aops-apollo-toolaarch6463a979f57cf629f18078599c1c9f3ac2ecb4ece753b4ed86405d644be73624b6Small tools for aops-apollo, e.g. updateinfo.xml generatersmalltools for aops-apollo, e.g.updateinfo.xml generaterhttps://gitee.com/openeuler/aops-apolloMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843862-20251014-0719aops-apollo-v2.2.0-1.oe2403sp1.src.rpm/etc/aops_apollo_tool/updateinfo_config.ini/usr/bin/gen-updateinfoaops-apolloaarch64ce82d5ff184941f6688e9d14285c215d54117f0afe8faf9d8a8954cfa14bd2e9Cve management service, monitor machine vulnerabilities and provide fix functions.Cve management service, monitor machine vulnerabilities and provide fix functions.https://gitee.com/openeuler/aops-apolloMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843862-20251014-0719aops-apollo-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/conf.d/aops-apollo.ymlaops-apollosrc38eb0d4521e4010e92a1b56d3292282a8cee385a01a401bd5c1e46c8ce5f8729Cve management service, monitor machine vulnerabilities and provide fix functions.Cve management service, monitor machine vulnerabilities and provide fix functions.https://gitee.com/openeuler/aops-apolloMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843862-20251014-0719aops-ceresaarch64bb7bea4d49c6479ce34cab697b8d4921dafe7bcd1615b942b86f5ec84885f66aAn agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.https://gitee.com/openeuler/aops-ceresMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843876-20251015-0220aops-ceres-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/ceres.conf/usr/bin/aops-ceresaops-ceressrc7e654bfc726ff4aeab0114d0d36fa8f2b4f892687110a6abc81d7129eb3644f9An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.https://gitee.com/openeuler/aops-ceresMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843876-20251015-0220aops-hermesaarch6404edef6e9221f38466b64145d74931c37683bdc7a34ff27554ab89555d83b045Web for an intelligent diagnose frameWeb for an intelligent diagnose framehttps://gitee.com/openeuler/aops-hermesMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844269-20251125-0956aops-hermes-v2.2.0-1.oe2403sp1.src.rpmaops-hermessrc7ee112cb9b26cc090e041a896c890ada2630853cdfcb808d4e3789894b873e42Web for an intelligent diagnose frameWeb for an intelligent diagnose framehttps://gitee.com/openeuler/aops-hermesMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844269-20251125-0956aops-mcpaarch64415b1fcc55111347b9ebd737149ea01a5fb10933903ddf465461df710e8f0565Aops MCP ServiceAops MCP Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844195-20251110-1012aops-mcp-1.0.0-1.oe2403sp1.src.rpm/opt/aops-mcp/venv/bin/Activate.ps1/opt/aops-mcp/venv/bin/activate/opt/aops-mcp/venv/bin/activate.csh/opt/aops-mcp/venv/bin/activate.fish/opt/aops-mcp/venv/bin/aops-mcp/opt/aops-mcp/venv/bin/dotenv/opt/aops-mcp/venv/bin/fastmcp/opt/aops-mcp/venv/bin/httpx/opt/aops-mcp/venv/bin/jsonschema/opt/aops-mcp/venv/bin/markdown-it/opt/aops-mcp/venv/bin/mcp/opt/aops-mcp/venv/bin/pip/opt/aops-mcp/venv/bin/pip3/opt/aops-mcp/venv/bin/pip3.11/opt/aops-mcp/venv/bin/pygmentize/opt/aops-mcp/venv/bin/python/opt/aops-mcp/venv/bin/python3/opt/aops-mcp/venv/bin/python3.11/opt/aops-mcp/venv/bin/typer/opt/aops-mcp/venv/bin/uvicorn/opt/aops-mcp/venv/bin/websockets/usr/bin/aops-mcpaops-mcpsrc5a656c4b7f73ad6b7b495d72e55cf71ee3439aa268a347dda38b409402cf4752Aops MCP ServiceAops MCP Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844195-20251110-1012aops-toolsaarch6450223412064aff523475b8cb9bc440ff0e93a8b92bf9c1be1835a6ed77413f89aops scriptstools for aops, it's about aops deployhttps://gitee.com/openeuler/aops-vulcanusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843883-20251015-0259aops-vulcanus-v2.2.0-1.oe2403sp1.src.rpmaops-vulcanusaarch644beeaf346d016fd3de2ca48b9599142b366016d04a2a773fc69a43dfaf220eddA basic tool libraries of aops, including logging, configure and response, etc.A basic tool libraries of aops, including logging, configure and response, etc.https://gitee.com/openeuler/aops-vulcanusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843883-20251015-0259aops-vulcanus-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/aops-config.ymlaops-vulcanussrc3491f064d61a5fe5f8cbbea4590ebd1ef991d8002e85df7a3c9a4c4340c76f9bA basic tool libraries of aops, including logging, configure and response, etc.A basic tool libraries of aops, including logging, configure and response, etc.https://gitee.com/openeuler/aops-vulcanusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843883-20251015-0259aops-zeusaarch64f9f87934c961fd2591e1b6f802b0069e9984845f7bf820fd6f150a71406c5ae3A service which is the foundation of aops.Provide one-click aops deployment, service start and stop, hot loading of
configuration files, and database initialization.
Provides: aops-zeushttps://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843883-20251015-0259aops-zeus-v2.2.0-1.oe2403sp1.src.rpm/usr/bin/aops-cliaops-zeussrc2b85ced1f8f283478a328403a10176fadfc40a2200fe5a16934666e7ed7f6487A service which is the foundation of aops.Provide one-click aops deployment, service start and stop, hot loading of
configuration files, and database initialization.
Provides: aops-zeushttps://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843883-20251015-0259async-taskaarch64ea7eb3567a5a03b345bc700ab439542362e91c7ca50b3c07443692a18e2afe9aA async task of aops.A async task of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843883-20251015-0259aops-zeus-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/crontab.yml/etc/aops/sync-conf.d/instance.properties/etc/aops/sync-conf.d/rdb/cve_fix_task.yml/etc/aops/sync-conf.d/rdb/cve_host_match.yml/etc/aops/sync-conf.d/rdb/cve_rollback_task.yml/etc/aops/sync-conf.d/rdb/domain.yml/etc/aops/sync-conf.d/rdb/domain_conf_info.yml/etc/aops/sync-conf.d/rdb/domain_host.yml/etc/aops/sync-conf.d/rdb/host.yml/etc/aops/sync-conf.d/rdb/host_conf_sync_status.yml/etc/aops/sync-conf.d/rdb/host_group.yml/etc/aops/sync-conf.d/rdb/hotpatch_remove_task.yml/etc/aops/sync-conf.d/rdb/repo.yml/etc/aops/sync-conf.d/rdb/task_host_repo.yml/etc/aops/sync-conf.d/rdb/vul_task.yml/usr/bin/async-taskauthHubaarch64ea5b15b14d11e589a40827061a00acbc78d41e52adafaf1d02902b4dbd234a5bAuthentication authority based on oauth2authhub is a specialized authentication center built on OAuth2, providing robust authentication and authorization capabilities for secure user access control in your applications..https://gitee.com/openeuler/authHubMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843872-20251015-0219authHub-v2.2.0-3.oe2403sp1.src.rpm/etc/aops/conf.d/authhub.yml/etc/nginx/conf.d/authhub.nginx.confauthHubsrce12edf06fba6a0916a2ba657dd0ccecdb8d3753328f1a77f5ee0248be5e14814Authentication authority based on oauth2authhub is a specialized authentication center built on OAuth2, providing robust authentication and authorization capabilities for secure user access control in your applications..https://gitee.com/openeuler/authHubMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843872-20251015-0219authhub-webaarch646b05159349d8b69df7f4df3a621ff8581821154b728da9d3e035593607edcd76Authentication authority web based on oauth2Authentication authority web based on oauth2https://gitee.com/openeuler/authHubMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843872-20251015-0219authHub-v2.2.0-3.oe2403sp1.src.rpmdnf-hotpatch-pluginaarch64356ebb4af21a469cd5aa40dfd1d01d3b655170c0982a25c5041dd0ec98f671e4dnf hotpatch plugindnf hotpatch plugin, it's about hotpatch query and fixhttps://gitee.com/openeuler/aops-ceresMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843876-20251015-0220aops-ceres-v2.2.0-1.oe2403sp1.src.rpmgala-anteateraarch64bf2ca51b237215f9cb522d798932a98267164c6b3fa33b071d8f56890889c280A time-series anomaly detection platform for operating system.Abnormal detection module for A-Ops projecthttps://gitee.com/openeuler/gala-anteaterMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843872-20251015-0219gala-anteater-3.0.1-1.oe2403sp1.src.rpm/etc/gala-anteater/config/gala-anteater.yaml/etc/gala-anteater/config/log.settings.ini/etc/gala-anteater/config/metricinfo.json/etc/gala-anteater/entity/app_entity.json/etc/gala-anteater/entity/pod_entity.json/etc/gala-anteater/entity/vm_entity.json/etc/gala-anteater/module/app_sli_rtt.job.json/etc/gala-anteater/module/container_disruption.job.json/etc/gala-anteater/module/disk_throughput.job.json/etc/gala-anteater/module/jvm_oom.job.json/etc/gala-anteater/module/proc_io_latency.job.json/etc/gala-anteater/module/rca.job.json/etc/gala-anteater/module/slow_node_detection.job.json/etc/gala-anteater/module/sys_io_latency.job.json/etc/gala-anteater/module/sys_nic_loss.job.json/etc/gala-anteater/module/sys_tcp_establish.job.json/etc/gala-anteater/module/sys_tcp_transmission_latency.job.json/etc/gala-anteater/module/usad_model.job.json/usr/bin/gala-anteatergala-anteatersrc6d98c1f78d2ecff0a810fc3bf6bf91f9077090e4251009a8df8100d11ed3c0a9A time-series anomaly detection platform for operating system.Abnormal detection module for A-Ops projecthttps://gitee.com/openeuler/gala-anteaterMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843872-20251015-0219gala-gopheraarch64e08143a3b7c005a215fd1e0084117451cf419e70e125b374278455f10c49f3f2Intelligent ops toolkit for openEulergala-gopher is a low-overhead eBPF-based probes frameworkhttps://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844170-20251107-0946gala-gopher-2.0.3-2.oe2403sp1.src.rpm/etc/gala-gopher/extend_probes/cadvisor_probe.conf/etc/gala-gopher/extend_probes/pg_stat_probe.conf/etc/gala-gopher/gala-gopher-custom.json/etc/gala-gopher/gala-gopher.conf/etc/gala-gopher/probes.init/usr/bin/gala-gopher/usr/bin/gopher-ctlgala-gophersrc60481d84cd1e995fc92ef4cc1f90a1da04240b86c2280e629af58e0ca4961b01Intelligent ops toolkit for openEulergala-gopher is a low-overhead eBPF-based probes frameworkhttps://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844170-20251107-0946gala-gopher-debuginfoaarch649a07f50d1bee0fb3912d9ea1f3c7bcd19baf904ed0cf51b8031fc44a2102a0d1Debug information for package gala-gopherThis package provides debug information for package gala-gopher.
Debug information is useful when developing applications that use this
package or when debugging this package.https://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Development/Debugeur-prod-workerlocal-aarch64-normal-prod-00844170-20251107-0946gala-gopher-2.0.3-2.oe2403sp1.src.rpm/usr/lib/debug/usr/bin/gala-gopher-2.0.3-2.oe2403sp1.aarch64.debug/usr/lib/debug/usr/bin/gopher-ctl-2.0.3-2.oe2403sp1.aarch64.debuggala-gopher-debugsourceaarch64fd2927e9f61b4160f14385b5286fc4f8aa9db0d68d4c7180022096dac34ddc4dDebug sources for package gala-gopherThis package provides debug sources for package gala-gopher.
Debug sources are useful when developing applications that use this
package or when debugging this package.https://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Development/Debugeur-prod-workerlocal-aarch64-normal-prod-00844170-20251107-0946gala-gopher-2.0.3-2.oe2403sp1.src.rpmgala-inferenceaarch64efce3604069ebe06e234da3a57955ad869a238f27cb1de743f5ecc38f840cea2Cause inference module for gala-ops projectCause inference module for A-Ops projecthttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843868-20251015-0217gala-spider-2.0.1-1.oe2403sp1.src.rpm/etc/gala-inference/cause-keyword.yaml/etc/gala-inference/ext-observe-meta.yaml/etc/gala-inference/gala-inference.yaml/etc/gala-inference/infer-rule.yaml/usr/bin/gala-inferencegala-opsaarch64b69a986da5b49d90262cbcf7b0c234c0188c2a8688056db3d0f0945842d57439gala-anteater/spider/inference installation packageThis package requires gala-anteater/spider/inference, allowing users to install them all at oncehttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843868-20251015-0217gala-spider-2.0.1-1.oe2403sp1.src.rpmgala-spideraarch6401a79f76530e4b5d7dbdd9c0e99795aa46bada17c9877621783b80bc394d494fOS topological graph storage service and cause inference service for gala-ops projectOS topological graph storage service for gala-ops projecthttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843868-20251015-0217gala-spider-2.0.1-1.oe2403sp1.src.rpm/etc/gala-spider/ext-observe-meta.yaml/etc/gala-spider/gala-spider.yaml/etc/gala-spider/topo-relation.yaml/usr/bin/spider-storagegala-spidersrc26df12681e3e3b803f6f04d95ace39659c3b69960256e010ceb94f1b3c7870e9OS topological graph storage service and cause inference service for gala-ops projectOS topological graph storage service for gala-ops projecthttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843868-20251015-0217loggptaarch648a9343e60c199a26503986054a65c174cdbd1c27da379960867323e9addfa726loggpt Serviceloggpt Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844112-20251105-0622loggpt-1.0.0-1.oe2403sp1.src.rpm/usr/bin/loggptloggptsrc8f0c6b07c802e9fffdad72cda8f71bff9156f451dba636dd97f527b44fdd8b6eloggpt Serviceloggpt Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844112-20251105-0622osmind-aiaarch647c2333c5e949e6e8ebaacc654f1081b1f0a2974c8e2edc4fa24030a3a41cd72dOSMind AI ServiceOSMind AI Service packaged as RPM.https://gitee.com/Victeo/osmind-aiserviceMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844188-20251110-0723osmind-ai-1.0.0-1.oe2403sp1.src.rpmosmind-aisrc21ccda022ff6cd343b30738755c9b3e3b94945db7de4c87de2660aa5f2fe6348OSMind AI ServiceOSMind AI Service packaged as RPM.https://gitee.com/Victeo/osmind-aiserviceMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00844188-20251110-0723python-Authlibsrc9a8598bdc8bd5694235a715fba93e94ededa9663c90bdec66d3786ae375acfc2The ultimate Python library in building OAuth and OpenID Connect servers and clients.The ultimate Python library in building OAuth and OpenID Connect servers.
JWS, JWK, JWA, JWT are included.https://authlib.org/BSD 3-Clause LicenseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843884-20251015-0259python-Authlib-helpnoarch72dc62d18ebb9931dea6f6a182d473d00be7804ab0de324acb5ab0209c39ef1aDevelopment documents and examples for AuthlibThe ultimate Python library in building OAuth and OpenID Connect servers.
JWS, JWK, JWA, JWT are included.https://authlib.org/BSD 3-Clause LicenseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843884-20251015-0259python-Authlib-1.2.0-2.oe2403sp1.src.rpmpython-billiardsrcc1b2724b62b9cf29593ca5152b227e44423bd2ff49974009674540b4ba83b053Python multiprocessing fork with improvements and bugfixesMultiprocessing Pool Extensionshttps://github.com/celery/billiardBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843884-20251015-0259python-billiard-helpnoarch62d1ee2fbe2ac366d4506a2bc924b4952df40a1ffdddb0c860e5c61b5645676aDevelopment documents and examples for billiardMultiprocessing Pool Extensionshttps://github.com/celery/billiardBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843884-20251015-0259python-billiard-4.2.1-1.oe2403sp1.src.rpmpython-celerysrc23f9318099c07b35429b44664b6711bb87c08da0e4038c9507c37b105c18195dDistributed Task Queue.Distributed Task Queue.https://github.com/celery/celeryBSD-3-Clause and CC-BY-SA-4.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843879-20251015-0222python-celery-helpnoarchdf6d103220e8872502474d8fc8aa9898521dd79fc4a86efceae9ddd347a459c1Development documents and examples for celeryDistributed Task Queue.https://github.com/celery/celeryBSD-3-Clause and CC-BY-SA-4.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843879-20251015-0222python-celery-5.3.4-1.oe2403sp1.src.rpmpython-click-didyoumeansrccc8a0ef593b55aa818bbd7ce6b3dbb52bb9c61a91a00aa606ee79d48d6e68b6aEnables git-like *did-you-mean* feature in clickEnables git-like *did-you-mean* feature in clickhttps://github.com/click-contrib/click-didyoumeanMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843888-20251015-0556python-click-didyoumean-helpnoarchf20ea401c2c944f55b3c5196520ae339c95cc3c5ec5b6348332d564bf8c10107Enables git-like *did-you-mean* feature in clickEnables git-like *did-you-mean* feature in clickhttps://github.com/click-contrib/click-didyoumeanMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843888-20251015-0556python-click-didyoumean-0.3.1-1.oe2403sp1.src.rpmpython-click-pluginssrce099af1b009d9eae45b9dc4d416d0661bb0c4389ab5c368c10161bd0f6d4a4a2An extension module for click to enable registering CLI commands via setuptools entry-points.An extension module for click to enable registering CLI commands via setuptools entry-points.https://github.com/click-contrib/click-pluginsBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843886-20251015-0555python-click-plugins-helpnoarch70f9887ecf9f680b44ac5fd13ce3ae2907b5787dcdaceee5c056ddf6c15b279cDevelopment documents and examples for click-pluginsAn extension module for click to enable registering CLI commands via setuptools entry-points.https://github.com/click-contrib/click-pluginsBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843886-20251015-0555python-click-plugins-1.1.1-1.oe2403sp1.src.rpmpython-click-replsrc07efe275fc185261009cd2db56a960f82ac13ce1b986fccfb627e384f801b9cfREPL plugin for ClickREPL plugin for Clickhttps://github.com/untitaker/click-replMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843886-20251015-0555python-click-repl-helpnoarch09dd7793fa8ba377164a68cc951afd7802c79d4b2d0db065e6693134bb0ab81dDevelopment documents and examples for click-replREPL plugin for Clickhttps://github.com/untitaker/click-replMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843886-20251015-0555python-click-repl-0.3.0-1.oe2403sp1.src.rpmpython-pandas-flavorsrce6b9d9a021070e9c73df63a75c214cfc8697c2a8cc57cbabd8ce824f741a181aThe easy way to write your own Pandas flavor.
**The easy way to write your own flavor of Pandas**
Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
Pandas-flavor extends Pandas' extension API by:
1. adding support for registering methods as well.
2. making each of these functions backwards compatible with older versions of Pandas.
***What does this mean?***
It is now simpler to add custom functionality to Pandas DataFrames and Series.
Import this package. Write a simple python function. Register the function using one of the following decorators.
***Why?***
Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
accessor that provides plotting functionality.
Add an accessor by registering the function with the following decorator
and passing the decorator an accessor name.
```python
import pandas_flavor as pf
@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):
def __init__(self, data):
self._data = data
def row_by_value(self, col, value):
"""Slice out row from DataFrame by a value."""
return self._data[self._data[col] == value].squeeze()
```
Every dataframe now has this accessor as an attribute.
```python
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.my_flavor.row_by_value('x', 10)
```
To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
Using this package, you can attach functions directly to Pandas objects. No
intermediate accessor is needed.
```python
import pandas_flavor as pf
@pf.register_dataframe_method
def row_by_value(df, col, value):
"""Slice out row from DataFrame by a value."""
return df[df[col] == value].squeeze()
```
```python
import pandas as pd
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.row_by_value('x', 10)
```
The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced
to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz)
- **register_dataframe_method**: register a method directly with a pandas DataFrame.
- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
- **register_series_method**: register a methods directly with a pandas Series.
- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
You can install using **pip**:
```
pip install pandas_flavor
```
or conda (thanks @ericmjl)!
```
conda install -c conda-forge pandas-flavor
```
Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
If you have a feature request, please open an issue or submit a PR!
Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
**So how does method registration work?**
When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
1. inheriting the docstring of your function
2. overriding the `__call__` method to call your function.https://github.com/Zsailer/pandas_flavorMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843862-20251014-0719python-pandas-flavor-helpnoarch9563b81644b85beee00638c8d1aa2b1b894d64f8b2edbe5bc0d115217e489e7bDevelopment documents and examples for pandas-flavor
**The easy way to write your own flavor of Pandas**
Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
Pandas-flavor extends Pandas' extension API by:
1. adding support for registering methods as well.
2. making each of these functions backwards compatible with older versions of Pandas.
***What does this mean?***
It is now simpler to add custom functionality to Pandas DataFrames and Series.
Import this package. Write a simple python function. Register the function using one of the following decorators.
***Why?***
Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
accessor that provides plotting functionality.
Add an accessor by registering the function with the following decorator
and passing the decorator an accessor name.
```python
import pandas_flavor as pf
@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):
def __init__(self, data):
self._data = data
def row_by_value(self, col, value):
"""Slice out row from DataFrame by a value."""
return self._data[self._data[col] == value].squeeze()
```
Every dataframe now has this accessor as an attribute.
```python
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.my_flavor.row_by_value('x', 10)
```
To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
Using this package, you can attach functions directly to Pandas objects. No
intermediate accessor is needed.
```python
import pandas_flavor as pf
@pf.register_dataframe_method
def row_by_value(df, col, value):
"""Slice out row from DataFrame by a value."""
return df[df[col] == value].squeeze()
```
```python
import pandas as pd
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.row_by_value('x', 10)
```
The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced
to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz)
- **register_dataframe_method**: register a method directly with a pandas DataFrame.
- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
- **register_series_method**: register a methods directly with a pandas Series.
- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
You can install using **pip**:
```
pip install pandas_flavor
```
or conda (thanks @ericmjl)!
```
conda install -c conda-forge pandas-flavor
```
Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
If you have a feature request, please open an issue or submit a PR!
Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
**So how does method registration work?**
When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
1. inheriting the docstring of your function
2. overriding the `__call__` method to call your function.https://github.com/Zsailer/pandas_flavorMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843862-20251014-0719python-pandas-flavor-0.6.0-1.oe2403sp1.src.rpmpython-pingouinsrc3b05bb86c781c27aaa8c7c400f103bd55ed55708519fd49f603d4ad03c5fdd3dPingouin: statistical package for Python**Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_.
1. ANOVAs: N-ways, repeated measures, mixed, ancova
2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations
3. Robust, partial, distance and repeated measures correlations
4. Linear/logistic regression and mediation analysis
5. Bayes Factors
6. Multivariate tests
7. Reliability and consistency
8. Effect sizes and power analysis
9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient
10. Circular statistics
11. Chi-squared tests
12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation...
Pingouin is designed for users who want **simple yet exhaustive statistical functions**.
For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast,
the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.https://pingouin-stats.org/index.htmlGPL-3.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843880-20251015-0223python-pingouin-helpnoarch17ebf6719b116939c2265385f6d87635567411989f72fa20abc6aed1286ce9f5Development documents and examples for pingouin**Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_.
1. ANOVAs: N-ways, repeated measures, mixed, ancova
2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations
3. Robust, partial, distance and repeated measures correlations
4. Linear/logistic regression and mediation analysis
5. Bayes Factors
6. Multivariate tests
7. Reliability and consistency
8. Effect sizes and power analysis
9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient
10. Circular statistics
11. Chi-squared tests
12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation...
Pingouin is designed for users who want **simple yet exhaustive statistical functions**.
For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast,
the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.https://pingouin-stats.org/index.htmlGPL-3.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843880-20251015-0223python-pingouin-0.5.5-1.oe2403sp1.src.rpmpython-seabornsrcd7532294a81b54fc26a2bbf549c5afe6bd0b4cc0db41d47409d51c53f958422eStatistical data visualizationhttps://pypi.org/project/seaborn/NoneopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843872-20251015-0219python-seaborn-helpnoarch342dd969b09daafc23c3dad595938ca92f1d18f3904abeb0e7c9a36f6eaa28daDevelopment documents and examples for seabornhttps://pypi.org/project/seaborn/NoneopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843872-20251015-0219python-seaborn-0.13.2-1.oe2403sp1.src.rpmpython3-Authlibnoarch783059508a3877faed20d8b713879ea3571081b34791385f9f4576155820754cThe ultimate Python library in building OAuth and OpenID Connect servers and clients.The ultimate Python library in building OAuth and OpenID Connect servers.
JWS, JWK, JWA, JWT are included.https://authlib.org/BSD 3-Clause LicenseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843884-20251015-0259python-Authlib-1.2.0-2.oe2403sp1.src.rpmpython3-billiardnoarch1ab64357cb8229f49ec6f3cb5f568409ac1d162442287e35c7994b57ecc958cbPython multiprocessing fork with improvements and bugfixesMultiprocessing Pool Extensionshttps://github.com/celery/billiardBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843884-20251015-0259python-billiard-4.2.1-1.oe2403sp1.src.rpmpython3-celerynoarch675e523af1a5557d20407610605155540cd093ef2fa96e7a42d4f3cf92135144Distributed Task Queue.Distributed Task Queue.https://github.com/celery/celeryBSD-3-Clause and CC-BY-SA-4.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843879-20251015-0222python-celery-5.3.4-1.oe2403sp1.src.rpm/usr/bin/celery/usr/lib/python3.11/site-packages/celery/bin/__init__.py/usr/lib/python3.11/site-packages/celery/bin/__pycache__/__init__.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/__init__.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/amqp.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/amqp.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/base.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/base.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/beat.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/beat.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/call.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/call.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/celery.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/celery.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/control.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/control.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/events.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/events.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/graph.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/graph.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/list.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/list.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/logtool.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/logtool.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/migrate.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/migrate.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/multi.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/multi.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/purge.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/purge.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/result.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/result.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/shell.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/shell.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/upgrade.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/upgrade.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/worker.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/worker.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/amqp.py/usr/lib/python3.11/site-packages/celery/bin/base.py/usr/lib/python3.11/site-packages/celery/bin/beat.py/usr/lib/python3.11/site-packages/celery/bin/call.py/usr/lib/python3.11/site-packages/celery/bin/celery.py/usr/lib/python3.11/site-packages/celery/bin/control.py/usr/lib/python3.11/site-packages/celery/bin/events.py/usr/lib/python3.11/site-packages/celery/bin/graph.py/usr/lib/python3.11/site-packages/celery/bin/list.py/usr/lib/python3.11/site-packages/celery/bin/logtool.py/usr/lib/python3.11/site-packages/celery/bin/migrate.py/usr/lib/python3.11/site-packages/celery/bin/multi.py/usr/lib/python3.11/site-packages/celery/bin/purge.py/usr/lib/python3.11/site-packages/celery/bin/result.py/usr/lib/python3.11/site-packages/celery/bin/shell.py/usr/lib/python3.11/site-packages/celery/bin/upgrade.py/usr/lib/python3.11/site-packages/celery/bin/worker.pypython3-click-didyoumeannoarch1711bbb0e9c62296d98c43c5c51fbe7fd7aea6a56c29debdd8bef832f6e1fbe8Enables git-like *did-you-mean* feature in clickEnables git-like *did-you-mean* feature in clickhttps://github.com/click-contrib/click-didyoumeanMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843888-20251015-0556python-click-didyoumean-0.3.1-1.oe2403sp1.src.rpmpython3-click-pluginsnoarchf7282942a81fbebce573a096859730f4218c97eecab4f39ac59066852ad62633An extension module for click to enable registering CLI commands via setuptools entry-points.An extension module for click to enable registering CLI commands via setuptools entry-points.https://github.com/click-contrib/click-pluginsBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843886-20251015-0555python-click-plugins-1.1.1-1.oe2403sp1.src.rpmpython3-click-replnoarchb110c8953e1dd1d7c1f0b3ac2a018d972ad6d724b534581ed8edd16ac8e76767REPL plugin for ClickREPL plugin for Clickhttps://github.com/untitaker/click-replMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843886-20251015-0555python-click-repl-0.3.0-1.oe2403sp1.src.rpmpython3-gala-anteateraarch6490b116448c26e05535242bceaeec082cdb186a20cb27ec45c69275d86ba852c1Python3 package of gala-anteaterPython3 package of gala-anteaterhttps://gitee.com/openeuler/gala-anteaterMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843872-20251015-0219gala-anteater-3.0.1-1.oe2403sp1.src.rpmpython3-gala-inferenceaarch640afd16d7f76c44c42019656016529099a565e0e3c049b4744ef69119544826d9Python3 package of gala-inferencePython3 package of gala-inferencehttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843868-20251015-0217gala-spider-2.0.1-1.oe2403sp1.src.rpmpython3-gala-spideraarch6400e7a3f07fb21b9efd86c766e68aee252da574465d04828b7f71b50263135cb6Python3 package of gala-spiderPython3 package of gala-spiderhttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843868-20251015-0217gala-spider-2.0.1-1.oe2403sp1.src.rpmpython3-pandas-flavornoarch157d0ac911c79c905bdb3d3bd7e22bc347076d4e32cbad5a345afb8393eb1408The easy way to write your own Pandas flavor.
**The easy way to write your own flavor of Pandas**
Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
Pandas-flavor extends Pandas' extension API by:
1. adding support for registering methods as well.
2. making each of these functions backwards compatible with older versions of Pandas.
***What does this mean?***
It is now simpler to add custom functionality to Pandas DataFrames and Series.
Import this package. Write a simple python function. Register the function using one of the following decorators.
***Why?***
Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
accessor that provides plotting functionality.
Add an accessor by registering the function with the following decorator
and passing the decorator an accessor name.
```python
import pandas_flavor as pf
@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):
def __init__(self, data):
self._data = data
def row_by_value(self, col, value):
"""Slice out row from DataFrame by a value."""
return self._data[self._data[col] == value].squeeze()
```
Every dataframe now has this accessor as an attribute.
```python
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.my_flavor.row_by_value('x', 10)
```
To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
Using this package, you can attach functions directly to Pandas objects. No
intermediate accessor is needed.
```python
import pandas_flavor as pf
@pf.register_dataframe_method
def row_by_value(df, col, value):
"""Slice out row from DataFrame by a value."""
return df[df[col] == value].squeeze()
```
```python
import pandas as pd
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.row_by_value('x', 10)
```
The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced
to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz)
- **register_dataframe_method**: register a method directly with a pandas DataFrame.
- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
- **register_series_method**: register a methods directly with a pandas Series.
- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
You can install using **pip**:
```
pip install pandas_flavor
```
or conda (thanks @ericmjl)!
```
conda install -c conda-forge pandas-flavor
```
Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
If you have a feature request, please open an issue or submit a PR!
Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
**So how does method registration work?**
When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
1. inheriting the docstring of your function
2. overriding the `__call__` method to call your function.https://github.com/Zsailer/pandas_flavorMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843862-20251014-0719python-pandas-flavor-0.6.0-1.oe2403sp1.src.rpmpython3-pingouinnoarchb91dc46383a3475a57f4c3e56fe84b05118c1ec4799ca237211482cd9b95f82fPingouin: statistical package for Python**Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_.
1. ANOVAs: N-ways, repeated measures, mixed, ancova
2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations
3. Robust, partial, distance and repeated measures correlations
4. Linear/logistic regression and mediation analysis
5. Bayes Factors
6. Multivariate tests
7. Reliability and consistency
8. Effect sizes and power analysis
9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient
10. Circular statistics
11. Chi-squared tests
12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation...
Pingouin is designed for users who want **simple yet exhaustive statistical functions**.
For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast,
the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.https://pingouin-stats.org/index.htmlGPL-3.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843880-20251015-0223python-pingouin-0.5.5-1.oe2403sp1.src.rpmpython3-seabornnoarche71f7855a63d05534ab6e134c700c053fc57331184be54ee26837215fd5dda2eStatistical data visualizationhttps://pypi.org/project/seaborn/NoneopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843872-20251015-0219python-seaborn-0.13.2-1.oe2403sp1.src.rpmzeus-distributeaarch64e59a930e0437cc17666ca6d69858c7dee8d09f4d43cb2f5074fb9f4876fc09b1A distributed service of aops.A distributed service of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843883-20251015-0259aops-zeus-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/conf.d/zeus-distribute.ymlzeus-host-informationaarch649237418d94c2b7c3ba33b0ace62afbf3a766e5ebfa722eb9b775fee791657834A host manager service which is the foundation of aops.A host manager service which is the foundation of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843883-20251015-0259aops-zeus-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/conf.d/zeus-host-information.ymlzeus-operationaarch6436726a11b120f2f382648e0452e56fc72d04bfdd974bf5bbff6eda63f0e1f104A operation manager service which is the foundation of aops.A operation manager of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843883-20251015-0259aops-zeus-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/conf.d/zeus-operation.ymlzeus-user-accessaarch64a9b53889de57e9395843e3a3f6f13905f329e2df600141d1dc8f3b9b9e6f1846A user manager service which is the foundation of aops.A user manager service which is the foundation of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-aarch64-normal-prod-00843883-20251015-0259aops-zeus-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/conf.d/zeus-user-access.yml