summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2024-04-16 04:50:57 +0000
committerCoprDistGit <infra@openeuler.org>2024-04-16 04:50:57 +0000
commit61c0d3660d7b19d56130ae43771b7c0a75760f32 (patch)
treeb66102b1cc469d9ab8b2078c9e587eb613f91ccf
parent9f52c661b58ca2554976752319dbc2a3118209cc (diff)
automatic import of torchrl
-rw-r--r--torchrl.spec116
1 files changed, 58 insertions, 58 deletions
diff --git a/torchrl.spec b/torchrl.spec
index db67173..cdcc713 100644
--- a/torchrl.spec
+++ b/torchrl.spec
@@ -1,59 +1,59 @@
-%global _empty_manifest_terminate_build 0
-Name: torchrl
-Version: 0.3.1
-Release: 1
-Summary: TorchRL is a library of reusable components for deep learning with reinforcement learning
-License: MIT
-URL: https://torchrl.org/
-Source0: https://github.com/pytorch/rl/archive/refs/tags/v%{version}.tar.gz/rl-%{version}.tar.gz
-
-BuildRequires: g++
-Requires: python3-torch
-Requires: python3-gym
-
-%description
-TorchRL provides efficient, reusable components for Reinforcement Learning research with PyTorch.
-Key features include:
-- Data structures for storing and manipulating reinforcement learning environments
-- Efficient operations on these structures (sampling, loss functions)
-- A framework for policy gradient methods
-- A framework for Q-learning methods.
-
-%package -n python3-torchrl
-Summary: TorchRL is a library of reusable components for deep learning with reinforcement learning
-Provides: python-torchrl
-
-BuildRequires: python3-devel
-BuildRequires: python3-setuptools
-BuildRequires: python3-setuptools_scm
-BuildRequires: python3-pbr
-BuildRequires: python3-pip
-BuildRequires: python3-wheel
-
-%description -n python3-torchrl
-TorchRL provides efficient, reusable components for Reinforcement Learning research with PyTorch.
-Key features include:
-- Data structures for storing and manipulating reinforcement learning environments
-- Efficient operations on these structures (sampling, loss functions)
-- A framework for policy gradient methods
-- A framework for Q-learning methods.
-
-%prep
-%autosetup -p1 -n rl-%{version}
-
-%build
-%py3_build
-
-%install
-%py3_install
-
-%files -n python3-torchrl
-%doc *.md
-%license LICENSE
-%{_bindir}/torchrl_runner
-%{_bindir}/torchrl_visualizer
-%{python3_sitearch}/*
-
-%changelog
-* Mon Apr 15 2024 weilaijishu
+%global _empty_manifest_terminate_build 0
+Name: torchrl
+Version: 0.3.1
+Release: 1
+Summary: TorchRL is a library of reusable components for deep learning with reinforcement learning
+License: MIT
+URL: https://torchrl.org/
+Source0: https://github.com/pytorch/rl/archive/refs/tags/v%{version}.tar.gz/rl-%{version}.tar.gz
+
+BuildRequires: g++
+Requires: python3-torch
+Requires: python3-gym
+
+%description
+TorchRL provides efficient, reusable components for Reinforcement Learning research with PyTorch.
+Key features include:
+- Data structures for storing and manipulating reinforcement learning environments
+- Efficient operations on these structures (sampling, loss functions)
+- A framework for policy gradient methods
+- A framework for Q-learning methods.
+
+%package -n python3-torchrl
+Summary: TorchRL is a library of reusable components for deep learning with reinforcement learning
+Provides: python-torchrl
+
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-setuptools_scm
+BuildRequires: python3-pbr
+BuildRequires: python3-pip
+BuildRequires: python3-wheel
+
+%description -n python3-torchrl
+TorchRL provides efficient, reusable components for Reinforcement Learning research with PyTorch.
+Key features include:
+- Data structures for storing and manipulating reinforcement learning environments
+- Efficient operations on these structures (sampling, loss functions)
+- A framework for policy gradient methods
+- A framework for Q-learning methods.
+
+%prep
+%autosetup -p1 -n rl-%{version}
+
+%build
+%py3_build
+
+%install
+%py3_install
+
+%files -n python3-torchrl
+%doc *.md
+%license LICENSE
+%{_bindir}/torchrl_runner
+%{_bindir}/torchrl_visualizer
+%{python3_sitearch}/*
+
+%changelog
+* Mon Apr 15 2024 weilaijishu
- Initial package