diff options
author | CoprDistGit <infra@openeuler.org> | 2023-04-10 18:09:50 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-04-10 18:09:50 +0000 |
commit | 847222b755b4d5dd18daba5b00693da92927ca9e (patch) | |
tree | 959208b199fb744e4ea8a1ce2b1abe31162a69bb | |
parent | a3830ab287f8e4e32addaf6cc26b22bf990a425c (diff) |
automatic import of python-yake
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-yake.spec | 180 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 182 insertions, 0 deletions
@@ -0,0 +1 @@ +/yake-0.4.8.tar.gz diff --git a/python-yake.spec b/python-yake.spec new file mode 100644 index 0000000..45a9176 --- /dev/null +++ b/python-yake.spec @@ -0,0 +1,180 @@ +%global _empty_manifest_terminate_build 0 +Name: python-yake +Version: 0.4.8 +Release: 1 +Summary: Keyword extraction Python package +License: LGPLv3 +URL: https://pypi.python.org/pypi/yake +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/7a/95/b4091038c7fa99408f0878070cf11f6b4d6d2675461b7e80848482608c52/yake-0.4.8.tar.gz +BuildArch: noarch + +Requires: python3-tabulate +Requires: python3-click +Requires: python3-numpy +Requires: python3-segtok +Requires: python3-networkx +Requires: python3-jellyfish + +%description + +# Yet Another Keyword Extractor (Yake) + +Unsupervised Approach for Automatic Keyword Extraction using Text Features. + +YAKE! is a light-weight unsupervised automatic keyword extraction method which rests on text statistical features extracted from single documents to select the most important keywords of a text. Our system does not need to be trained on a particular set of documents, neither it depends on dictionaries, external-corpus, size of the text, language or domain. To demonstrate the merits and the significance of our proposal, we compare it against ten state-of-the-art unsupervised approaches (TF.IDF, KP-Miner, RAKE, TextRank, SingleRank, ExpandRank, TopicRank, TopicalPageRank, PositionRank and MultipartiteRank), and one supervised method (KEA). Experimental results carried out on top of twenty datasets (see Benchmark section below) show that our methods significantly outperform state-of-the-art methods under a number of collections of different sizes, languages or domains. In addition to the python package here described, we also make available a <a href="http://yake.inesctec.pt" target="_blank">demo</a>, an <a href="http://yake.inesctec.pt/apidocs/#!/available_methods/post_yake_v2_extract_keywords" target="_blank">API</a> and a <a href="https://play.google.com/store/apps/details?id=com.yake.yake" target="_blank">mobile app</a>. + +## Main Features + +* Unsupervised approach +* Corpus-Independent +* Domain and Language Independent +* Single-Document + +## Where can I find YAKE!? +YAKE! is available online [http://yake.inesctec.pt], as an open source Python package [https://github.com/LIAAD/yake] and on [Google Play](https://play.google.com/store/apps/details?id=com.yake.yake). + +## References +Please cite the following works when using YAKE + +<b>In-depth journal paper at Information Sciences Journal</b> + +Campos, R., Mangaravite, V., Pasquali, A., Jatowt, A., Jorge, A., Nunes, C. and Jatowt, A. (2020). YAKE! Keyword Extraction from Single Documents using Multiple Local Features. In Information Sciences Journal. Elsevier, Vol 509, pp 257-289. [pdf](https://doi.org/10.1016/j.ins.2019.09.013) + +<b>ECIR'18 Best Short Paper</b> + +Campos R., Mangaravite V., Pasquali A., Jorge A.M., Nunes C., and Jatowt A. (2018). A Text Feature Based Automatic Keyword Extraction Method for Single Documents. In: Pasi G., Piwowarski B., Azzopardi L., Hanbury A. (eds). Advances in Information Retrieval. ECIR 2018 (Grenoble, France. March 26 – 29). Lecture Notes in Computer Science, vol 10772, pp. 684 - 691. [pdf](https://link.springer.com/chapter/10.1007/978-3-319-76941-7_63) + +Campos R., Mangaravite V., Pasquali A., Jorge A.M., Nunes C., and Jatowt A. (2018). YAKE! Collection-independent Automatic Keyword Extractor. In: Pasi G., Piwowarski B., Azzopardi L., Hanbury A. (eds). Advances in Information Retrieval. ECIR 2018 (Grenoble, France. March 26 – 29). Lecture Notes in Computer Science, vol 10772, pp. 806 - 810. [pdf](https://link.springer.com/chapter/10.1007/978-3-319-76941-7_80) + +## Awards +[ECIR'18](http://ecir2018.org) Best Short Paper + + + + +%package -n python3-yake +Summary: Keyword extraction Python package +Provides: python-yake +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-yake + +# Yet Another Keyword Extractor (Yake) + +Unsupervised Approach for Automatic Keyword Extraction using Text Features. + +YAKE! is a light-weight unsupervised automatic keyword extraction method which rests on text statistical features extracted from single documents to select the most important keywords of a text. Our system does not need to be trained on a particular set of documents, neither it depends on dictionaries, external-corpus, size of the text, language or domain. To demonstrate the merits and the significance of our proposal, we compare it against ten state-of-the-art unsupervised approaches (TF.IDF, KP-Miner, RAKE, TextRank, SingleRank, ExpandRank, TopicRank, TopicalPageRank, PositionRank and MultipartiteRank), and one supervised method (KEA). Experimental results carried out on top of twenty datasets (see Benchmark section below) show that our methods significantly outperform state-of-the-art methods under a number of collections of different sizes, languages or domains. In addition to the python package here described, we also make available a <a href="http://yake.inesctec.pt" target="_blank">demo</a>, an <a href="http://yake.inesctec.pt/apidocs/#!/available_methods/post_yake_v2_extract_keywords" target="_blank">API</a> and a <a href="https://play.google.com/store/apps/details?id=com.yake.yake" target="_blank">mobile app</a>. + +## Main Features + +* Unsupervised approach +* Corpus-Independent +* Domain and Language Independent +* Single-Document + +## Where can I find YAKE!? +YAKE! is available online [http://yake.inesctec.pt], as an open source Python package [https://github.com/LIAAD/yake] and on [Google Play](https://play.google.com/store/apps/details?id=com.yake.yake). + +## References +Please cite the following works when using YAKE + +<b>In-depth journal paper at Information Sciences Journal</b> + +Campos, R., Mangaravite, V., Pasquali, A., Jatowt, A., Jorge, A., Nunes, C. and Jatowt, A. (2020). YAKE! Keyword Extraction from Single Documents using Multiple Local Features. In Information Sciences Journal. Elsevier, Vol 509, pp 257-289. [pdf](https://doi.org/10.1016/j.ins.2019.09.013) + +<b>ECIR'18 Best Short Paper</b> + +Campos R., Mangaravite V., Pasquali A., Jorge A.M., Nunes C., and Jatowt A. (2018). A Text Feature Based Automatic Keyword Extraction Method for Single Documents. In: Pasi G., Piwowarski B., Azzopardi L., Hanbury A. (eds). Advances in Information Retrieval. ECIR 2018 (Grenoble, France. March 26 – 29). Lecture Notes in Computer Science, vol 10772, pp. 684 - 691. [pdf](https://link.springer.com/chapter/10.1007/978-3-319-76941-7_63) + +Campos R., Mangaravite V., Pasquali A., Jorge A.M., Nunes C., and Jatowt A. (2018). YAKE! Collection-independent Automatic Keyword Extractor. In: Pasi G., Piwowarski B., Azzopardi L., Hanbury A. (eds). Advances in Information Retrieval. ECIR 2018 (Grenoble, France. March 26 – 29). Lecture Notes in Computer Science, vol 10772, pp. 806 - 810. [pdf](https://link.springer.com/chapter/10.1007/978-3-319-76941-7_80) + +## Awards +[ECIR'18](http://ecir2018.org) Best Short Paper + + + + +%package help +Summary: Development documents and examples for yake +Provides: python3-yake-doc +%description help + +# Yet Another Keyword Extractor (Yake) + +Unsupervised Approach for Automatic Keyword Extraction using Text Features. + +YAKE! is a light-weight unsupervised automatic keyword extraction method which rests on text statistical features extracted from single documents to select the most important keywords of a text. Our system does not need to be trained on a particular set of documents, neither it depends on dictionaries, external-corpus, size of the text, language or domain. To demonstrate the merits and the significance of our proposal, we compare it against ten state-of-the-art unsupervised approaches (TF.IDF, KP-Miner, RAKE, TextRank, SingleRank, ExpandRank, TopicRank, TopicalPageRank, PositionRank and MultipartiteRank), and one supervised method (KEA). Experimental results carried out on top of twenty datasets (see Benchmark section below) show that our methods significantly outperform state-of-the-art methods under a number of collections of different sizes, languages or domains. In addition to the python package here described, we also make available a <a href="http://yake.inesctec.pt" target="_blank">demo</a>, an <a href="http://yake.inesctec.pt/apidocs/#!/available_methods/post_yake_v2_extract_keywords" target="_blank">API</a> and a <a href="https://play.google.com/store/apps/details?id=com.yake.yake" target="_blank">mobile app</a>. + +## Main Features + +* Unsupervised approach +* Corpus-Independent +* Domain and Language Independent +* Single-Document + +## Where can I find YAKE!? +YAKE! is available online [http://yake.inesctec.pt], as an open source Python package [https://github.com/LIAAD/yake] and on [Google Play](https://play.google.com/store/apps/details?id=com.yake.yake). + +## References +Please cite the following works when using YAKE + +<b>In-depth journal paper at Information Sciences Journal</b> + +Campos, R., Mangaravite, V., Pasquali, A., Jatowt, A., Jorge, A., Nunes, C. and Jatowt, A. (2020). YAKE! Keyword Extraction from Single Documents using Multiple Local Features. In Information Sciences Journal. Elsevier, Vol 509, pp 257-289. [pdf](https://doi.org/10.1016/j.ins.2019.09.013) + +<b>ECIR'18 Best Short Paper</b> + +Campos R., Mangaravite V., Pasquali A., Jorge A.M., Nunes C., and Jatowt A. (2018). A Text Feature Based Automatic Keyword Extraction Method for Single Documents. In: Pasi G., Piwowarski B., Azzopardi L., Hanbury A. (eds). Advances in Information Retrieval. ECIR 2018 (Grenoble, France. March 26 – 29). Lecture Notes in Computer Science, vol 10772, pp. 684 - 691. [pdf](https://link.springer.com/chapter/10.1007/978-3-319-76941-7_63) + +Campos R., Mangaravite V., Pasquali A., Jorge A.M., Nunes C., and Jatowt A. (2018). YAKE! Collection-independent Automatic Keyword Extractor. In: Pasi G., Piwowarski B., Azzopardi L., Hanbury A. (eds). Advances in Information Retrieval. ECIR 2018 (Grenoble, France. March 26 – 29). Lecture Notes in Computer Science, vol 10772, pp. 806 - 810. [pdf](https://link.springer.com/chapter/10.1007/978-3-319-76941-7_80) + +## Awards +[ECIR'18](http://ecir2018.org) Best Short Paper + + + + +%prep +%autosetup -n yake-0.4.8 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-yake -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.8-1 +- Package Spec generated @@ -0,0 +1 @@ +02eaafd91a226f18398b53b11a8fb120 yake-0.4.8.tar.gz |