aops-apollo-toolx86_64a49c3f009cbf046905ade40df537e16534cdc2c6da328683d1ba5c6a0ee32d85Small tools for aops-apollo, e.g. updateinfo.xml generatersmalltools for aops-apollo, e.g.updateinfo.xml generaterhttps://gitee.com/openeuler/aops-apolloMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140aops-apollo-v2.2.0-1.oe2403sp1.src.rpm/etc/aops_apollo_tool/updateinfo_config.ini/usr/bin/gen-updateinfoaops-apollosrc265bc4bf14813c5f3d7006abb2ce60469cd1cabe9f7874079c636a968c803f40Cve management service, monitor machine vulnerabilities and provide fix functions.Cve management service, monitor machine vulnerabilities and provide fix functions.https://gitee.com/openeuler/aops-apolloMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140aops-apollox86_648ca3d47a793129e5664ac699ab06d52a9da7cc6f169b4d247d5539a61fa809aeCve management service, monitor machine vulnerabilities and provide fix functions.Cve management service, monitor machine vulnerabilities and provide fix functions.https://gitee.com/openeuler/aops-apolloMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140aops-apollo-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/conf.d/aops-apollo.ymlaops-ceressrc059d3adf256ed56bdccd8753af1cd51c5c51ad421437bebd8e43c184971951d1An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.https://gitee.com/openeuler/aops-ceresMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843865-20251015-02150aops-ceresx86_64b470addfb445e71bc38c7d807d6c030753402391d54baf4d21c13b989c8a4620An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.https://gitee.com/openeuler/aops-ceresMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843865-20251015-02150aops-ceres-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/ceres.conf/usr/bin/aops-ceresaops-hermessrc8497a2e77834353c9c33497947667d63e4ac30c39741d0141e71c6d53f812169Web for an intelligent diagnose frameWeb for an intelligent diagnose framehttps://gitee.com/openeuler/aops-hermesMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844274-20251125-09581aops-hermesx86_640da1c240663321d00cf0e328041f04557019c2c1259dcfe7359ba61f03843366Web for an intelligent diagnose frameWeb for an intelligent diagnose framehttps://gitee.com/openeuler/aops-hermesMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844274-20251125-09581aops-hermes-v2.2.0-1.oe2403sp1.src.rpmaops-mcpsrcf707c78a1c901cdd0031b2da13ee8e45c3d9e35f74a124cb0309fc5149cdf47fAops MCP ServiceAops MCP Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844187-20251110-07223aops-mcpx86_64c775aaa559cce76e21362f4f5adc2ed64201e8ae7bb1a8a56fbb23c16e1a1b9cAops MCP ServiceAops MCP Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844187-20251110-07223aops-mcp-1.0.0-1.oe2403sp1.src.rpm/opt/aops-mcp/venv/bin/Activate.ps1/opt/aops-mcp/venv/bin/activate/opt/aops-mcp/venv/bin/activate.csh/opt/aops-mcp/venv/bin/activate.fish/opt/aops-mcp/venv/bin/aops-mcp/opt/aops-mcp/venv/bin/dotenv/opt/aops-mcp/venv/bin/fastmcp/opt/aops-mcp/venv/bin/httpx/opt/aops-mcp/venv/bin/jsonschema/opt/aops-mcp/venv/bin/markdown-it/opt/aops-mcp/venv/bin/mcp/opt/aops-mcp/venv/bin/pip/opt/aops-mcp/venv/bin/pip3/opt/aops-mcp/venv/bin/pip3.11/opt/aops-mcp/venv/bin/pygmentize/opt/aops-mcp/venv/bin/python/opt/aops-mcp/venv/bin/python3/opt/aops-mcp/venv/bin/python3.11/opt/aops-mcp/venv/bin/typer/opt/aops-mcp/venv/bin/uvicorn/opt/aops-mcp/venv/bin/websockets/usr/bin/aops-mcpaops-toolsx86_6408a0e04090a602cd3107e09a9aaf7ace7b7b86920c7dd2e30b123929146da917aops scriptstools for aops, it's about aops deployhttps://gitee.com/openeuler/aops-vulcanusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843877-20251015-02211aops-vulcanus-v2.2.0-1.oe2403sp1.src.rpmaops-vulcanussrc40ce0bdfaf00e97a6f1b13d18c016f30173916b05a292d16d65273e7f403ed9eA basic tool libraries of aops, including logging, configure and response, etc.A basic tool libraries of aops, including logging, configure and response, etc.https://gitee.com/openeuler/aops-vulcanusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843877-20251015-02211aops-vulcanusx86_648a35ad928f7857a82e655b208aaca1a9df98ef4213dc97146c11d4b1809b2e14A basic tool libraries of aops, including logging, configure and response, etc.A basic tool libraries of aops, including logging, configure and response, etc.https://gitee.com/openeuler/aops-vulcanusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843877-20251015-02211aops-vulcanus-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/aops-config.ymlaops-zeussrc2aaf7c0b9a95545db758ce97ce83508157ae3caf7c2f39cc7cb6989073f50ecdA service which is the foundation of aops.Provide one-click aops deployment, service start and stop, hot loading of
configuration files, and database initialization.
Provides: aops-zeushttps://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843873-20251015-02193aops-zeusx86_64426f81cbf548b71bc3b05a26129fdf3272f0c2ae501a9c2e2e0012f04577b851A service which is the foundation of aops.Provide one-click aops deployment, service start and stop, hot loading of
configuration files, and database initialization.
Provides: aops-zeushttps://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843873-20251015-02193aops-zeus-v2.2.0-1.oe2403sp1.src.rpm/usr/bin/aops-cliasync-taskx86_648e131438df25e61de316a7087247ff828f6f1af046e61d06e50be86ff14e4060A async task of aops.A async task of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843873-20251015-02193aops-zeus-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/crontab.yml/etc/aops/sync-conf.d/instance.properties/etc/aops/sync-conf.d/rdb/cve_fix_task.yml/etc/aops/sync-conf.d/rdb/cve_host_match.yml/etc/aops/sync-conf.d/rdb/cve_rollback_task.yml/etc/aops/sync-conf.d/rdb/domain.yml/etc/aops/sync-conf.d/rdb/domain_conf_info.yml/etc/aops/sync-conf.d/rdb/domain_host.yml/etc/aops/sync-conf.d/rdb/host.yml/etc/aops/sync-conf.d/rdb/host_conf_sync_status.yml/etc/aops/sync-conf.d/rdb/host_group.yml/etc/aops/sync-conf.d/rdb/hotpatch_remove_task.yml/etc/aops/sync-conf.d/rdb/repo.yml/etc/aops/sync-conf.d/rdb/task_host_repo.yml/etc/aops/sync-conf.d/rdb/vul_task.yml/usr/bin/async-taskauthHubsrcc2006874053ac0df495dac9e71ea69b5de5bf5d919578d0364719a90adc97a49Authentication authority based on oauth2authhub is a specialized authentication center built on OAuth2, providing robust authentication and authorization capabilities for secure user access control in your applications..https://gitee.com/openeuler/authHubMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201authHubx86_6419a89a3a6d5b9f2fbe3f454731c4e3af5cf765eb054202105bb5af6da5514901Authentication authority based on oauth2authhub is a specialized authentication center built on OAuth2, providing robust authentication and authorization capabilities for secure user access control in your applications..https://gitee.com/openeuler/authHubMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201authHub-v2.2.0-3.oe2403sp1.src.rpm/etc/aops/conf.d/authhub.yml/etc/nginx/conf.d/authhub.nginx.confauthhub-webx86_64737a23af9b2dbb53ca37458a2415afaa628fe09b838e2e4843405655db1cab57Authentication authority web based on oauth2Authentication authority web based on oauth2https://gitee.com/openeuler/authHubMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201authHub-v2.2.0-3.oe2403sp1.src.rpmdnf-hotpatch-pluginx86_64418e830bbd1f6d916206602df6b2924add1343e24ef70a150b12d390ab1a2472dnf hotpatch plugindnf hotpatch plugin, it's about hotpatch query and fixhttps://gitee.com/openeuler/aops-ceresMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843865-20251015-02150aops-ceres-v2.2.0-1.oe2403sp1.src.rpmgala-anteatersrcd5f03316b97e2458e7a79c3d0bf830fe8cc6577ba4334ddc4ade747f64f79e02A time-series anomaly detection platform for operating system.Abnormal detection module for A-Ops projecthttps://gitee.com/openeuler/gala-anteaterMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164gala-anteaterx86_64d8423be9d8c12b7d81be1fa3c6d83c923df1c9095de9d3086b8b998fbab68e0eA time-series anomaly detection platform for operating system.Abnormal detection module for A-Ops projecthttps://gitee.com/openeuler/gala-anteaterMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164gala-anteater-3.0.1-1.oe2403sp1.src.rpm/etc/gala-anteater/config/gala-anteater.yaml/etc/gala-anteater/config/log.settings.ini/etc/gala-anteater/config/metricinfo.json/etc/gala-anteater/entity/app_entity.json/etc/gala-anteater/entity/pod_entity.json/etc/gala-anteater/entity/vm_entity.json/etc/gala-anteater/module/app_sli_rtt.job.json/etc/gala-anteater/module/container_disruption.job.json/etc/gala-anteater/module/disk_throughput.job.json/etc/gala-anteater/module/jvm_oom.job.json/etc/gala-anteater/module/proc_io_latency.job.json/etc/gala-anteater/module/rca.job.json/etc/gala-anteater/module/slow_node_detection.job.json/etc/gala-anteater/module/sys_io_latency.job.json/etc/gala-anteater/module/sys_nic_loss.job.json/etc/gala-anteater/module/sys_tcp_establish.job.json/etc/gala-anteater/module/sys_tcp_transmission_latency.job.json/etc/gala-anteater/module/usad_model.job.json/usr/bin/gala-anteatergala-gophersrcbb9b14c1c309726af0e06be5abba33b52de53f2b8dc026379fb4ed70c0ffb565Intelligent ops toolkit for openEulergala-gopher is a low-overhead eBPF-based probes frameworkhttps://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844165-20251107-09442gala-gopherx86_6484f51f9c6efaea3b1f5e4e35bd2802815c4b78c89d3e82629efde29a4023891fIntelligent ops toolkit for openEulergala-gopher is a low-overhead eBPF-based probes frameworkhttps://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844165-20251107-09442gala-gopher-2.0.3-2.oe2403sp1.src.rpm/etc/gala-gopher/extend_probes/cadvisor_probe.conf/etc/gala-gopher/extend_probes/pg_stat_probe.conf/etc/gala-gopher/gala-gopher-custom.json/etc/gala-gopher/gala-gopher.conf/etc/gala-gopher/probes.init/usr/bin/gala-gopher/usr/bin/gopher-ctlgala-gopher-debuginfox86_64ba8b6434a7015650264a7b5c1995dfe1b810eb8eeae998fbae0d95b05a11bb17Debug information for package gala-gopherThis package provides debug information for package gala-gopher.
Debug information is useful when developing applications that use this
package or when debugging this package.https://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Development/Debugeur-prod-workerlocal-x86-64-normal-prod-00844165-20251107-09442gala-gopher-2.0.3-2.oe2403sp1.src.rpm/usr/lib/debug/usr/bin/gala-gopher-2.0.3-2.oe2403sp1.x86_64.debug/usr/lib/debug/usr/bin/gopher-ctl-2.0.3-2.oe2403sp1.x86_64.debuggala-gopher-debugsourcex86_64c89268e12596494b51fee2b97a21405213a10723a27b031fb4b6cbf7eb6e1c7cDebug sources for package gala-gopherThis package provides debug sources for package gala-gopher.
Debug sources are useful when developing applications that use this
package or when debugging this package.https://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Development/Debugeur-prod-workerlocal-x86-64-normal-prod-00844165-20251107-09442gala-gopher-2.0.3-2.oe2403sp1.src.rpmgala-inferencex86_64c1ca3e9fcfcebc227997aa6f420b52679a8232fd6f46bfcc96a6d18223e55c9dCause inference module for gala-ops projectCause inference module for A-Ops projecthttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140gala-spider-2.0.1-1.oe2403sp1.src.rpm/etc/gala-inference/cause-keyword.yaml/etc/gala-inference/ext-observe-meta.yaml/etc/gala-inference/gala-inference.yaml/etc/gala-inference/infer-rule.yaml/usr/bin/gala-inferencegala-opsx86_649f43df46476171e9c21e31a6f69ff1431d39e4bd6eebae23a0786cf6d5b98776gala-anteater/spider/inference installation packageThis package requires gala-anteater/spider/inference, allowing users to install them all at oncehttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140gala-spider-2.0.1-1.oe2403sp1.src.rpmgala-spidersrc4645cb6146df92b8b3afa1e1415455f66e0419a2f395b159bf1cb22eb22229c6OS topological graph storage service and cause inference service for gala-ops projectOS topological graph storage service for gala-ops projecthttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140gala-spiderx86_64882dc7b877c99ab45fbb7e353e2a95d710004e210804416b71f88567d54dafb8OS topological graph storage service and cause inference service for gala-ops projectOS topological graph storage service for gala-ops projecthttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140gala-spider-2.0.1-1.oe2403sp1.src.rpm/etc/gala-spider/ext-observe-meta.yaml/etc/gala-spider/gala-spider.yaml/etc/gala-spider/topo-relation.yaml/usr/bin/spider-storageloggptsrc278b1e102c30316b352f46ad61a95cb5de5beba91324ee45ad023a2d9932cd7cloggpt Serviceloggpt Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844109-20251105-06212loggptx86_647949b72c02ab0b3c4e82fcd5175a9138db173f92ad03ee9aec927b1acce5d030loggpt Serviceloggpt Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844109-20251105-06212loggpt-1.0.0-1.oe2403sp1.src.rpm/usr/bin/loggptosmind-aisrcb8733bfb7cf35101cda6edfdeff6c401aa10f66aaa7f94f028742b60e99ddc83OSMind AI ServiceOSMind AI Service packaged as RPM.https://gitee.com/Victeo/osmind-aiserviceMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844181-20251110-05401osmind-aix86_64b414e7d36759278c3024b341e6ff87fb9893a0946d3ebb03499875eaec4baf4aOSMind AI ServiceOSMind AI Service packaged as RPM.https://gitee.com/Victeo/osmind-aiserviceMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844181-20251110-05401osmind-ai-1.0.0-1.oe2403sp1.src.rpmpython-Authlibsrc91ad41b98b65ceeb53f5aee360ae8cbc37717d17f62c4a2fc3a1d3f6746b9a7bThe ultimate Python library in building OAuth and OpenID Connect servers and clients.The ultimate Python library in building OAuth and OpenID Connect servers.
JWS, JWK, JWA, JWT are included.https://authlib.org/BSD 3-Clause LicenseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843889-20251015-05570python-Authlib-helpnoarch6e526d6334e34a864c944a4c83a9ac67ef7f5defadc8a7d0c918a67d62bbaaccDevelopment documents and examples for AuthlibThe ultimate Python library in building OAuth and OpenID Connect servers.
JWS, JWK, JWA, JWT are included.https://authlib.org/BSD 3-Clause LicenseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843889-20251015-05570python-Authlib-1.2.0-2.oe2403sp1.src.rpmpython-billiardsrcf165912b4aa0351a90003cd010803574ace13c6cd52067c699996ca40d187a30Python multiprocessing fork with improvements and bugfixesMultiprocessing Pool Extensionshttps://github.com/celery/billiardBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843885-20251015-05552python-billiard-helpnoarch96a97a59e2fdd63d4083cec6a4be8addf7aee9dfee8062cd36f9c410c4f359d2Development documents and examples for billiardMultiprocessing Pool Extensionshttps://github.com/celery/billiardBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843885-20251015-05552python-billiard-4.2.1-1.oe2403sp1.src.rpmpython-celerysrcb25be87ef6331a0a16b1ef9d589bdeb320bc22e65d5d24ffeb28cbf2a14352dbDistributed Task Queue.Distributed Task Queue.https://github.com/celery/celeryBSD-3-Clause and CC-BY-SA-4.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201python-celery-helpnoarchffb7a600bcab1651192fae5584a66dd00b2edab07c673cfe26ed06d88ef7fed2Development documents and examples for celeryDistributed Task Queue.https://github.com/celery/celeryBSD-3-Clause and CC-BY-SA-4.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201python-celery-5.3.4-1.oe2403sp1.src.rpmpython-click-didyoumeansrcfcdc832ee9862d05b8e64cb2c0bafafff689dfed728068b6eada53d4f5776801Enables git-like *did-you-mean* feature in clickEnables git-like *did-you-mean* feature in clickhttps://github.com/click-contrib/click-didyoumeanMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843885-20251015-05552python-click-didyoumean-helpnoarchf04c05b7bfa032ee92748e64a46aa18735ce64068ef66197f08af3faa1e576a6Enables git-like *did-you-mean* feature in clickEnables git-like *did-you-mean* feature in clickhttps://github.com/click-contrib/click-didyoumeanMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843885-20251015-05552python-click-didyoumean-0.3.1-1.oe2403sp1.src.rpmpython-click-pluginssrce2ca673a671c30a9d232ac7b4ba7965b6e3861c91da710f08b047e6710a7c158An extension module for click to enable registering CLI commands via setuptools entry-points.An extension module for click to enable registering CLI commands via setuptools entry-points.https://github.com/click-contrib/click-pluginsBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843887-20251015-05561python-click-plugins-helpnoarcha07f752d512c6f0c1e7e047f43efc15d48f50e6c57d5709c5ba74331e3c7b34aDevelopment documents and examples for click-pluginsAn extension module for click to enable registering CLI commands via setuptools entry-points.https://github.com/click-contrib/click-pluginsBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843887-20251015-05561python-click-plugins-1.1.1-1.oe2403sp1.src.rpmpython-click-replsrca419317ca4cf5888a33eac52290c9e22de0324834efe92d45aea4136dd620588REPL plugin for ClickREPL plugin for Clickhttps://github.com/untitaker/click-replMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843882-20251015-02534python-click-repl-helpnoarchb8d64884d3ba0217c80b00da34933adc091f74ab4e3b7d664a665d3c2e008205Development documents and examples for click-replREPL plugin for Clickhttps://github.com/untitaker/click-replMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843882-20251015-02534python-click-repl-0.3.0-1.oe2403sp1.src.rpmpython-pandas-flavorsrcc7bff3152f980a83db6f6e0cc176d473f59c21b1a1dd310338432cb96985e78cThe easy way to write your own Pandas flavor.
**The easy way to write your own flavor of Pandas**
Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
Pandas-flavor extends Pandas' extension API by:
1. adding support for registering methods as well.
2. making each of these functions backwards compatible with older versions of Pandas.
***What does this mean?***
It is now simpler to add custom functionality to Pandas DataFrames and Series.
Import this package. Write a simple python function. Register the function using one of the following decorators.
***Why?***
Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
accessor that provides plotting functionality.
Add an accessor by registering the function with the following decorator
and passing the decorator an accessor name.
```python
import pandas_flavor as pf
@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):
def __init__(self, data):
self._data = data
def row_by_value(self, col, value):
"""Slice out row from DataFrame by a value."""
return self._data[self._data[col] == value].squeeze()
```
Every dataframe now has this accessor as an attribute.
```python
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.my_flavor.row_by_value('x', 10)
```
To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
Using this package, you can attach functions directly to Pandas objects. No
intermediate accessor is needed.
```python
import pandas_flavor as pf
@pf.register_dataframe_method
def row_by_value(df, col, value):
"""Slice out row from DataFrame by a value."""
return df[df[col] == value].squeeze()
```
```python
import pandas as pd
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.row_by_value('x', 10)
```
The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced
to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz)
- **register_dataframe_method**: register a method directly with a pandas DataFrame.
- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
- **register_series_method**: register a methods directly with a pandas Series.
- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
You can install using **pip**:
```
pip install pandas_flavor
```
or conda (thanks @ericmjl)!
```
conda install -c conda-forge pandas-flavor
```
Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
If you have a feature request, please open an issue or submit a PR!
Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
**So how does method registration work?**
When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
1. inheriting the docstring of your function
2. overriding the `__call__` method to call your function.https://github.com/Zsailer/pandas_flavorMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164python-pandas-flavor-helpnoarcha8366c72d460068ab6e76a9f78eadf7344fcdf1cfb29a0ce1ff6dfbbeec9dfa4Development documents and examples for pandas-flavor
**The easy way to write your own flavor of Pandas**
Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
Pandas-flavor extends Pandas' extension API by:
1. adding support for registering methods as well.
2. making each of these functions backwards compatible with older versions of Pandas.
***What does this mean?***
It is now simpler to add custom functionality to Pandas DataFrames and Series.
Import this package. Write a simple python function. Register the function using one of the following decorators.
***Why?***
Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
accessor that provides plotting functionality.
Add an accessor by registering the function with the following decorator
and passing the decorator an accessor name.
```python
import pandas_flavor as pf
@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):
def __init__(self, data):
self._data = data
def row_by_value(self, col, value):
"""Slice out row from DataFrame by a value."""
return self._data[self._data[col] == value].squeeze()
```
Every dataframe now has this accessor as an attribute.
```python
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.my_flavor.row_by_value('x', 10)
```
To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
Using this package, you can attach functions directly to Pandas objects. No
intermediate accessor is needed.
```python
import pandas_flavor as pf
@pf.register_dataframe_method
def row_by_value(df, col, value):
"""Slice out row from DataFrame by a value."""
return df[df[col] == value].squeeze()
```
```python
import pandas as pd
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.row_by_value('x', 10)
```
The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced
to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz)
- **register_dataframe_method**: register a method directly with a pandas DataFrame.
- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
- **register_series_method**: register a methods directly with a pandas Series.
- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
You can install using **pip**:
```
pip install pandas_flavor
```
or conda (thanks @ericmjl)!
```
conda install -c conda-forge pandas-flavor
```
Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
If you have a feature request, please open an issue or submit a PR!
Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
**So how does method registration work?**
When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
1. inheriting the docstring of your function
2. overriding the `__call__` method to call your function.https://github.com/Zsailer/pandas_flavorMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164python-pandas-flavor-0.6.0-1.oe2403sp1.src.rpmpython-pingouinsrcd4b2fcd4f27f473652f2862a901fb67c5b25f6a764f7172825a982aebecfcd13Pingouin: statistical package for Python**Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_.
1. ANOVAs: N-ways, repeated measures, mixed, ancova
2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations
3. Robust, partial, distance and repeated measures correlations
4. Linear/logistic regression and mediation analysis
5. Bayes Factors
6. Multivariate tests
7. Reliability and consistency
8. Effect sizes and power analysis
9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient
10. Circular statistics
11. Chi-squared tests
12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation...
Pingouin is designed for users who want **simple yet exhaustive statistical functions**.
For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast,
the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.https://pingouin-stats.org/index.htmlGPL-3.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843871-20251015-02183python-pingouin-helpnoarchefcd5a2c8636c32e930b8e77c1e4d83e04d951335f1075cbfdb52638c2581c99Development documents and examples for pingouin**Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_.
1. ANOVAs: N-ways, repeated measures, mixed, ancova
2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations
3. Robust, partial, distance and repeated measures correlations
4. Linear/logistic regression and mediation analysis
5. Bayes Factors
6. Multivariate tests
7. Reliability and consistency
8. Effect sizes and power analysis
9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient
10. Circular statistics
11. Chi-squared tests
12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation...
Pingouin is designed for users who want **simple yet exhaustive statistical functions**.
For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast,
the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.https://pingouin-stats.org/index.htmlGPL-3.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843871-20251015-02183python-pingouin-0.5.5-1.oe2403sp1.src.rpmpython-seabornsrc2a997f331c046b79c2884eb8b6b45ea8b926fc7d5daccb3775807d1fed65de63Statistical data visualizationhttps://pypi.org/project/seaborn/NoneopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201python-seaborn-helpnoarch8eea8aeec660f14f9b0d3e0bc88904100fd4f6eae802deda6d65bd75b531b881Development documents and examples for seabornhttps://pypi.org/project/seaborn/NoneopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201python-seaborn-0.13.2-1.oe2403sp1.src.rpmpython3-Authlibnoarch5153b74c58618044ec7bb1061419dbef6e71fae6ef1a898e11519eecf54b5be1The ultimate Python library in building OAuth and OpenID Connect servers and clients.The ultimate Python library in building OAuth and OpenID Connect servers.
JWS, JWK, JWA, JWT are included.https://authlib.org/BSD 3-Clause LicenseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843889-20251015-05570python-Authlib-1.2.0-2.oe2403sp1.src.rpmpython3-billiardnoarchdb8df6d7686677e70e3966f28466a43d08403b529729a835f442cab306727054Python multiprocessing fork with improvements and bugfixesMultiprocessing Pool Extensionshttps://github.com/celery/billiardBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843885-20251015-05552python-billiard-4.2.1-1.oe2403sp1.src.rpmpython3-celerynoarchf947e71f063cbb66fe3dd1ccbacd77ef239e849b5b3d9e37799b41e7685e71beDistributed Task Queue.Distributed Task Queue.https://github.com/celery/celeryBSD-3-Clause and CC-BY-SA-4.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201python-celery-5.3.4-1.oe2403sp1.src.rpm/usr/bin/celery/usr/lib/python3.11/site-packages/celery/bin/__init__.py/usr/lib/python3.11/site-packages/celery/bin/__pycache__/__init__.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/__init__.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/amqp.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/amqp.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/base.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/base.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/beat.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/beat.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/call.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/call.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/celery.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/celery.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/control.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/control.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/events.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/events.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/graph.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/graph.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/list.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/list.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/logtool.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/logtool.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/migrate.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/migrate.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/multi.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/multi.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/purge.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/purge.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/result.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/result.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/shell.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/shell.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/upgrade.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/upgrade.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/worker.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/worker.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/amqp.py/usr/lib/python3.11/site-packages/celery/bin/base.py/usr/lib/python3.11/site-packages/celery/bin/beat.py/usr/lib/python3.11/site-packages/celery/bin/call.py/usr/lib/python3.11/site-packages/celery/bin/celery.py/usr/lib/python3.11/site-packages/celery/bin/control.py/usr/lib/python3.11/site-packages/celery/bin/events.py/usr/lib/python3.11/site-packages/celery/bin/graph.py/usr/lib/python3.11/site-packages/celery/bin/list.py/usr/lib/python3.11/site-packages/celery/bin/logtool.py/usr/lib/python3.11/site-packages/celery/bin/migrate.py/usr/lib/python3.11/site-packages/celery/bin/multi.py/usr/lib/python3.11/site-packages/celery/bin/purge.py/usr/lib/python3.11/site-packages/celery/bin/result.py/usr/lib/python3.11/site-packages/celery/bin/shell.py/usr/lib/python3.11/site-packages/celery/bin/upgrade.py/usr/lib/python3.11/site-packages/celery/bin/worker.pypython3-click-didyoumeannoarch419e0bfe130ead9b1378f027ea40ce49bccf99934bef1d9830968b6efd01c490Enables git-like *did-you-mean* feature in clickEnables git-like *did-you-mean* feature in clickhttps://github.com/click-contrib/click-didyoumeanMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843885-20251015-05552python-click-didyoumean-0.3.1-1.oe2403sp1.src.rpmpython3-click-pluginsnoarche915f1319cb66b5614813474aa942fa81453cf5cdc5f2e0323bde6111df6b348An extension module for click to enable registering CLI commands via setuptools entry-points.An extension module for click to enable registering CLI commands via setuptools entry-points.https://github.com/click-contrib/click-pluginsBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843887-20251015-05561python-click-plugins-1.1.1-1.oe2403sp1.src.rpmpython3-click-replnoarch12d87314939338a99181f3e3c1df90a9de4e3c2161589cb6f177a5240f0cbcd3REPL plugin for ClickREPL plugin for Clickhttps://github.com/untitaker/click-replMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843882-20251015-02534python-click-repl-0.3.0-1.oe2403sp1.src.rpmpython3-gala-anteaterx86_6477b4ac38b5517427156c980b87aa33d9e47cc3f2096564d50c85117c4287fbbdPython3 package of gala-anteaterPython3 package of gala-anteaterhttps://gitee.com/openeuler/gala-anteaterMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164gala-anteater-3.0.1-1.oe2403sp1.src.rpmpython3-gala-inferencex86_64da6e165d2a2182dcfd393c279ee028b55dfe4260b2218ba5142c6a28383c23eaPython3 package of gala-inferencePython3 package of gala-inferencehttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140gala-spider-2.0.1-1.oe2403sp1.src.rpmpython3-gala-spiderx86_647187df4ad2f1140efe7db6a2a26152fe011c4e8a0de4cdb4ba316bb1673e49c8Python3 package of gala-spiderPython3 package of gala-spiderhttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140gala-spider-2.0.1-1.oe2403sp1.src.rpmpython3-pandas-flavornoarch106d9240a9e93143690eb69796583d628b7fe9b52dc749aff970c4d4469b71f0The easy way to write your own Pandas flavor.
**The easy way to write your own flavor of Pandas**
Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
Pandas-flavor extends Pandas' extension API by:
1. adding support for registering methods as well.
2. making each of these functions backwards compatible with older versions of Pandas.
***What does this mean?***
It is now simpler to add custom functionality to Pandas DataFrames and Series.
Import this package. Write a simple python function. Register the function using one of the following decorators.
***Why?***
Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
accessor that provides plotting functionality.
Add an accessor by registering the function with the following decorator
and passing the decorator an accessor name.
```python
import pandas_flavor as pf
@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):
def __init__(self, data):
self._data = data
def row_by_value(self, col, value):
"""Slice out row from DataFrame by a value."""
return self._data[self._data[col] == value].squeeze()
```
Every dataframe now has this accessor as an attribute.
```python
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.my_flavor.row_by_value('x', 10)
```
To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
Using this package, you can attach functions directly to Pandas objects. No
intermediate accessor is needed.
```python
import pandas_flavor as pf
@pf.register_dataframe_method
def row_by_value(df, col, value):
"""Slice out row from DataFrame by a value."""
return df[df[col] == value].squeeze()
```
```python
import pandas as pd
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.row_by_value('x', 10)
```
The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced
to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz)
- **register_dataframe_method**: register a method directly with a pandas DataFrame.
- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
- **register_series_method**: register a methods directly with a pandas Series.
- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
You can install using **pip**:
```
pip install pandas_flavor
```
or conda (thanks @ericmjl)!
```
conda install -c conda-forge pandas-flavor
```
Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
If you have a feature request, please open an issue or submit a PR!
Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
**So how does method registration work?**
When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
1. inheriting the docstring of your function
2. overriding the `__call__` method to call your function.https://github.com/Zsailer/pandas_flavorMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164python-pandas-flavor-0.6.0-1.oe2403sp1.src.rpmpython3-pingouinnoarch43e8db8c28fa0865bd4e5c2f526d099ca06dd80a02eb585ddb010137096eb743Pingouin: statistical package for Python**Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_.
1. ANOVAs: N-ways, repeated measures, mixed, ancova
2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations
3. Robust, partial, distance and repeated measures correlations
4. Linear/logistic regression and mediation analysis
5. Bayes Factors
6. Multivariate tests
7. Reliability and consistency
8. Effect sizes and power analysis
9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient
10. Circular statistics
11. Chi-squared tests
12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation...
Pingouin is designed for users who want **simple yet exhaustive statistical functions**.
For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast,
the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.https://pingouin-stats.org/index.htmlGPL-3.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843871-20251015-02183python-pingouin-0.5.5-1.oe2403sp1.src.rpmpython3-seabornnoarche42f691a232e937038d6462185790407b3d135b3e1f6939075d8ca05d66a9bf5Statistical data visualizationhttps://pypi.org/project/seaborn/NoneopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201python-seaborn-0.13.2-1.oe2403sp1.src.rpmzeus-distributex86_6433c789ce2f62f6c8f1dd820ec0c4bb85b52f8c40d2867bcc9398d609b080c1ecA distributed service of aops.A distributed service of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843873-20251015-02193aops-zeus-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/conf.d/zeus-distribute.ymlzeus-host-informationx86_6428cb7ef2f3b649681da973b6774c1f8785145156fae85c93d7cf85cb60fbaf64A host manager service which is the foundation of aops.A host manager service which is the foundation of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843873-20251015-02193aops-zeus-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/conf.d/zeus-host-information.ymlzeus-operationx86_648130525269ad3ce94bcd90b0d72b7b2029f2058a6ced24888065c50926bdd97dA operation manager service which is the foundation of aops.A operation manager of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843873-20251015-02193aops-zeus-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/conf.d/zeus-operation.ymlzeus-user-accessx86_6439d92c3594fec4e7f7ea0a7b92bed1fd9d28222d44b48da9a56892b08cd9d5e7A user manager service which is the foundation of aops.A user manager service which is the foundation of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843873-20251015-02193aops-zeus-v2.2.0-1.oe2403sp1.src.rpm/etc/aops/conf.d/zeus-user-access.yml