aops-apollo-toolaarch646d0f8391511823264201a73f7ed8256ecb14f9f4ba3cd8301c271df311967f89Small tools for aops-apollo, e.g. updateinfo.xml generatersmalltools for aops-apollo, e.g.updateinfo.xml generaterhttps://gitee.com/openeuler/aops-apolloMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843872-20251015-0219aops-apollo-v2.2.0-1.oe2403.src.rpm/etc/aops_apollo_tool/updateinfo_config.ini/usr/bin/gen-updateinfoaops-apolloaarch640dac1dba6cb6cad907e3251f7d15f7c8c29287ff256facd0505f1e0fa849933aCve management service, monitor machine vulnerabilities and provide fix functions.Cve management service, monitor machine vulnerabilities and provide fix functions.https://gitee.com/openeuler/aops-apolloMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843872-20251015-0219aops-apollo-v2.2.0-1.oe2403.src.rpm/etc/aops/conf.d/aops-apollo.ymlaops-apollosrc30416ce6ab64c5c0d9c0d8fc228b30280a556b1f16eb1f11f0b6226bc03303e3Cve management service, monitor machine vulnerabilities and provide fix functions.Cve management service, monitor machine vulnerabilities and provide fix functions.https://gitee.com/openeuler/aops-apolloMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843872-20251015-0219aops-ceresaarch64d194905024a51e374a13beec935a2c3d17eaee0595135a161ce5286ecb7dfc5dAn agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.https://gitee.com/openeuler/aops-ceresMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843880-20251015-0223aops-ceres-v2.2.0-1.oe2403.src.rpm/etc/aops/ceres.conf/usr/bin/aops-ceresaops-ceressrc068fd6a3949979878e5e27fe665e0fecb59c8ad367acf839d15c775a538712ecAn agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.https://gitee.com/openeuler/aops-ceresMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843880-20251015-0223aops-hermesaarch64ec3e8a01e49200be927e675f2299e929b54ed67128749780a255751e9ac812a7Web for an intelligent diagnose frameWeb for an intelligent diagnose framehttps://gitee.com/openeuler/aops-hermesMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844271-20251125-0956aops-hermes-v2.2.0-1.oe2403.src.rpmaops-hermessrc956676c3adc9fc8819140a2a6c90e58e0c2f03b87efb4e6bbf1907924e65ebebWeb for an intelligent diagnose frameWeb for an intelligent diagnose framehttps://gitee.com/openeuler/aops-hermesMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844271-20251125-0956aops-mcpaarch64e79774522bbead36bcce64f54fd52c4ab2c4a7d8ecaa69fdd7fb0535df244467Aops MCP ServiceAops MCP Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844193-20251110-1011aops-mcp-1.0.0-1.oe2403.src.rpm/opt/aops-mcp/venv/bin/Activate.ps1/opt/aops-mcp/venv/bin/activate/opt/aops-mcp/venv/bin/activate.csh/opt/aops-mcp/venv/bin/activate.fish/opt/aops-mcp/venv/bin/aops-mcp/opt/aops-mcp/venv/bin/dotenv/opt/aops-mcp/venv/bin/fastmcp/opt/aops-mcp/venv/bin/httpx/opt/aops-mcp/venv/bin/jsonschema/opt/aops-mcp/venv/bin/markdown-it/opt/aops-mcp/venv/bin/mcp/opt/aops-mcp/venv/bin/pip/opt/aops-mcp/venv/bin/pip3/opt/aops-mcp/venv/bin/pip3.11/opt/aops-mcp/venv/bin/pygmentize/opt/aops-mcp/venv/bin/python/opt/aops-mcp/venv/bin/python3/opt/aops-mcp/venv/bin/python3.11/opt/aops-mcp/venv/bin/typer/opt/aops-mcp/venv/bin/uvicorn/opt/aops-mcp/venv/bin/websockets/usr/bin/aops-mcpaops-mcpsrcb2a06b0b095d1b1afff0badfa2ed6fb9d2958a28399182f3447f9725644ed862Aops MCP ServiceAops MCP Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844193-20251110-1011aops-toolsaarch647f70c8a87587324bbe4d36397918c3bd28ebff78a53859b77df1518c4e143704aops scriptstools for aops, it's about aops deployhttps://gitee.com/openeuler/aops-vulcanusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843876-20251015-0220aops-vulcanus-v2.2.0-1.oe2403.src.rpmaops-vulcanusaarch640746b83ec7b2ae200aaea2aba4c58ceb7bf27adb6bcd6f618219e48bb658efcaA basic tool libraries of aops, including logging, configure and response, etc.A basic tool libraries of aops, including logging, configure and response, etc.https://gitee.com/openeuler/aops-vulcanusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843876-20251015-0220aops-vulcanus-v2.2.0-1.oe2403.src.rpm/etc/aops/aops-config.ymlaops-vulcanussrcc9e90bb3827502acbaa904007c60a19d95b45e0b2d92f6d5fd513fac7b717a21A basic tool libraries of aops, including logging, configure and response, etc.A basic tool libraries of aops, including logging, configure and response, etc.https://gitee.com/openeuler/aops-vulcanusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843876-20251015-0220aops-zeusaarch6475511ef9e7b74f64cf287488d7f6b940ef0ea2216d1e668d7a7ece9370c01c1bA service which is the foundation of aops.Provide one-click aops deployment, service start and stop, hot loading of
configuration files, and database initialization.
Provides: aops-zeushttps://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843870-20251015-0218aops-zeus-v2.2.0-1.oe2403.src.rpm/usr/bin/aops-cliaops-zeussrc30c5df1115c718bdde5dd7cfba504dc923228f66454fcb71b955db63c5324ad0A service which is the foundation of aops.Provide one-click aops deployment, service start and stop, hot loading of
configuration files, and database initialization.
Provides: aops-zeushttps://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843870-20251015-0218async-taskaarch6489e7c7873a0ec5fa04615109d1dbfad3691afbabec8c48bf47ee12a5b4875154A async task of aops.A async task of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843870-20251015-0218aops-zeus-v2.2.0-1.oe2403.src.rpm/etc/aops/crontab.yml/etc/aops/sync-conf.d/instance.properties/etc/aops/sync-conf.d/rdb/cve_fix_task.yml/etc/aops/sync-conf.d/rdb/cve_host_match.yml/etc/aops/sync-conf.d/rdb/cve_rollback_task.yml/etc/aops/sync-conf.d/rdb/domain.yml/etc/aops/sync-conf.d/rdb/domain_conf_info.yml/etc/aops/sync-conf.d/rdb/domain_host.yml/etc/aops/sync-conf.d/rdb/host.yml/etc/aops/sync-conf.d/rdb/host_conf_sync_status.yml/etc/aops/sync-conf.d/rdb/host_group.yml/etc/aops/sync-conf.d/rdb/hotpatch_remove_task.yml/etc/aops/sync-conf.d/rdb/repo.yml/etc/aops/sync-conf.d/rdb/task_host_repo.yml/etc/aops/sync-conf.d/rdb/vul_task.yml/usr/bin/async-taskauthHubaarch647f83d082f8babaea6d5d8813da3b371cd5b5df956816526643942789e4d491d5Authentication authority based on oauth2authhub is a specialized authentication center built on OAuth2, providing robust authentication and authorization capabilities for secure user access control in your applications..https://gitee.com/openeuler/authHubMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843862-20251014-0719authHub-v2.2.0-3.oe2403.src.rpm/etc/aops/conf.d/authhub.yml/etc/nginx/conf.d/authhub.nginx.confauthHubsrce34cbc30377b4dba62041a6288f6d118799f46add51c7c2730b35d3b59758dd2Authentication authority based on oauth2authhub is a specialized authentication center built on OAuth2, providing robust authentication and authorization capabilities for secure user access control in your applications..https://gitee.com/openeuler/authHubMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843862-20251014-0719authhub-webaarch645d8f56f2d70201c6282f229cc4e4fd235f253117f16cd88248a93297159b032dAuthentication authority web based on oauth2Authentication authority web based on oauth2https://gitee.com/openeuler/authHubMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843862-20251014-0719authHub-v2.2.0-3.oe2403.src.rpmdnf-hotpatch-pluginaarch640d482e1ab768b618028229f191b9a8e9423bc0a53d37d490dd593e13f59fb43ddnf hotpatch plugindnf hotpatch plugin, it's about hotpatch query and fixhttps://gitee.com/openeuler/aops-ceresMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843880-20251015-0223aops-ceres-v2.2.0-1.oe2403.src.rpmgala-anteateraarch643b7621cd2511c8360e00cfe201a099bcae972b25e5a2478d12750ca174c61533A time-series anomaly detection platform for operating system.Abnormal detection module for A-Ops projecthttps://gitee.com/openeuler/gala-anteaterMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843879-20251015-0222gala-anteater-3.0.1-1.oe2403.src.rpm/etc/gala-anteater/config/gala-anteater.yaml/etc/gala-anteater/config/log.settings.ini/etc/gala-anteater/config/metricinfo.json/etc/gala-anteater/entity/app_entity.json/etc/gala-anteater/entity/pod_entity.json/etc/gala-anteater/entity/vm_entity.json/etc/gala-anteater/module/app_sli_rtt.job.json/etc/gala-anteater/module/container_disruption.job.json/etc/gala-anteater/module/disk_throughput.job.json/etc/gala-anteater/module/jvm_oom.job.json/etc/gala-anteater/module/proc_io_latency.job.json/etc/gala-anteater/module/rca.job.json/etc/gala-anteater/module/slow_node_detection.job.json/etc/gala-anteater/module/sys_io_latency.job.json/etc/gala-anteater/module/sys_nic_loss.job.json/etc/gala-anteater/module/sys_tcp_establish.job.json/etc/gala-anteater/module/sys_tcp_transmission_latency.job.json/etc/gala-anteater/module/usad_model.job.json/usr/bin/gala-anteatergala-anteatersrc0c4695b0a43184b459cb5e7021ac0156886d307873ba9f4b0138048fd6e44734A time-series anomaly detection platform for operating system.Abnormal detection module for A-Ops projecthttps://gitee.com/openeuler/gala-anteaterMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843879-20251015-0222gala-gopheraarch647abb62ee1b0448e9ce1069c8dbb541b226e3450965679699df1b99aa089ed497Intelligent ops toolkit for openEulergala-gopher is a low-overhead eBPF-based probes frameworkhttps://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844162-20251107-0943gala-gopher-2.0.3-2.oe2403.src.rpm/etc/gala-gopher/extend_probes/cadvisor_probe.conf/etc/gala-gopher/extend_probes/pg_stat_probe.conf/etc/gala-gopher/gala-gopher-custom.json/etc/gala-gopher/gala-gopher.conf/etc/gala-gopher/probes.init/usr/bin/gala-gopher/usr/bin/gopher-ctlgala-gophersrcb1a3cdd5855134cd097b424cc82015b3a443fc8dbb27b1b22d32cf4d6bb167e1Intelligent ops toolkit for openEulergala-gopher is a low-overhead eBPF-based probes frameworkhttps://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844162-20251107-0943gala-gopher-debuginfoaarch641a07fa0a4dc2a121dc2c783136e84c82d19330cb314e3dac2031cc08e25cdee6Debug information for package gala-gopherThis package provides debug information for package gala-gopher.
Debug information is useful when developing applications that use this
package or when debugging this package.https://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Development/Debugeur-prod-workerlocal-aarch64-normal-prod-00844162-20251107-0943gala-gopher-2.0.3-2.oe2403.src.rpm/usr/lib/debug/usr/bin/gala-gopher-2.0.3-2.oe2403.aarch64.debug/usr/lib/debug/usr/bin/gopher-ctl-2.0.3-2.oe2403.aarch64.debuggala-gopher-debugsourceaarch647a1d744825b7a33fa1aa024372f4c76ccdd8cda38afefd55d6a2c70d54720ae0Debug sources for package gala-gopherThis package provides debug sources for package gala-gopher.
Debug sources are useful when developing applications that use this
package or when debugging this package.https://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Development/Debugeur-prod-workerlocal-aarch64-normal-prod-00844162-20251107-0943gala-gopher-2.0.3-2.oe2403.src.rpmgala-inferenceaarch6445efbf1503f577e8565f7cae6af02ef46785585581f6514351cca2cbf28abacdCause inference module for gala-ops projectCause inference module for A-Ops projecthttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843878-20251015-0221gala-spider-2.0.1-1.oe2403.src.rpm/etc/gala-inference/cause-keyword.yaml/etc/gala-inference/ext-observe-meta.yaml/etc/gala-inference/gala-inference.yaml/etc/gala-inference/infer-rule.yaml/usr/bin/gala-inferencegala-opsaarch6446d57e24251f94a18c89202864404e7b9a2bdbd7dfa579460735fbf7be728a71gala-anteater/spider/inference installation packageThis package requires gala-anteater/spider/inference, allowing users to install them all at oncehttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843878-20251015-0221gala-spider-2.0.1-1.oe2403.src.rpmgala-spideraarch646663852f2f6996113305fc49b54157cc8d91b0e6ac45814b77c95deb2d17583dOS topological graph storage service and cause inference service for gala-ops projectOS topological graph storage service for gala-ops projecthttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843878-20251015-0221gala-spider-2.0.1-1.oe2403.src.rpm/etc/gala-spider/ext-observe-meta.yaml/etc/gala-spider/gala-spider.yaml/etc/gala-spider/topo-relation.yaml/usr/bin/spider-storagegala-spidersrc01aef360dc5c057c9e38e1088512a1a1aa5eb924f787e5f4609868a458fa9cc0OS topological graph storage service and cause inference service for gala-ops projectOS topological graph storage service for gala-ops projecthttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843878-20251015-0221loggptaarch64a3f2fefd26c759ddb71e69d3d29067684ffbd95748969d611ffc806029a976bdloggpt Serviceloggpt Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844171-20251107-0947loggpt-1.0.0-1.oe2403.src.rpm/usr/bin/loggptloggptsrcc07eac04a97fc5d4d1ecf46c4306e924a3c44c823441f986a8ae31da2041828bloggpt Serviceloggpt Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844171-20251107-0947osmind-aiaarch64810ecc3103fa2ffd84fd6f02ff9188c59216a8f21ed4761de03a90740005da09OSMind AI ServiceOSMind AI Service packaged as RPM.https://gitee.com/Victeo/osmind-aiserviceMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844184-20251110-0721osmind-ai-1.0.0-1.oe2403.src.rpmosmind-aisrc3f4b8f20886b31def46f7904025f04b9576c0c8d5e14e5d930244b99b22be5ecOSMind AI ServiceOSMind AI Service packaged as RPM.https://gitee.com/Victeo/osmind-aiserviceMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844184-20251110-0721python-Authlibsrc4e8096e99b8f0657eadd83cd59212737ea84d8960f1992fcb4e52626215d9c44The ultimate Python library in building OAuth and OpenID Connect servers and clients.The ultimate Python library in building OAuth and OpenID Connect servers.
JWS, JWK, JWA, JWT are included.https://authlib.org/BSD 3-Clause LicenseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843886-20251015-0555python-Authlib-helpnoarch18604737a7aaa46604092e45df356095b76fb1e9288e300f1b45c8f9aa931d61Development documents and examples for AuthlibThe ultimate Python library in building OAuth and OpenID Connect servers.
JWS, JWK, JWA, JWT are included.https://authlib.org/BSD 3-Clause LicenseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843886-20251015-0555python-Authlib-1.2.0-2.oe2403.src.rpmpython-billiardsrcce5b1082bcf09c0351124bbeb34678230b045c4fa6a754c2590e9f6a9c5de3d9Python multiprocessing fork with improvements and bugfixesMultiprocessing Pool Extensionshttps://github.com/celery/billiardBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843886-20251015-0555python-billiard-helpnoarcha22f25cce3c10ce6705e5de2975c6a9e27f733df380415ac4d83e726204cec8cDevelopment documents and examples for billiardMultiprocessing Pool Extensionshttps://github.com/celery/billiardBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843886-20251015-0555python-billiard-4.2.1-1.oe2403.src.rpmpython-celerysrc5fa063e8ad23808d5ac5df9b6698108215622b2838bf1c8aa084ae754fcf6937Distributed Task Queue.Distributed Task Queue.https://github.com/celery/celeryBSD-3-Clause and CC-BY-SA-4.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843872-20251015-0219python-celery-helpnoarch2bc734fb045795748f0a30e3f917dfa9fce0cd5d3af910fb998e89ea4cdc2068Development documents and examples for celeryDistributed Task Queue.https://github.com/celery/celeryBSD-3-Clause and CC-BY-SA-4.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843872-20251015-0219python-celery-5.3.4-1.oe2403.src.rpmpython-click-didyoumeansrc1c8e3271a18d5888503884e38628e45be83ac60bf735bd22496fd3a4574760a7Enables git-like *did-you-mean* feature in clickEnables git-like *did-you-mean* feature in clickhttps://github.com/click-contrib/click-didyoumeanMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843886-20251015-0555python-click-didyoumean-helpnoarchb1ba036fd71ca4f5c0f39a4b94442edc3779eee99c8b27af678e9f7ac64cabe8Enables git-like *did-you-mean* feature in clickEnables git-like *did-you-mean* feature in clickhttps://github.com/click-contrib/click-didyoumeanMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843886-20251015-0555python-click-didyoumean-0.3.1-1.oe2403.src.rpmpython-click-pluginssrc2644ac6441cdb4ada9bab0cb46f91d4a09538fa18b4353d6674a07f3793efa4bAn extension module for click to enable registering CLI commands via setuptools entry-points.An extension module for click to enable registering CLI commands via setuptools entry-points.https://github.com/click-contrib/click-pluginsBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843884-20251015-0259python-click-plugins-helpnoarch84003238acacf321503389447677733e77a846dc55475f2d2964d609adc7f215Development documents and examples for click-pluginsAn extension module for click to enable registering CLI commands via setuptools entry-points.https://github.com/click-contrib/click-pluginsBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843884-20251015-0259python-click-plugins-1.1.1-1.oe2403.src.rpmpython-click-replsrc23f4f44326b86f4f80a6cc083099e71914a141d9193c1f7cfbba185c23faccbeREPL plugin for ClickREPL plugin for Clickhttps://github.com/untitaker/click-replMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843888-20251015-0556python-click-repl-helpnoarchbe57a067634c26a70cca66c7dca9e7b4e092b7db980f3c73b6a6694e14cb4c97Development documents and examples for click-replREPL plugin for Clickhttps://github.com/untitaker/click-replMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843888-20251015-0556python-click-repl-0.3.0-1.oe2403.src.rpmpython-pandas-flavorsrcf34213657f3ac2b07352912d20f4ef977580beaa6b6ef0498510857e3c12e760The easy way to write your own Pandas flavor.
**The easy way to write your own flavor of Pandas**
Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
Pandas-flavor extends Pandas' extension API by:
1. adding support for registering methods as well.
2. making each of these functions backwards compatible with older versions of Pandas.
***What does this mean?***
It is now simpler to add custom functionality to Pandas DataFrames and Series.
Import this package. Write a simple python function. Register the function using one of the following decorators.
***Why?***
Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
accessor that provides plotting functionality.
Add an accessor by registering the function with the following decorator
and passing the decorator an accessor name.
```python
import pandas_flavor as pf
@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):
def __init__(self, data):
self._data = data
def row_by_value(self, col, value):
"""Slice out row from DataFrame by a value."""
return self._data[self._data[col] == value].squeeze()
```
Every dataframe now has this accessor as an attribute.
```python
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.my_flavor.row_by_value('x', 10)
```
To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
Using this package, you can attach functions directly to Pandas objects. No
intermediate accessor is needed.
```python
import pandas_flavor as pf
@pf.register_dataframe_method
def row_by_value(df, col, value):
"""Slice out row from DataFrame by a value."""
return df[df[col] == value].squeeze()
```
```python
import pandas as pd
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.row_by_value('x', 10)
```
The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced
to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz)
- **register_dataframe_method**: register a method directly with a pandas DataFrame.
- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
- **register_series_method**: register a methods directly with a pandas Series.
- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
You can install using **pip**:
```
pip install pandas_flavor
```
or conda (thanks @ericmjl)!
```
conda install -c conda-forge pandas-flavor
```
Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
If you have a feature request, please open an issue or submit a PR!
Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
**So how does method registration work?**
When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
1. inheriting the docstring of your function
2. overriding the `__call__` method to call your function.https://github.com/Zsailer/pandas_flavorMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843883-20251015-0259python-pandas-flavor-helpnoarch71f22bde2c27fd7ab1b9a0f1452c31e17c7e1ae8230bc7029a4b2867ca271824Development documents and examples for pandas-flavor
**The easy way to write your own flavor of Pandas**
Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
Pandas-flavor extends Pandas' extension API by:
1. adding support for registering methods as well.
2. making each of these functions backwards compatible with older versions of Pandas.
***What does this mean?***
It is now simpler to add custom functionality to Pandas DataFrames and Series.
Import this package. Write a simple python function. Register the function using one of the following decorators.
***Why?***
Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
accessor that provides plotting functionality.
Add an accessor by registering the function with the following decorator
and passing the decorator an accessor name.
```python
import pandas_flavor as pf
@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):
def __init__(self, data):
self._data = data
def row_by_value(self, col, value):
"""Slice out row from DataFrame by a value."""
return self._data[self._data[col] == value].squeeze()
```
Every dataframe now has this accessor as an attribute.
```python
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.my_flavor.row_by_value('x', 10)
```
To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
Using this package, you can attach functions directly to Pandas objects. No
intermediate accessor is needed.
```python
import pandas_flavor as pf
@pf.register_dataframe_method
def row_by_value(df, col, value):
"""Slice out row from DataFrame by a value."""
return df[df[col] == value].squeeze()
```
```python
import pandas as pd
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.row_by_value('x', 10)
```
The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced
to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz)
- **register_dataframe_method**: register a method directly with a pandas DataFrame.
- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
- **register_series_method**: register a methods directly with a pandas Series.
- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
You can install using **pip**:
```
pip install pandas_flavor
```
or conda (thanks @ericmjl)!
```
conda install -c conda-forge pandas-flavor
```
Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
If you have a feature request, please open an issue or submit a PR!
Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
**So how does method registration work?**
When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
1. inheriting the docstring of your function
2. overriding the `__call__` method to call your function.https://github.com/Zsailer/pandas_flavorMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843883-20251015-0259python-pandas-flavor-0.6.0-1.oe2403.src.rpmpython-pingouinsrc9643b79c1e8307aad6d8735437d882ccf700c4352198deee7cda1c879a7bfdeaPingouin: statistical package for Python**Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_.
1. ANOVAs: N-ways, repeated measures, mixed, ancova
2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations
3. Robust, partial, distance and repeated measures correlations
4. Linear/logistic regression and mediation analysis
5. Bayes Factors
6. Multivariate tests
7. Reliability and consistency
8. Effect sizes and power analysis
9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient
10. Circular statistics
11. Chi-squared tests
12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation...
Pingouin is designed for users who want **simple yet exhaustive statistical functions**.
For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast,
the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.https://pingouin-stats.org/index.htmlGPL-3.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843876-20251015-0220python-pingouin-helpnoarchd73cf4ba6fed5e2b5eafa25fe0ddc6d4263a09c695712b7711403cbba74ca5d5Development documents and examples for pingouin**Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_.
1. ANOVAs: N-ways, repeated measures, mixed, ancova
2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations
3. Robust, partial, distance and repeated measures correlations
4. Linear/logistic regression and mediation analysis
5. Bayes Factors
6. Multivariate tests
7. Reliability and consistency
8. Effect sizes and power analysis
9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient
10. Circular statistics
11. Chi-squared tests
12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation...
Pingouin is designed for users who want **simple yet exhaustive statistical functions**.
For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast,
the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.https://pingouin-stats.org/index.htmlGPL-3.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843876-20251015-0220python-pingouin-0.5.5-1.oe2403.src.rpmpython-seabornsrce0797320aff74654936fbed5ede710b12527305bbeb01b51760ae0418fd1380eStatistical data visualizationhttps://pypi.org/project/seaborn/NoneopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843862-20251014-0719python-seaborn-helpnoarchf3cd555d6c3fe79425f09e49d864342d1320c455772ca970948db44098611af7Development documents and examples for seabornhttps://pypi.org/project/seaborn/NoneopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843862-20251014-0719python-seaborn-0.13.2-1.oe2403.src.rpmpython3-Authlibnoarch4465a3e2bdf41b07294610948964a165af751a95cd4c502651b7ac62a040286bThe ultimate Python library in building OAuth and OpenID Connect servers and clients.The ultimate Python library in building OAuth and OpenID Connect servers.
JWS, JWK, JWA, JWT are included.https://authlib.org/BSD 3-Clause LicenseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843886-20251015-0555python-Authlib-1.2.0-2.oe2403.src.rpmpython3-billiardnoarch904dcbe6ca4c335c3d528308f3a758b4ce0544f94b1d33e72128ad8636a02323Python multiprocessing fork with improvements and bugfixesMultiprocessing Pool Extensionshttps://github.com/celery/billiardBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843886-20251015-0555python-billiard-4.2.1-1.oe2403.src.rpmpython3-celerynoarche528b340444d7521686e4bc6f017ddcba844694b213d11ce5f0a1e3ce88490e3Distributed Task Queue.Distributed Task Queue.https://github.com/celery/celeryBSD-3-Clause and CC-BY-SA-4.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843872-20251015-0219python-celery-5.3.4-1.oe2403.src.rpm/usr/bin/celery/usr/lib/python3.11/site-packages/celery/bin/__init__.py/usr/lib/python3.11/site-packages/celery/bin/__pycache__/__init__.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/__init__.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/amqp.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/amqp.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/base.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/base.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/beat.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/beat.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/call.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/call.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/celery.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/celery.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/control.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/control.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/events.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/events.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/graph.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/graph.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/list.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/list.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/logtool.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/logtool.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/migrate.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/migrate.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/multi.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/multi.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/purge.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/purge.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/result.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/result.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/shell.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/shell.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/upgrade.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/upgrade.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/worker.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/worker.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/amqp.py/usr/lib/python3.11/site-packages/celery/bin/base.py/usr/lib/python3.11/site-packages/celery/bin/beat.py/usr/lib/python3.11/site-packages/celery/bin/call.py/usr/lib/python3.11/site-packages/celery/bin/celery.py/usr/lib/python3.11/site-packages/celery/bin/control.py/usr/lib/python3.11/site-packages/celery/bin/events.py/usr/lib/python3.11/site-packages/celery/bin/graph.py/usr/lib/python3.11/site-packages/celery/bin/list.py/usr/lib/python3.11/site-packages/celery/bin/logtool.py/usr/lib/python3.11/site-packages/celery/bin/migrate.py/usr/lib/python3.11/site-packages/celery/bin/multi.py/usr/lib/python3.11/site-packages/celery/bin/purge.py/usr/lib/python3.11/site-packages/celery/bin/result.py/usr/lib/python3.11/site-packages/celery/bin/shell.py/usr/lib/python3.11/site-packages/celery/bin/upgrade.py/usr/lib/python3.11/site-packages/celery/bin/worker.pypython3-click-didyoumeannoarch78223193ccf182c370ec39c0b801cd96f80275ab1c67ca2c7d6897327ecdc100Enables git-like *did-you-mean* feature in clickEnables git-like *did-you-mean* feature in clickhttps://github.com/click-contrib/click-didyoumeanMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843886-20251015-0555python-click-didyoumean-0.3.1-1.oe2403.src.rpmpython3-click-pluginsnoarch79a8acc72fd342db4d2b961f1eaecd074d3689564e0ddadd43cc24ce9d42f234An extension module for click to enable registering CLI commands via setuptools entry-points.An extension module for click to enable registering CLI commands via setuptools entry-points.https://github.com/click-contrib/click-pluginsBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843884-20251015-0259python-click-plugins-1.1.1-1.oe2403.src.rpmpython3-click-replnoarch2cc5d668aa4a180326dd3e3c99bc9a7b77e94a1bb4513013a6bf99989d76ec3cREPL plugin for ClickREPL plugin for Clickhttps://github.com/untitaker/click-replMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843888-20251015-0556python-click-repl-0.3.0-1.oe2403.src.rpmpython3-gala-anteateraarch64253b6d0620fe458d0d33d48811c51b6631c468a3cf5e8dadfacb565d9eceb5dePython3 package of gala-anteaterPython3 package of gala-anteaterhttps://gitee.com/openeuler/gala-anteaterMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843879-20251015-0222gala-anteater-3.0.1-1.oe2403.src.rpmpython3-gala-inferenceaarch64ee977c199093365b46eb7a3d62d104fedcf8f68b4371f94887c1b1846506962bPython3 package of gala-inferencePython3 package of gala-inferencehttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843878-20251015-0221gala-spider-2.0.1-1.oe2403.src.rpmpython3-gala-spideraarch642b9504e9a3e8aaebb1c6bed2da82dc02bd476c5539f075938c3da14ff8e66059Python3 package of gala-spiderPython3 package of gala-spiderhttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843878-20251015-0221gala-spider-2.0.1-1.oe2403.src.rpmpython3-pandas-flavornoarch50cd1b16cca4a98e86b8c5f2d68466883e848c7154a3efe4575f782e0730ab7bThe easy way to write your own Pandas flavor.
**The easy way to write your own flavor of Pandas**
Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
Pandas-flavor extends Pandas' extension API by:
1. adding support for registering methods as well.
2. making each of these functions backwards compatible with older versions of Pandas.
***What does this mean?***
It is now simpler to add custom functionality to Pandas DataFrames and Series.
Import this package. Write a simple python function. Register the function using one of the following decorators.
***Why?***
Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
accessor that provides plotting functionality.
Add an accessor by registering the function with the following decorator
and passing the decorator an accessor name.
```python
import pandas_flavor as pf
@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):
def __init__(self, data):
self._data = data
def row_by_value(self, col, value):
"""Slice out row from DataFrame by a value."""
return self._data[self._data[col] == value].squeeze()
```
Every dataframe now has this accessor as an attribute.
```python
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.my_flavor.row_by_value('x', 10)
```
To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
Using this package, you can attach functions directly to Pandas objects. No
intermediate accessor is needed.
```python
import pandas_flavor as pf
@pf.register_dataframe_method
def row_by_value(df, col, value):
"""Slice out row from DataFrame by a value."""
return df[df[col] == value].squeeze()
```
```python
import pandas as pd
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.row_by_value('x', 10)
```
The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced
to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz)
- **register_dataframe_method**: register a method directly with a pandas DataFrame.
- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
- **register_series_method**: register a methods directly with a pandas Series.
- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
You can install using **pip**:
```
pip install pandas_flavor
```
or conda (thanks @ericmjl)!
```
conda install -c conda-forge pandas-flavor
```
Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
If you have a feature request, please open an issue or submit a PR!
Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
**So how does method registration work?**
When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
1. inheriting the docstring of your function
2. overriding the `__call__` method to call your function.https://github.com/Zsailer/pandas_flavorMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843883-20251015-0259python-pandas-flavor-0.6.0-1.oe2403.src.rpmpython3-pingouinnoarchfe90d9930dae61ec190e78ced906255c7aa9910bb81125b6b9ecbbfda81d3cb7Pingouin: statistical package for Python**Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_.
1. ANOVAs: N-ways, repeated measures, mixed, ancova
2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations
3. Robust, partial, distance and repeated measures correlations
4. Linear/logistic regression and mediation analysis
5. Bayes Factors
6. Multivariate tests
7. Reliability and consistency
8. Effect sizes and power analysis
9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient
10. Circular statistics
11. Chi-squared tests
12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation...
Pingouin is designed for users who want **simple yet exhaustive statistical functions**.
For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast,
the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.https://pingouin-stats.org/index.htmlGPL-3.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843876-20251015-0220python-pingouin-0.5.5-1.oe2403.src.rpmpython3-seabornnoarch77f21f1dfb1aeae3e3df6a70766dc80c1d65900062f1c6cfdb157b5b6e191654Statistical data visualizationhttps://pypi.org/project/seaborn/NoneopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843862-20251014-0719python-seaborn-0.13.2-1.oe2403.src.rpmzeus-distributeaarch64e3c6f05694d125ccac54e053674f3c2d437fc6af76e957b0d00d1b75b6dd0d91A distributed service of aops.A distributed service of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843870-20251015-0218aops-zeus-v2.2.0-1.oe2403.src.rpm/etc/aops/conf.d/zeus-distribute.ymlzeus-host-informationaarch646a36187810f9141d38d0b7e564184f52e88fbfea07adde17f93007510c1e2e8dA host manager service which is the foundation of aops.A host manager service which is the foundation of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843870-20251015-0218aops-zeus-v2.2.0-1.oe2403.src.rpm/etc/aops/conf.d/zeus-host-information.ymlzeus-operationaarch642dcbfa08bd0e59f4306ef7505b4beef9b0fbeb14b0d88dcb59c94b0e8729d578A operation manager service which is the foundation of aops.A operation manager of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843870-20251015-0218aops-zeus-v2.2.0-1.oe2403.src.rpm/etc/aops/conf.d/zeus-operation.ymlzeus-user-accessaarch6498fe2453e2aa8e18125414f0d1cc5fc436954e9a2d52052adf33c7403489a7f0A user manager service which is the foundation of aops.A user manager service which is the foundation of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843870-20251015-0218aops-zeus-v2.2.0-1.oe2403.src.rpm/etc/aops/conf.d/zeus-user-access.yml