aops-apollo-tool x86_64 063a032bd536aec47e58c4cf1c0fe5bfb7dea91e42c3be0575add83c328f1dd9 Small tools for aops-apollo, e.g. updateinfo.xml generater smalltools for aops-apollo, e.g.updateinfo.xml generater https://gitee.com/openeuler/aops-apollo aops-apollo src 4f80bb13a284f85377246fc9f230f5e90769217e6400afd3e1d4f90b8492d466 Cve management service, monitor machine vulnerabilities and provide fix functions. Cve management service, monitor machine vulnerabilities and provide fix functions. https://gitee.com/openeuler/aops-apollo aops-apollo x86_64 414dd3436c4a42fd485c94f26d1bc16b59da2094f07c8d8de01c88f6a3cb56d8 Cve management service, monitor machine vulnerabilities and provide fix functions. Cve management service, monitor machine vulnerabilities and provide fix functions. https://gitee.com/openeuler/aops-apollo aops-ceres src 5cacc9e31045c5abec9caf6b0a5ecaf2fe119afc90d28326b8734f83f5d45f93 An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on. An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on. https://gitee.com/openeuler/aops-ceres aops-ceres x86_64 946d92055a1c66a86ee6a6cd30497ac5e3ed7e1dec75e4377417dd71e666d59e An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on. An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on. https://gitee.com/openeuler/aops-ceres aops-hermes src d84e574a17d2530e7cc0962e805bcbadaa58a4475501356f0fc6d105b22a6130 Web for an intelligent diagnose frame Web for an intelligent diagnose frame https://gitee.com/openeuler/aops-hermes aops-hermes x86_64 df3061ef8c6f1e1fad7fa9a930c6fdcc749ca4ba5ca80f65b5445f29bd32a364 Web for an intelligent diagnose frame Web for an intelligent diagnose frame https://gitee.com/openeuler/aops-hermes aops-tools x86_64 133f53e233c90ba82aa96f65783539467af9053055af731f8002270b9ba9c84b aops scripts tools for aops, it's about aops deploy https://gitee.com/openeuler/aops-vulcanus aops-vulcanus src 19c4721e8ce861e73b423af2146d88f7c8d7a64e66beac5fc606a6bd2b09a27d A basic tool libraries of aops, including logging, configure and response, etc. A basic tool libraries of aops, including logging, configure and response, etc. https://gitee.com/openeuler/aops-vulcanus aops-vulcanus x86_64 a045866cbabd4ba4ef83ab61f53934469aaea4300f50b08c300f58b2d311eef3 A basic tool libraries of aops, including logging, configure and response, etc. A basic tool libraries of aops, including logging, configure and response, etc. https://gitee.com/openeuler/aops-vulcanus aops-zeus src 9ecb128025b4e65e86605c8699b2b606c7f139c9c5c924768ad1eea00de44e9a A service which is the foundation of aops. Provide one-click aops deployment, service start and stop, hot loading of configuration files, and database initialization. Provides: aops-zeus https://gitee.com/openeuler/aops-zeus aops-zeus x86_64 b01c7ac53e42f5aba9dfc4f38ba466dc0d51baf3a5a697b7e125ca519b34a851 A service which is the foundation of aops. Provide one-click aops deployment, service start and stop, hot loading of configuration files, and database initialization. Provides: aops-zeus https://gitee.com/openeuler/aops-zeus async-task x86_64 2866f7dad13d0a4961f25638f058b4f346546cb443be7aca8f80d732c41b1fb1 A async task of aops. A async task of aops. https://gitee.com/openeuler/aops-zeus authHub src 01ea25359f0e74c5083455fe5a18804e2d93354eb976440d90b5b46cfa48c0a1 Authentication authority based on oauth2 authhub is a specialized authentication center built on OAuth2, providing robust authentication and authorization capabilities for secure user access control in your applications.. https://gitee.com/openeuler/authHub authHub x86_64 3ea1162b309d277da669623615b776e85d89414c3206e14c044767c8812abe18 Authentication authority based on oauth2 authhub is a specialized authentication center built on OAuth2, providing robust authentication and authorization capabilities for secure user access control in your applications.. https://gitee.com/openeuler/authHub authhub-web x86_64 2e26d5268d1433e6fa8dc08ff6349f4d42be69fc96a3a8c38ee49d8c813a2151 Authentication authority web based on oauth2 Authentication authority web based on oauth2 https://gitee.com/openeuler/authHub dnf-hotpatch-plugin x86_64 e510699202b6c07eb22069657fc134c3afbea19b539c39b8c7c5c6a10ae3d13f dnf hotpatch plugin dnf hotpatch plugin, it's about hotpatch query and fix https://gitee.com/openeuler/aops-ceres gala-anteater src 0d4294960bb691cc8510a9bcba7dc005326d7a1b6807ab26a8442e40943eced1 A time-series anomaly detection platform for operating system. Abnormal detection module for A-Ops project https://gitee.com/openeuler/gala-anteater gala-anteater x86_64 af0999a3ade98745b8329cf0c0c8167c2a2cb06bd2dced0e7045706004d2977f A time-series anomaly detection platform for operating system. Abnormal detection module for A-Ops project https://gitee.com/openeuler/gala-anteater gala-gopher src 406ce667e3c2a42c81765dfc38fe899cf7520e8c6df8e3399b2a620e4f4407eb Intelligent ops toolkit for openEuler gala-gopher is a low-overhead eBPF-based probes framework https://gitee.com/openeuler/gala-gopher gala-gopher x86_64 d1d3f3f48fcf49bf63e7198294d1ec681085c505960cb5f85922a75b9d814bd3 Intelligent ops toolkit for openEuler gala-gopher is a low-overhead eBPF-based probes framework https://gitee.com/openeuler/gala-gopher gala-gopher-debuginfo x86_64 d239fe23492fa938bc8e5bc12387486cf310bfe1cb42254208518ba6be8a9f7d Debug information for package gala-gopher This package provides debug information for package gala-gopher. Debug information is useful when developing applications that use this package or when debugging this package. https://gitee.com/openeuler/gala-gopher gala-gopher-debugsource x86_64 346a287c8c4d3d295c25538e67d5737f861c49bb110a48217399b7f2648e49a7 Debug sources for package gala-gopher This package provides debug sources for package gala-gopher. Debug sources are useful when developing applications that use this package or when debugging this package. https://gitee.com/openeuler/gala-gopher gala-inference x86_64 1f225c3d692804f0384868cb50ddf28c4bb4a84fcfd06264bae77ab45f9de74e Cause inference module for gala-ops project Cause inference module for A-Ops project https://gitee.com/openeuler/gala-spider gala-ops x86_64 34a208a37ab29bf6b9292a6b122a1bd58853d1db2cdadfaecb48c6a64d834ad4 gala-anteater/spider/inference installation package This package requires gala-anteater/spider/inference, allowing users to install them all at once https://gitee.com/openeuler/gala-spider gala-spider src 3ce1d4af6f82d1a3515b48703d1bae3301b530d783ecbd9ce2a73325191e198e OS topological graph storage service and cause inference service for gala-ops project OS topological graph storage service for gala-ops project https://gitee.com/openeuler/gala-spider gala-spider x86_64 cf507e9c8b66a3863c13bc5cb0661765469e1a41825ef08e817391f9fccb98ec OS topological graph storage service and cause inference service for gala-ops project OS topological graph storage service for gala-ops project https://gitee.com/openeuler/gala-spider python-pandas-flavor src 2593c96aaffdfc6f938bf65d73543b646e93a06374efd0f92976580876f980ca The easy way to write your own Pandas flavor. **The easy way to write your own flavor of Pandas** Pandas 0.23 added a (simple) API for registering accessors with Pandas objects. Pandas-flavor extends Pandas' extension API by: 1. adding support for registering methods as well. 2. making each of these functions backwards compatible with older versions of Pandas. ***What does this mean?*** It is now simpler to add custom functionality to Pandas DataFrames and Series. Import this package. Write a simple python function. Register the function using one of the following decorators. ***Why?*** Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library". **Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases. Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else? Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an accessor that provides plotting functionality. Add an accessor by registering the function with the following decorator and passing the decorator an accessor name. ```python import pandas_flavor as pf @pf.register_dataframe_accessor('my_flavor') class MyFlavor(object): def __init__(self, data): self._data = data def row_by_value(self, col, value): """Slice out row from DataFrame by a value.""" return self._data[self._data[col] == value].squeeze() ``` Every dataframe now has this accessor as an attribute. ```python import my_flavor df = pd.DataFrame(data={ "x": [10, 20, 25], "y": [0, 2, 5] }) print(df) df.my_flavor.row_by_value('x', 10) ``` To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega), [PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)! Using this package, you can attach functions directly to Pandas objects. No intermediate accessor is needed. ```python import pandas_flavor as pf @pf.register_dataframe_method def row_by_value(df, col, value): """Slice out row from DataFrame by a value.""" return df[df[col] == value].squeeze() ``` ```python import pandas as pd import my_flavor df = pd.DataFrame(data={ "x": [10, 20, 25], "y": [0, 2, 5] }) print(df) df.row_by_value('x', 10) ``` The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz) - **register_dataframe_method**: register a method directly with a pandas DataFrame. - **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame. - **register_series_method**: register a methods directly with a pandas Series. - **register_series_accessor**: register an accessor (and it's methods) with a pandas Series. You can install using **pip**: ``` pip install pandas_flavor ``` or conda (thanks @ericmjl)! ``` conda install -c conda-forge pandas-flavor ``` Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github). If you have a feature request, please open an issue or submit a PR! Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series. Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote) <a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.* **So how does method registration work?** When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by: 1. inheriting the docstring of your function 2. overriding the `__call__` method to call your function. https://github.com/Zsailer/pandas_flavor python-pandas-flavor-help noarch c94178f03e63791cf98e8bd4ff84d18e0cb27c75a3668bb932d35be1e83672ba Development documents and examples for pandas-flavor **The easy way to write your own flavor of Pandas** Pandas 0.23 added a (simple) API for registering accessors with Pandas objects. Pandas-flavor extends Pandas' extension API by: 1. adding support for registering methods as well. 2. making each of these functions backwards compatible with older versions of Pandas. ***What does this mean?*** It is now simpler to add custom functionality to Pandas DataFrames and Series. Import this package. Write a simple python function. Register the function using one of the following decorators. ***Why?*** Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library". **Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases. Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else? Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an accessor that provides plotting functionality. Add an accessor by registering the function with the following decorator and passing the decorator an accessor name. ```python import pandas_flavor as pf @pf.register_dataframe_accessor('my_flavor') class MyFlavor(object): def __init__(self, data): self._data = data def row_by_value(self, col, value): """Slice out row from DataFrame by a value.""" return self._data[self._data[col] == value].squeeze() ``` Every dataframe now has this accessor as an attribute. ```python import my_flavor df = pd.DataFrame(data={ "x": [10, 20, 25], "y": [0, 2, 5] }) print(df) df.my_flavor.row_by_value('x', 10) ``` To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega), [PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)! Using this package, you can attach functions directly to Pandas objects. No intermediate accessor is needed. ```python import pandas_flavor as pf @pf.register_dataframe_method def row_by_value(df, col, value): """Slice out row from DataFrame by a value.""" return df[df[col] == value].squeeze() ``` ```python import pandas as pd import my_flavor df = pd.DataFrame(data={ "x": [10, 20, 25], "y": [0, 2, 5] }) print(df) df.row_by_value('x', 10) ``` The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz) - **register_dataframe_method**: register a method directly with a pandas DataFrame. - **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame. - **register_series_method**: register a methods directly with a pandas Series. - **register_series_accessor**: register an accessor (and it's methods) with a pandas Series. You can install using **pip**: ``` pip install pandas_flavor ``` or conda (thanks @ericmjl)! ``` conda install -c conda-forge pandas-flavor ``` Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github). If you have a feature request, please open an issue or submit a PR! Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series. Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote) <a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.* **So how does method registration work?** When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by: 1. inheriting the docstring of your function 2. overriding the `__call__` method to call your function. https://github.com/Zsailer/pandas_flavor python-pingouin src fcf0857d0d5e4cc5447bc069fd05db793d0c0ea617adbbdaf3b065351d21fcd6 Pingouin: statistical package for Python **Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_. 1. ANOVAs: N-ways, repeated measures, mixed, ancova 2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations 3. Robust, partial, distance and repeated measures correlations 4. Linear/logistic regression and mediation analysis 5. Bayes Factors 6. Multivariate tests 7. Reliability and consistency 8. Effect sizes and power analysis 9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient 10. Circular statistics 11. Chi-squared tests 12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation... Pingouin is designed for users who want **simple yet exhaustive statistical functions**. For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast, the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test. https://pingouin-stats.org/index.html python-pingouin-help noarch 141eb1f53594067c2907a842ac02001c0733ec9a0ee41a4003ed67cf3da04e40 Development documents and examples for pingouin **Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_. 1. ANOVAs: N-ways, repeated measures, mixed, ancova 2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations 3. Robust, partial, distance and repeated measures correlations 4. Linear/logistic regression and mediation analysis 5. Bayes Factors 6. Multivariate tests 7. Reliability and consistency 8. Effect sizes and power analysis 9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient 10. Circular statistics 11. Chi-squared tests 12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation... Pingouin is designed for users who want **simple yet exhaustive statistical functions**. For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast, the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test. https://pingouin-stats.org/index.html python-seaborn src 14f08204726e070cc2e980863083a4d1f22c79b303427893609ae6a439cc92b1 Statistical data visualization https://pypi.org/project/seaborn/ python-seaborn-help noarch 4c0f49cf469185eaeb12c68a9b10a83bd49d3105c03ed2fb8e44d98702f20751 Development documents and examples for seaborn https://pypi.org/project/seaborn/ python3-gala-anteater x86_64 aa3292a6c2a8d6c342910affef03ab6327cf7b158b8288575e148ab17004094d Python3 package of gala-anteater Python3 package of gala-anteater https://gitee.com/openeuler/gala-anteater python3-gala-inference x86_64 e9c274d30129ea86c6da0110e693977ea61e5ce665250d3a464159c76cdb3b27 Python3 package of gala-inference Python3 package of gala-inference https://gitee.com/openeuler/gala-spider python3-gala-spider x86_64 cd7bd222fce589bcc0197633a228da47845c8fda984ba7ad4f3131f400c889eb Python3 package of gala-spider Python3 package of gala-spider https://gitee.com/openeuler/gala-spider python3-pandas-flavor noarch 62ffba4c06b1d817bcadbcf798a642d0b94c6b27a06541a8ab2cf63c9e6f292a The easy way to write your own Pandas flavor. **The easy way to write your own flavor of Pandas** Pandas 0.23 added a (simple) API for registering accessors with Pandas objects. Pandas-flavor extends Pandas' extension API by: 1. adding support for registering methods as well. 2. making each of these functions backwards compatible with older versions of Pandas. ***What does this mean?*** It is now simpler to add custom functionality to Pandas DataFrames and Series. Import this package. Write a simple python function. Register the function using one of the following decorators. ***Why?*** Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library". **Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases. Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else? Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an accessor that provides plotting functionality. Add an accessor by registering the function with the following decorator and passing the decorator an accessor name. ```python import pandas_flavor as pf @pf.register_dataframe_accessor('my_flavor') class MyFlavor(object): def __init__(self, data): self._data = data def row_by_value(self, col, value): """Slice out row from DataFrame by a value.""" return self._data[self._data[col] == value].squeeze() ``` Every dataframe now has this accessor as an attribute. ```python import my_flavor df = pd.DataFrame(data={ "x": [10, 20, 25], "y": [0, 2, 5] }) print(df) df.my_flavor.row_by_value('x', 10) ``` To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega), [PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)! Using this package, you can attach functions directly to Pandas objects. No intermediate accessor is needed. ```python import pandas_flavor as pf @pf.register_dataframe_method def row_by_value(df, col, value): """Slice out row from DataFrame by a value.""" return df[df[col] == value].squeeze() ``` ```python import pandas as pd import my_flavor df = pd.DataFrame(data={ "x": [10, 20, 25], "y": [0, 2, 5] }) print(df) df.row_by_value('x', 10) ``` The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz) - **register_dataframe_method**: register a method directly with a pandas DataFrame. - **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame. - **register_series_method**: register a methods directly with a pandas Series. - **register_series_accessor**: register an accessor (and it's methods) with a pandas Series. You can install using **pip**: ``` pip install pandas_flavor ``` or conda (thanks @ericmjl)! ``` conda install -c conda-forge pandas-flavor ``` Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github). If you have a feature request, please open an issue or submit a PR! Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series. Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote) <a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.* **So how does method registration work?** When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by: 1. inheriting the docstring of your function 2. overriding the `__call__` method to call your function. https://github.com/Zsailer/pandas_flavor python3-pingouin noarch 27f851fb0c90c252b399df71674eb7d2e2ac0d9b6de7bf6bd2d25637bdc9670e Pingouin: statistical package for Python **Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_. 1. ANOVAs: N-ways, repeated measures, mixed, ancova 2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations 3. Robust, partial, distance and repeated measures correlations 4. Linear/logistic regression and mediation analysis 5. Bayes Factors 6. Multivariate tests 7. Reliability and consistency 8. Effect sizes and power analysis 9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient 10. Circular statistics 11. Chi-squared tests 12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation... Pingouin is designed for users who want **simple yet exhaustive statistical functions**. For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast, the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test. https://pingouin-stats.org/index.html python3-seaborn noarch f3ca69971b23d296c7cdc800cbc42d5857c4eac0e29e4e68a8e72efa05d69c6f Statistical data visualization https://pypi.org/project/seaborn/ zeus-distribute x86_64 027911f34a84dade1a543ac30f503e178adec888a7fe53430b73dc223bcf647e A distributed service of aops. A distributed service of aops. https://gitee.com/openeuler/aops-zeus zeus-host-information x86_64 827a559e70bf544995eac27e3937e8a01f0590cfcab48007397b10a2d9d6af9e A host manager service which is the foundation of aops. A host manager service which is the foundation of aops. https://gitee.com/openeuler/aops-zeus zeus-operation x86_64 2ba95d7ff1ea2ceb82fd65b8c4df38666ad50e2f3d3395d066c880459a95e876 A operation manager service which is the foundation of aops. A operation manager of aops. https://gitee.com/openeuler/aops-zeus zeus-user-access x86_64 b03786cb2f9f781e726f99ffde38a1c7bc6898ffbeb2612c78830783c9a35c34 A user manager service which is the foundation of aops. A user manager service which is the foundation of aops. https://gitee.com/openeuler/aops-zeus