diff options
author | CoprDistGit <infra@openeuler.org> | 2024-04-16 04:50:57 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2024-04-16 04:50:57 +0000 |
commit | 61c0d3660d7b19d56130ae43771b7c0a75760f32 (patch) | |
tree | b66102b1cc469d9ab8b2078c9e587eb613f91ccf | |
parent | 9f52c661b58ca2554976752319dbc2a3118209cc (diff) |
automatic import of torchrl
-rw-r--r-- | torchrl.spec | 116 |
1 files changed, 58 insertions, 58 deletions
diff --git a/torchrl.spec b/torchrl.spec index db67173..cdcc713 100644 --- a/torchrl.spec +++ b/torchrl.spec @@ -1,59 +1,59 @@ -%global _empty_manifest_terminate_build 0
-Name: torchrl
-Version: 0.3.1
-Release: 1
-Summary: TorchRL is a library of reusable components for deep learning with reinforcement learning
-License: MIT
-URL: https://torchrl.org/
-Source0: https://github.com/pytorch/rl/archive/refs/tags/v%{version}.tar.gz/rl-%{version}.tar.gz
-
-BuildRequires: g++
-Requires: python3-torch
-Requires: python3-gym
-
-%description
-TorchRL provides efficient, reusable components for Reinforcement Learning research with PyTorch.
-Key features include:
-- Data structures for storing and manipulating reinforcement learning environments
-- Efficient operations on these structures (sampling, loss functions)
-- A framework for policy gradient methods
-- A framework for Q-learning methods.
-
-%package -n python3-torchrl
-Summary: TorchRL is a library of reusable components for deep learning with reinforcement learning
-Provides: python-torchrl
-
-BuildRequires: python3-devel
-BuildRequires: python3-setuptools
-BuildRequires: python3-setuptools_scm
-BuildRequires: python3-pbr
-BuildRequires: python3-pip
-BuildRequires: python3-wheel
-
-%description -n python3-torchrl
-TorchRL provides efficient, reusable components for Reinforcement Learning research with PyTorch.
-Key features include:
-- Data structures for storing and manipulating reinforcement learning environments
-- Efficient operations on these structures (sampling, loss functions)
-- A framework for policy gradient methods
-- A framework for Q-learning methods.
-
-%prep
-%autosetup -p1 -n rl-%{version}
-
-%build
-%py3_build
-
-%install
-%py3_install
-
-%files -n python3-torchrl
-%doc *.md
-%license LICENSE
-%{_bindir}/torchrl_runner
-%{_bindir}/torchrl_visualizer
-%{python3_sitearch}/*
-
-%changelog
-* Mon Apr 15 2024 weilaijishu
+%global _empty_manifest_terminate_build 0 +Name: torchrl +Version: 0.3.1 +Release: 1 +Summary: TorchRL is a library of reusable components for deep learning with reinforcement learning +License: MIT +URL: https://torchrl.org/ +Source0: https://github.com/pytorch/rl/archive/refs/tags/v%{version}.tar.gz/rl-%{version}.tar.gz + +BuildRequires: g++ +Requires: python3-torch +Requires: python3-gym + +%description +TorchRL provides efficient, reusable components for Reinforcement Learning research with PyTorch. +Key features include: +- Data structures for storing and manipulating reinforcement learning environments +- Efficient operations on these structures (sampling, loss functions) +- A framework for policy gradient methods +- A framework for Q-learning methods. + +%package -n python3-torchrl +Summary: TorchRL is a library of reusable components for deep learning with reinforcement learning +Provides: python-torchrl + +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-setuptools_scm +BuildRequires: python3-pbr +BuildRequires: python3-pip +BuildRequires: python3-wheel + +%description -n python3-torchrl +TorchRL provides efficient, reusable components for Reinforcement Learning research with PyTorch. +Key features include: +- Data structures for storing and manipulating reinforcement learning environments +- Efficient operations on these structures (sampling, loss functions) +- A framework for policy gradient methods +- A framework for Q-learning methods. + +%prep +%autosetup -p1 -n rl-%{version} + +%build +%py3_build + +%install +%py3_install + +%files -n python3-torchrl +%doc *.md +%license LICENSE +%{_bindir}/torchrl_runner +%{_bindir}/torchrl_visualizer +%{python3_sitearch}/* + +%changelog +* Mon Apr 15 2024 weilaijishu - Initial package |