. Indeed, if you don't do so then
you will likely get `context_missing` errors.

An async function that implements a background task can be easily instrumented
using the `@xray_task_async()` decorator, like so:

    from aws_xray_sdk.core import xray_recorder
    from xraysink.tasks import xray_task_async

    # Standard asyncio X-Ray configuration, customise as you choose
    xray_recorder.configure(context=AsyncContext(), service="my-cute-little-service")
    
    # Any call to this function will start a new X-Ray trace
    @xray_task_async()
    async def cleanup_stale_tokens():
        await database.get_table("tokens").delete(age__gt=1)
    
    # Start your background task using your scheduling system of choice :)
    schedule_recurring_task(cleanup_stale_tokens)

If your background task functions are called from a function that is already
instrumented (eg. send an email immediately after handling a request), then 
the background task will appear as a child segment of that trace. In this case,
you must ensure you use the non-buggy `AsyncContext` when configuring the recorder
(ie. `from xraysink.context import AsyncContext`)


### CloudWatch Logs integration
You can link your X-Ray traces to your CloudWatch Logs log records, which
enhances the integration with AWS CloudWatch ServiceLens. Take the following
steps:

1.  Put the X-Ray trace ID into every log message. There is no convention for
    how to do this (it just has to appear verbatim in the log message
    somewhere), but if you are using structured logging then the convention is
    to use a field called `traceId`. Here's an example
    
        trace_id = xray_recorder.get_trace_entity().trace_id
        logging.getLogger("example").info("Hello World!", extra={"traceId": trace_id})

1.  Explicitly set the name of the CloudWatch Logs log group associated with
    your process. There is no general way to detect the Log Group from inside
    the process, hence it requires manual configuration as part of your process
    initialisation (eg. in the same place where you call
    `xray_recorder.configure`).
    
        set_xray_log_group("/example/service-name")

Note that this feature relies on undocumented functionality, and is
[not yet](https://github.com/aws/aws-xray-sdk-python/issues/188)
supported by the official Python SDK.


## Licence
This project uses the Apache 2.0 licence, to make it compatible with
[aws_xray_sdk](https://github.com/aws/aws-xray-sdk-python), the
primary library for integrating with AWS X-Ray.



%prep
%autosetup -n xraysink-1.6.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-xraysink -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 1.6.1-1
- Package Spec generated