aops-apollo-toolx86_64649df0e20c96d67eb14ca7f417eefb6c8cbdb1ce8286a455547e483d5238995bSmall tools for aops-apollo, e.g. updateinfo.xml generatersmalltools for aops-apollo, e.g.updateinfo.xml generaterhttps://gitee.com/openeuler/aops-apolloMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201aops-apollo-v2.2.0-1.oe2403.src.rpm/etc/aops_apollo_tool/updateinfo_config.ini/usr/bin/gen-updateinfoaops-apollosrc8009a20e1f2c26495d9744082ea715b91b367d5c41f6a7e2f765d1d8034beaf0Cve management service, monitor machine vulnerabilities and provide fix functions.Cve management service, monitor machine vulnerabilities and provide fix functions.https://gitee.com/openeuler/aops-apolloMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201aops-apollox86_643cc0516231f85f8193ddcc742f94376ca6f2cbd99f4d7e0014958282b1d993ebCve management service, monitor machine vulnerabilities and provide fix functions.Cve management service, monitor machine vulnerabilities and provide fix functions.https://gitee.com/openeuler/aops-apolloMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201aops-apollo-v2.2.0-1.oe2403.src.rpm/etc/aops/conf.d/aops-apollo.ymlaops-ceressrc1ba04c9e87fff5610f57ddc2c129f90a1828cddebadc48ee2c3ec4369b9fd012An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.https://gitee.com/openeuler/aops-ceresMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201aops-ceresx86_640e88095c686c23e4381d7ca94b3cd75571d18798cce94a07f4abb7ea5582ff4cAn agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.https://gitee.com/openeuler/aops-ceresMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201aops-ceres-v2.2.0-1.oe2403.src.rpm/etc/aops/ceres.conf/usr/bin/aops-ceresaops-hermessrcb977c9c9284497e72b53782ab0f80f2ed877e6ab6cf4d77b4389b29812d59716Web for an intelligent diagnose frameWeb for an intelligent diagnose framehttps://gitee.com/openeuler/aops-hermesMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844268-20251125-08320aops-hermesx86_647def49f7ec13d6bd7784b7c08515d7877b7b6acc99dddc2bfc2d93df73f6eb8aWeb for an intelligent diagnose frameWeb for an intelligent diagnose framehttps://gitee.com/openeuler/aops-hermesMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844268-20251125-08320aops-hermes-v2.2.0-1.oe2403.src.rpmaops-mcpsrcd6326a7a5bb722f12bf0916a802f9eb92057a59e8a0a81e956640faccac0d07dAops MCP ServiceAops MCP Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844196-20251110-10124aops-mcpx86_64477850d9680bbb24933e98fcd3cb26797d5f229a96a3a9d8b67c9ba61736a9c7Aops MCP ServiceAops MCP Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844196-20251110-10124aops-mcp-1.0.0-1.oe2403.src.rpm/opt/aops-mcp/venv/bin/Activate.ps1/opt/aops-mcp/venv/bin/activate/opt/aops-mcp/venv/bin/activate.csh/opt/aops-mcp/venv/bin/activate.fish/opt/aops-mcp/venv/bin/aops-mcp/opt/aops-mcp/venv/bin/dotenv/opt/aops-mcp/venv/bin/fastmcp/opt/aops-mcp/venv/bin/httpx/opt/aops-mcp/venv/bin/jsonschema/opt/aops-mcp/venv/bin/markdown-it/opt/aops-mcp/venv/bin/mcp/opt/aops-mcp/venv/bin/pip/opt/aops-mcp/venv/bin/pip3/opt/aops-mcp/venv/bin/pip3.11/opt/aops-mcp/venv/bin/pygmentize/opt/aops-mcp/venv/bin/python/opt/aops-mcp/venv/bin/python3/opt/aops-mcp/venv/bin/python3.11/opt/aops-mcp/venv/bin/typer/opt/aops-mcp/venv/bin/uvicorn/opt/aops-mcp/venv/bin/websockets/usr/bin/aops-mcpaops-toolsx86_64078ba3ca5f55a8800507a57358c81837242a87f4be2c9a554988493f1c47ada4aops scriptstools for aops, it's about aops deployhttps://gitee.com/openeuler/aops-vulcanusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140aops-vulcanus-v2.2.0-1.oe2403.src.rpmaops-vulcanussrcc9684dea7a369e50618744dacebf38ad381faa44beda2db201a73bbd0398a65bA basic tool libraries of aops, including logging, configure and response, etc.A basic tool libraries of aops, including logging, configure and response, etc.https://gitee.com/openeuler/aops-vulcanusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140aops-vulcanusx86_6412476b3abdd1d16245a95cd07f3bb29998f96ce06f78df662320314e21a0f8a5A basic tool libraries of aops, including logging, configure and response, etc.A basic tool libraries of aops, including logging, configure and response, etc.https://gitee.com/openeuler/aops-vulcanusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140aops-vulcanus-v2.2.0-1.oe2403.src.rpm/etc/aops/aops-config.ymlaops-zeussrc3decf028593d13066f781f7952aa269918e293f5c278ce1aa14e40c14ce10615A service which is the foundation of aops.Provide one-click aops deployment, service start and stop, hot loading of
configuration files, and database initialization.
Provides: aops-zeushttps://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843860-20251014-07192aops-zeusx86_64b765610222365a8f9bfcbcd4c4f7f69f5d6c0b17cc33f6f45414579c2231bef9A service which is the foundation of aops.Provide one-click aops deployment, service start and stop, hot loading of
configuration files, and database initialization.
Provides: aops-zeushttps://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843860-20251014-07192aops-zeus-v2.2.0-1.oe2403.src.rpm/usr/bin/aops-cliasync-taskx86_64fab233a46ee7a19aff13a0e76f4b2b69febaa824804ce012ab4d2df046757e9aA async task of aops.A async task of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843860-20251014-07192aops-zeus-v2.2.0-1.oe2403.src.rpm/etc/aops/crontab.yml/etc/aops/sync-conf.d/instance.properties/etc/aops/sync-conf.d/rdb/cve_fix_task.yml/etc/aops/sync-conf.d/rdb/cve_host_match.yml/etc/aops/sync-conf.d/rdb/cve_rollback_task.yml/etc/aops/sync-conf.d/rdb/domain.yml/etc/aops/sync-conf.d/rdb/domain_conf_info.yml/etc/aops/sync-conf.d/rdb/domain_host.yml/etc/aops/sync-conf.d/rdb/host.yml/etc/aops/sync-conf.d/rdb/host_conf_sync_status.yml/etc/aops/sync-conf.d/rdb/host_group.yml/etc/aops/sync-conf.d/rdb/hotpatch_remove_task.yml/etc/aops/sync-conf.d/rdb/repo.yml/etc/aops/sync-conf.d/rdb/task_host_repo.yml/etc/aops/sync-conf.d/rdb/vul_task.yml/usr/bin/async-taskauthHubsrcf6fae2b14c573bf0f4817da469340c24a33269e4be96c175ef2922216aebfa1bAuthentication authority based on oauth2authhub is a specialized authentication center built on OAuth2, providing robust authentication and authorization capabilities for secure user access control in your applications..https://gitee.com/openeuler/authHubMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843871-20251015-02183authHubx86_647b6c1b1dda4dd3411d6cf35120b1eb059b00dbe9536e379d54acbfcc057707dbAuthentication authority based on oauth2authhub is a specialized authentication center built on OAuth2, providing robust authentication and authorization capabilities for secure user access control in your applications..https://gitee.com/openeuler/authHubMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843871-20251015-02183authHub-v2.2.0-3.oe2403.src.rpm/etc/aops/conf.d/authhub.yml/etc/nginx/conf.d/authhub.nginx.confauthhub-webx86_647f82e672e7ae4ccc0707b911fa07c801dac8db6a3365f7f75689cdbe377b7840Authentication authority web based on oauth2Authentication authority web based on oauth2https://gitee.com/openeuler/authHubMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843871-20251015-02183authHub-v2.2.0-3.oe2403.src.rpmdnf-hotpatch-pluginx86_64b303a7bfa9efa5df8ea920815e41738c06ca0144c22033512c0b2407e0f65c67dnf hotpatch plugindnf hotpatch plugin, it's about hotpatch query and fixhttps://gitee.com/openeuler/aops-ceresMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201aops-ceres-v2.2.0-1.oe2403.src.rpmgala-anteatersrc29dae90fecd49b9057696b19942723729881ae49f70aa47ab5e484ca57322b81A time-series anomaly detection platform for operating system.Abnormal detection module for A-Ops projecthttps://gitee.com/openeuler/gala-anteaterMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201gala-anteaterx86_647b46b389837d1d95c0643db1a63b2b9c065d7d2b186fe0264e53cf4dea6e4880A time-series anomaly detection platform for operating system.Abnormal detection module for A-Ops projecthttps://gitee.com/openeuler/gala-anteaterMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201gala-anteater-3.0.1-1.oe2403.src.rpm/etc/gala-anteater/config/gala-anteater.yaml/etc/gala-anteater/config/log.settings.ini/etc/gala-anteater/config/metricinfo.json/etc/gala-anteater/entity/app_entity.json/etc/gala-anteater/entity/pod_entity.json/etc/gala-anteater/entity/vm_entity.json/etc/gala-anteater/module/app_sli_rtt.job.json/etc/gala-anteater/module/container_disruption.job.json/etc/gala-anteater/module/disk_throughput.job.json/etc/gala-anteater/module/jvm_oom.job.json/etc/gala-anteater/module/proc_io_latency.job.json/etc/gala-anteater/module/rca.job.json/etc/gala-anteater/module/slow_node_detection.job.json/etc/gala-anteater/module/sys_io_latency.job.json/etc/gala-anteater/module/sys_nic_loss.job.json/etc/gala-anteater/module/sys_tcp_establish.job.json/etc/gala-anteater/module/sys_tcp_transmission_latency.job.json/etc/gala-anteater/module/usad_model.job.json/usr/bin/gala-anteatergala-gophersrc3038e9561e0230d404b80d8f870690c4c8cda4b9ebb9583c31e76866127243b9Intelligent ops toolkit for openEulergala-gopher is a low-overhead eBPF-based probes frameworkhttps://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844157-20251107-09293gala-gopherx86_645c2dde8035d6e6766714065af0d066560f56f1f9eeff9b638a3145d99c426c2aIntelligent ops toolkit for openEulergala-gopher is a low-overhead eBPF-based probes frameworkhttps://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844157-20251107-09293gala-gopher-2.0.3-2.oe2403.src.rpm/etc/gala-gopher/extend_probes/cadvisor_probe.conf/etc/gala-gopher/extend_probes/pg_stat_probe.conf/etc/gala-gopher/gala-gopher-custom.json/etc/gala-gopher/gala-gopher.conf/etc/gala-gopher/probes.init/usr/bin/gala-gopher/usr/bin/gopher-ctlgala-gopher-debuginfox86_64991f19d31ae9426b941a59c3bd3a54460a4e79a5ef914c76eb9d2f66b60aba28Debug information for package gala-gopherThis package provides debug information for package gala-gopher.
Debug information is useful when developing applications that use this
package or when debugging this package.https://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Development/Debugeur-prod-workerlocal-x86-64-normal-prod-00844157-20251107-09293gala-gopher-2.0.3-2.oe2403.src.rpm/usr/lib/debug/usr/bin/gala-gopher-2.0.3-2.oe2403.x86_64.debug/usr/lib/debug/usr/bin/gopher-ctl-2.0.3-2.oe2403.x86_64.debuggala-gopher-debugsourcex86_646166bcf0a828d7c81a333dfdd10f15c59b4cf30a3e03a800521a5221a5b046e8Debug sources for package gala-gopherThis package provides debug sources for package gala-gopher.
Debug sources are useful when developing applications that use this
package or when debugging this package.https://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Development/Debugeur-prod-workerlocal-x86-64-normal-prod-00844157-20251107-09293gala-gopher-2.0.3-2.oe2403.src.rpmgala-inferencex86_646c413d5f88c23c75906b30ba89e37af4da228611c771d4c33e79cfeeea545b45Cause inference module for gala-ops projectCause inference module for A-Ops projecthttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843869-20251015-02174gala-spider-2.0.1-1.oe2403.src.rpm/etc/gala-inference/cause-keyword.yaml/etc/gala-inference/ext-observe-meta.yaml/etc/gala-inference/gala-inference.yaml/etc/gala-inference/infer-rule.yaml/usr/bin/gala-inferencegala-opsx86_6483560f73a28c6a886d06224b2b21e4d01d4429f0a8785a4fbbaf8f729a26c64fgala-anteater/spider/inference installation packageThis package requires gala-anteater/spider/inference, allowing users to install them all at oncehttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843869-20251015-02174gala-spider-2.0.1-1.oe2403.src.rpmgala-spidersrc51291be3ce09177c348bc6e47c3b10581c9caf19c0b382a5515e4d4c42559e9eOS topological graph storage service and cause inference service for gala-ops projectOS topological graph storage service for gala-ops projecthttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843869-20251015-02174gala-spiderx86_646f182f3cefbafe927bac0a8e814addc0b77f792ad1996c3a67c8e950601de7a3OS topological graph storage service and cause inference service for gala-ops projectOS topological graph storage service for gala-ops projecthttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843869-20251015-02174gala-spider-2.0.1-1.oe2403.src.rpm/etc/gala-spider/ext-observe-meta.yaml/etc/gala-spider/gala-spider.yaml/etc/gala-spider/topo-relation.yaml/usr/bin/spider-storageloggptsrc959483d38d108500484729eabbc2a54c1c06d6a32ed3f25e71a7c4180440d220loggpt Serviceloggpt Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844169-20251107-09460loggptx86_6408cc59f2da1b94a3b15691b40d7c0f5b67ad7b8fb408bdaa3ac6f8e5ca213771loggpt Serviceloggpt Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844169-20251107-09460loggpt-1.0.0-1.oe2403.src.rpm/usr/bin/loggptosmind-aisrc5cf5fc227071a5485cfed4932d9b32ac5e0346b7f55667e39b4e6bc36977e781OSMind AI ServiceOSMind AI Service packaged as RPM.https://gitee.com/Victeo/osmind-aiserviceMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844183-20251110-07205osmind-aix86_64abc4076bea951bb186f634ed60988a7fae5c1ba8ed202a47e762798f61ef60eeOSMind AI ServiceOSMind AI Service packaged as RPM.https://gitee.com/Victeo/osmind-aiserviceMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844183-20251110-07205osmind-ai-1.0.0-1.oe2403.src.rpmpython-Authlibsrcb059a577bf3436811fc67b4c4237f707462e0cbe75d4e47aa2cd96cca8b888f0The ultimate Python library in building OAuth and OpenID Connect servers and clients.The ultimate Python library in building OAuth and OpenID Connect servers.
JWS, JWK, JWA, JWT are included.https://authlib.org/BSD 3-Clause LicenseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843895-20251015-06342python-Authlib-helpnoarcha38e2f4657976b178e27a3f56b2500c396dc57bb31c8dd0842a67bb1982c7ca2Development documents and examples for AuthlibThe ultimate Python library in building OAuth and OpenID Connect servers.
JWS, JWK, JWA, JWT are included.https://authlib.org/BSD 3-Clause LicenseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843895-20251015-06342python-Authlib-1.2.0-2.oe2403.src.rpmpython-billiardsrca9a2c39d29718daf07355efdc288ce286759cd1c5b101d2d50ce4cd27a01ab81Python multiprocessing fork with improvements and bugfixesMultiprocessing Pool Extensionshttps://github.com/celery/billiardBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843882-20251015-02534python-billiard-helpnoarcha9f15a79bac24ec9e9cc18cfb7b467c805875e58912356a42e504f9113cebb05Development documents and examples for billiardMultiprocessing Pool Extensionshttps://github.com/celery/billiardBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843882-20251015-02534python-billiard-4.2.1-1.oe2403.src.rpmpython-celerysrc955a8cc60c3b2d6155722c6c2da2e7288a9f02b43e374ad8b6dae9a756983b38Distributed Task Queue.Distributed Task Queue.https://github.com/celery/celeryBSD-3-Clause and CC-BY-SA-4.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164python-celery-helpnoarchbd888a9221eeb373d9cb97e082c09779fee7635827f6ed04d2fcc230e5b11d7cDevelopment documents and examples for celeryDistributed Task Queue.https://github.com/celery/celeryBSD-3-Clause and CC-BY-SA-4.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164python-celery-5.3.4-1.oe2403.src.rpmpython-click-didyoumeansrc00dc55b6e2c91c7aafa44fc998c87f9e33f3de33f66cbf420c2b8b078dd4b6dbEnables git-like *did-you-mean* feature in clickEnables git-like *did-you-mean* feature in clickhttps://github.com/click-contrib/click-didyoumeanMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843887-20251015-05561python-click-didyoumean-helpnoarcha541ad3c3bc6b90b993570fad49bac4058bc724aa298df0bf43393721c2a6afcEnables git-like *did-you-mean* feature in clickEnables git-like *did-you-mean* feature in clickhttps://github.com/click-contrib/click-didyoumeanMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843887-20251015-05561python-click-didyoumean-0.3.1-1.oe2403.src.rpmpython-click-pluginssrceef2a3311f55e65f5767f8dc9ec10dd547327712c4ebc6a0bce1c0a98528f1a9An extension module for click to enable registering CLI commands via setuptools entry-points.An extension module for click to enable registering CLI commands via setuptools entry-points.https://github.com/click-contrib/click-pluginsBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843885-20251015-05552python-click-plugins-helpnoarch0191c194663e1d930ddbc4796f4e62963d1be714f7ec76d9809653e1ec5ff0cbDevelopment documents and examples for click-pluginsAn extension module for click to enable registering CLI commands via setuptools entry-points.https://github.com/click-contrib/click-pluginsBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843885-20251015-05552python-click-plugins-1.1.1-1.oe2403.src.rpmpython-click-replsrc6f79cb13d90ed39b70dea360d06faa292452b0752acb504fb72cd8b09c0293a2REPL plugin for ClickREPL plugin for Clickhttps://github.com/untitaker/click-replMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843887-20251015-05561python-click-repl-helpnoarch8cd0a38f2fce1b1a76b2becc96dcd141b1cd53969ed4eaac31550cfab546c7f0Development documents and examples for click-replREPL plugin for Clickhttps://github.com/untitaker/click-replMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843887-20251015-05561python-click-repl-0.3.0-1.oe2403.src.rpmpython-pandas-flavorsrc0d2944be36749ae5388bc3d6f1bc8d5b38c1e898bf5b2332605327b3363cd767The easy way to write your own Pandas flavor.
**The easy way to write your own flavor of Pandas**
Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
Pandas-flavor extends Pandas' extension API by:
1. adding support for registering methods as well.
2. making each of these functions backwards compatible with older versions of Pandas.
***What does this mean?***
It is now simpler to add custom functionality to Pandas DataFrames and Series.
Import this package. Write a simple python function. Register the function using one of the following decorators.
***Why?***
Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
accessor that provides plotting functionality.
Add an accessor by registering the function with the following decorator
and passing the decorator an accessor name.
```python
import pandas_flavor as pf
@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):
def __init__(self, data):
self._data = data
def row_by_value(self, col, value):
"""Slice out row from DataFrame by a value."""
return self._data[self._data[col] == value].squeeze()
```
Every dataframe now has this accessor as an attribute.
```python
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.my_flavor.row_by_value('x', 10)
```
To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
Using this package, you can attach functions directly to Pandas objects. No
intermediate accessor is needed.
```python
import pandas_flavor as pf
@pf.register_dataframe_method
def row_by_value(df, col, value):
"""Slice out row from DataFrame by a value."""
return df[df[col] == value].squeeze()
```
```python
import pandas as pd
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.row_by_value('x', 10)
```
The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced
to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz)
- **register_dataframe_method**: register a method directly with a pandas DataFrame.
- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
- **register_series_method**: register a methods directly with a pandas Series.
- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
You can install using **pip**:
```
pip install pandas_flavor
```
or conda (thanks @ericmjl)!
```
conda install -c conda-forge pandas-flavor
```
Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
If you have a feature request, please open an issue or submit a PR!
Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
**So how does method registration work?**
When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
1. inheriting the docstring of your function
2. overriding the `__call__` method to call your function.https://github.com/Zsailer/pandas_flavorMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140python-pandas-flavor-helpnoarchc46fc91f91991dbdbd85f79cbf9e8da681ccbf1278aa0e909877ce4c8ea17d67Development documents and examples for pandas-flavor
**The easy way to write your own flavor of Pandas**
Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
Pandas-flavor extends Pandas' extension API by:
1. adding support for registering methods as well.
2. making each of these functions backwards compatible with older versions of Pandas.
***What does this mean?***
It is now simpler to add custom functionality to Pandas DataFrames and Series.
Import this package. Write a simple python function. Register the function using one of the following decorators.
***Why?***
Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
accessor that provides plotting functionality.
Add an accessor by registering the function with the following decorator
and passing the decorator an accessor name.
```python
import pandas_flavor as pf
@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):
def __init__(self, data):
self._data = data
def row_by_value(self, col, value):
"""Slice out row from DataFrame by a value."""
return self._data[self._data[col] == value].squeeze()
```
Every dataframe now has this accessor as an attribute.
```python
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.my_flavor.row_by_value('x', 10)
```
To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
Using this package, you can attach functions directly to Pandas objects. No
intermediate accessor is needed.
```python
import pandas_flavor as pf
@pf.register_dataframe_method
def row_by_value(df, col, value):
"""Slice out row from DataFrame by a value."""
return df[df[col] == value].squeeze()
```
```python
import pandas as pd
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.row_by_value('x', 10)
```
The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced
to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz)
- **register_dataframe_method**: register a method directly with a pandas DataFrame.
- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
- **register_series_method**: register a methods directly with a pandas Series.
- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
You can install using **pip**:
```
pip install pandas_flavor
```
or conda (thanks @ericmjl)!
```
conda install -c conda-forge pandas-flavor
```
Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
If you have a feature request, please open an issue or submit a PR!
Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
**So how does method registration work?**
When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
1. inheriting the docstring of your function
2. overriding the `__call__` method to call your function.https://github.com/Zsailer/pandas_flavorMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140python-pandas-flavor-0.6.0-1.oe2403.src.rpmpython-pingouinsrc798fac07c8a9ca391cffff8cb5a92e4bbbb6391c905b029807c80235fc0bd940Pingouin: statistical package for Python**Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_.
1. ANOVAs: N-ways, repeated measures, mixed, ancova
2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations
3. Robust, partial, distance and repeated measures correlations
4. Linear/logistic regression and mediation analysis
5. Bayes Factors
6. Multivariate tests
7. Reliability and consistency
8. Effect sizes and power analysis
9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient
10. Circular statistics
11. Chi-squared tests
12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation...
Pingouin is designed for users who want **simple yet exhaustive statistical functions**.
For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast,
the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.https://pingouin-stats.org/index.htmlGPL-3.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843873-20251015-02193python-pingouin-helpnoarch1c928699fb857707677bc648bc2734f3a196a007531fb1ac66ed8905f16c7167Development documents and examples for pingouin**Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_.
1. ANOVAs: N-ways, repeated measures, mixed, ancova
2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations
3. Robust, partial, distance and repeated measures correlations
4. Linear/logistic regression and mediation analysis
5. Bayes Factors
6. Multivariate tests
7. Reliability and consistency
8. Effect sizes and power analysis
9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient
10. Circular statistics
11. Chi-squared tests
12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation...
Pingouin is designed for users who want **simple yet exhaustive statistical functions**.
For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast,
the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.https://pingouin-stats.org/index.htmlGPL-3.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843873-20251015-02193python-pingouin-0.5.5-1.oe2403.src.rpmpython-seabornsrc7dac8528a23bee3d22b563ef490377b437424a8fefa1ae197222186ec073bae9Statistical data visualizationhttps://pypi.org/project/seaborn/NoneopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140python-seaborn-helpnoarch0b59b0a3c3dee432932be8a7e52d46a34713700d12d7ba5f996d1caa980aae79Development documents and examples for seabornhttps://pypi.org/project/seaborn/NoneopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140python-seaborn-0.13.2-1.oe2403.src.rpmpython3-Authlibnoarch3a5ba56510365f5e7a941e049c34395ec0701d5ffc2a61be71349250239aa9a2The ultimate Python library in building OAuth and OpenID Connect servers and clients.The ultimate Python library in building OAuth and OpenID Connect servers.
JWS, JWK, JWA, JWT are included.https://authlib.org/BSD 3-Clause LicenseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843895-20251015-06342python-Authlib-1.2.0-2.oe2403.src.rpmpython3-billiardnoarch7acfb7054bb17b7dccce2d30ba3c7a75682eec116311447ad354cde13f8f04daPython multiprocessing fork with improvements and bugfixesMultiprocessing Pool Extensionshttps://github.com/celery/billiardBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843882-20251015-02534python-billiard-4.2.1-1.oe2403.src.rpmpython3-celerynoarchba4fa9f1db55034b0ca8db6f09c89d4b8a6a98c8361e86b0b14985357e26e6c6Distributed Task Queue.Distributed Task Queue.https://github.com/celery/celeryBSD-3-Clause and CC-BY-SA-4.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164python-celery-5.3.4-1.oe2403.src.rpm/usr/bin/celery/usr/lib/python3.11/site-packages/celery/bin/__init__.py/usr/lib/python3.11/site-packages/celery/bin/__pycache__/__init__.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/__init__.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/amqp.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/amqp.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/base.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/base.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/beat.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/beat.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/call.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/call.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/celery.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/celery.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/control.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/control.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/events.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/events.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/graph.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/graph.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/list.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/list.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/logtool.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/logtool.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/migrate.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/migrate.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/multi.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/multi.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/purge.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/purge.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/result.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/result.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/shell.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/shell.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/upgrade.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/upgrade.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/worker.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/worker.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/amqp.py/usr/lib/python3.11/site-packages/celery/bin/base.py/usr/lib/python3.11/site-packages/celery/bin/beat.py/usr/lib/python3.11/site-packages/celery/bin/call.py/usr/lib/python3.11/site-packages/celery/bin/celery.py/usr/lib/python3.11/site-packages/celery/bin/control.py/usr/lib/python3.11/site-packages/celery/bin/events.py/usr/lib/python3.11/site-packages/celery/bin/graph.py/usr/lib/python3.11/site-packages/celery/bin/list.py/usr/lib/python3.11/site-packages/celery/bin/logtool.py/usr/lib/python3.11/site-packages/celery/bin/migrate.py/usr/lib/python3.11/site-packages/celery/bin/multi.py/usr/lib/python3.11/site-packages/celery/bin/purge.py/usr/lib/python3.11/site-packages/celery/bin/result.py/usr/lib/python3.11/site-packages/celery/bin/shell.py/usr/lib/python3.11/site-packages/celery/bin/upgrade.py/usr/lib/python3.11/site-packages/celery/bin/worker.pypython3-click-didyoumeannoarchbd1dd69ba6960ddb1e1ae7b5492312e69923893edd72b4542937dc83c52a06fcEnables git-like *did-you-mean* feature in clickEnables git-like *did-you-mean* feature in clickhttps://github.com/click-contrib/click-didyoumeanMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843887-20251015-05561python-click-didyoumean-0.3.1-1.oe2403.src.rpmpython3-click-pluginsnoarch34fe88773176ee7d9761a9efac7603996ab98041c4f0e81ea521848e4a316649An extension module for click to enable registering CLI commands via setuptools entry-points.An extension module for click to enable registering CLI commands via setuptools entry-points.https://github.com/click-contrib/click-pluginsBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843885-20251015-05552python-click-plugins-1.1.1-1.oe2403.src.rpmpython3-click-replnoarch277336eeb56a02f5fb1a88a55eb486a9c8b22d27624730d4da036055d9dbe299REPL plugin for ClickREPL plugin for Clickhttps://github.com/untitaker/click-replMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843887-20251015-05561python-click-repl-0.3.0-1.oe2403.src.rpmpython3-gala-anteaterx86_64b44f5c5b5b94350794af009691dd136bdfa0f92b65d66c03ab67762f8fcca059Python3 package of gala-anteaterPython3 package of gala-anteaterhttps://gitee.com/openeuler/gala-anteaterMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201gala-anteater-3.0.1-1.oe2403.src.rpmpython3-gala-inferencex86_6400a2d1da6ce1ea9147843f0c92d2e3b44dfeb3711f9f6aadc72af22eecb2b624Python3 package of gala-inferencePython3 package of gala-inferencehttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843869-20251015-02174gala-spider-2.0.1-1.oe2403.src.rpmpython3-gala-spiderx86_6491315e8f9e00a2d86438c6be94eaeb07c0a71758925f1687fa8733807b29c4f2Python3 package of gala-spiderPython3 package of gala-spiderhttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843869-20251015-02174gala-spider-2.0.1-1.oe2403.src.rpmpython3-pandas-flavornoarch172e996aaa9a93d3ae4287364fdca2252ead8070f1ca24ecdebe763cb5c8fd2eThe easy way to write your own Pandas flavor.
**The easy way to write your own flavor of Pandas**
Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
Pandas-flavor extends Pandas' extension API by:
1. adding support for registering methods as well.
2. making each of these functions backwards compatible with older versions of Pandas.
***What does this mean?***
It is now simpler to add custom functionality to Pandas DataFrames and Series.
Import this package. Write a simple python function. Register the function using one of the following decorators.
***Why?***
Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
accessor that provides plotting functionality.
Add an accessor by registering the function with the following decorator
and passing the decorator an accessor name.
```python
import pandas_flavor as pf
@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):
def __init__(self, data):
self._data = data
def row_by_value(self, col, value):
"""Slice out row from DataFrame by a value."""
return self._data[self._data[col] == value].squeeze()
```
Every dataframe now has this accessor as an attribute.
```python
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.my_flavor.row_by_value('x', 10)
```
To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
Using this package, you can attach functions directly to Pandas objects. No
intermediate accessor is needed.
```python
import pandas_flavor as pf
@pf.register_dataframe_method
def row_by_value(df, col, value):
"""Slice out row from DataFrame by a value."""
return df[df[col] == value].squeeze()
```
```python
import pandas as pd
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.row_by_value('x', 10)
```
The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced
to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz)
- **register_dataframe_method**: register a method directly with a pandas DataFrame.
- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
- **register_series_method**: register a methods directly with a pandas Series.
- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
You can install using **pip**:
```
pip install pandas_flavor
```
or conda (thanks @ericmjl)!
```
conda install -c conda-forge pandas-flavor
```
Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
If you have a feature request, please open an issue or submit a PR!
Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
**So how does method registration work?**
When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
1. inheriting the docstring of your function
2. overriding the `__call__` method to call your function.https://github.com/Zsailer/pandas_flavorMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140python-pandas-flavor-0.6.0-1.oe2403.src.rpmpython3-pingouinnoarch08fa8257171928bdc3bf0ede3ee5913fb54a3d4fd7d6c10c39c0164828132441Pingouin: statistical package for Python**Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_.
1. ANOVAs: N-ways, repeated measures, mixed, ancova
2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations
3. Robust, partial, distance and repeated measures correlations
4. Linear/logistic regression and mediation analysis
5. Bayes Factors
6. Multivariate tests
7. Reliability and consistency
8. Effect sizes and power analysis
9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient
10. Circular statistics
11. Chi-squared tests
12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation...
Pingouin is designed for users who want **simple yet exhaustive statistical functions**.
For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast,
the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.https://pingouin-stats.org/index.htmlGPL-3.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843873-20251015-02193python-pingouin-0.5.5-1.oe2403.src.rpmpython3-seabornnoarch9cad52a040ea6eaacc91ed9e2f9a2f8a6de73d72d33687aa1bbc73e61633b53aStatistical data visualizationhttps://pypi.org/project/seaborn/NoneopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140python-seaborn-0.13.2-1.oe2403.src.rpmzeus-distributex86_6485647fff050b958356b50c73b7b3340a39b229bbb3d50629b1788330994bf455A distributed service of aops.A distributed service of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843860-20251014-07192aops-zeus-v2.2.0-1.oe2403.src.rpm/etc/aops/conf.d/zeus-distribute.ymlzeus-host-informationx86_649c0b5ea866a328c239f4c2451e32dbae5fc7145c9a6672218445453cb0441bf9A host manager service which is the foundation of aops.A host manager service which is the foundation of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843860-20251014-07192aops-zeus-v2.2.0-1.oe2403.src.rpm/etc/aops/conf.d/zeus-host-information.ymlzeus-operationx86_643ccbd2a1fa66b4c0ec7a9b3e99d0bae972f3373e3e4250be70063fea4abd8dc6A operation manager service which is the foundation of aops.A operation manager of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843860-20251014-07192aops-zeus-v2.2.0-1.oe2403.src.rpm/etc/aops/conf.d/zeus-operation.ymlzeus-user-accessx86_641ad64acbb7ab066b0eca06d23742ad5c781e3dc96696366452279853056f4677A user manager service which is the foundation of aops.A user manager service which is the foundation of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843860-20251014-07192aops-zeus-v2.2.0-1.oe2403.src.rpm/etc/aops/conf.d/zeus-user-access.yml