aops-apollo-tool x86_64 d4ca8aec295b472dd62a003cad92e0ebc774e6a9fec1ad704dc9dc164830f550 Small tools for aops-apollo, e.g. updateinfo.xml generater smalltools for aops-apollo, e.g.updateinfo.xml generater https://gitee.com/openeuler/aops-apollo aops-apollo src e26635c9e943cc7241329c09b6ce1e6b5df806002a7bb1501b2a99be92bb6c36 Cve management service, monitor machine vulnerabilities and provide fix functions. Cve management service, monitor machine vulnerabilities and provide fix functions. https://gitee.com/openeuler/aops-apollo aops-apollo x86_64 16d31b4f68881fca343279812b0148c458dfc52bd7fbb327a13c885258f755f0 Cve management service, monitor machine vulnerabilities and provide fix functions. Cve management service, monitor machine vulnerabilities and provide fix functions. https://gitee.com/openeuler/aops-apollo aops-ceres src 2cf303ebaa7935b857a33e6a801ef822877edcd0b872cecca7ae68c411d604b9 An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on. An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on. https://gitee.com/openeuler/aops-ceres aops-ceres x86_64 0599377f49f2188f7a0bff04d3ee21d00e389bfd5582ceadb7965d3ea996d81c An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on. An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on. https://gitee.com/openeuler/aops-ceres aops-hermes src d7b6edf2f7256270469de80107e45caa5204baea0edb498c1ce12b92d30bdb19 Web for an intelligent diagnose frame Web for an intelligent diagnose frame https://gitee.com/openeuler/aops-hermes aops-hermes x86_64 b2d25d6f870b0088ab4dd1b9ef7bdbeb5b51da16e40952205b28b0fb83bc65ea Web for an intelligent diagnose frame Web for an intelligent diagnose frame https://gitee.com/openeuler/aops-hermes aops-tools x86_64 c871e77ebcbe20eeb05b0392c679e30d115acea51e4bb0ce236515266a9c24e5 aops scripts tools for aops, it's about aops deploy https://gitee.com/openeuler/aops-vulcanus aops-vulcanus src 01e8e8b3d5227a4bba29cbfc1c3a61adfac59bdf8b05eab64136398ee5b6d40d A basic tool libraries of aops, including logging, configure and response, etc. A basic tool libraries of aops, including logging, configure and response, etc. https://gitee.com/openeuler/aops-vulcanus aops-vulcanus x86_64 0e0edf8b721bcbdeee84ce8e866b2d1701d6c20eb9e919f63bac3b42de99a487 A basic tool libraries of aops, including logging, configure and response, etc. A basic tool libraries of aops, including logging, configure and response, etc. https://gitee.com/openeuler/aops-vulcanus aops-zeus src d2c1b3e3fbe749333b95def503a8023af9d930ea22789a1fe48e8ed35b0d0955 A service which is the foundation of aops. Provide one-click aops deployment, service start and stop, hot loading of configuration files, and database initialization. Provides: aops-zeus https://gitee.com/openeuler/aops-zeus aops-zeus x86_64 3480f2c7cba5db11188f86cc3e835e636553e935a7650ab18a3b16f3e3721c00 A service which is the foundation of aops. Provide one-click aops deployment, service start and stop, hot loading of configuration files, and database initialization. Provides: aops-zeus https://gitee.com/openeuler/aops-zeus async-task x86_64 e584eb3e22d9add43c027e995dc14c781658423520370f7073378cade41b23b3 A async task of aops. A async task of aops. https://gitee.com/openeuler/aops-zeus authHub src ede1c5363cdb0e3321471ba4a1cc1a3d47191375cbb9f6a28fe423e6672d468e Authentication authority based on oauth2 authhub is a specialized authentication center built on OAuth2, providing robust authentication and authorization capabilities for secure user access control in your applications.. https://gitee.com/openeuler/authHub authHub x86_64 f8f04c2e06bdf9c7c49d245365ea648589ff5f279ce3d37655b8a4e106b4d82a Authentication authority based on oauth2 authhub is a specialized authentication center built on OAuth2, providing robust authentication and authorization capabilities for secure user access control in your applications.. https://gitee.com/openeuler/authHub authhub-web x86_64 d0bd120a10152910ad9c7ab4ee9360a442ac1ec1e90c0a31e59fa5931f3c409f Authentication authority web based on oauth2 Authentication authority web based on oauth2 https://gitee.com/openeuler/authHub dnf-hotpatch-plugin x86_64 c91f7cc24ec9e325ef743f8968dc2e7190209c34a807772bf77326ed09aa4434 dnf hotpatch plugin dnf hotpatch plugin, it's about hotpatch query and fix https://gitee.com/openeuler/aops-ceres gala-anteater src e4a6324d5f27b0ca0d39b2de3a6ec7f0b00aaa0267118ee2d2d66be62cd30e21 A time-series anomaly detection platform for operating system. Abnormal detection module for A-Ops project https://gitee.com/openeuler/gala-anteater gala-anteater x86_64 ba29ccb368cbe3ce9009116a4af0381505fab41e99978add8d02d7a511a7ced6 A time-series anomaly detection platform for operating system. Abnormal detection module for A-Ops project https://gitee.com/openeuler/gala-anteater gala-gopher src 602155e8fd74a310d410cc209dd50b496a2899dbf43133c578297acfdcb374ed Intelligent ops toolkit for openEuler gala-gopher is a low-overhead eBPF-based probes framework https://gitee.com/openeuler/gala-gopher gala-gopher x86_64 21e6306ee794590cc767106fac7e956e1426a61c02c39185d62a4eb936accbcb Intelligent ops toolkit for openEuler gala-gopher is a low-overhead eBPF-based probes framework https://gitee.com/openeuler/gala-gopher gala-gopher-debuginfo x86_64 9897f09602abaacfa6a8bfd668357150b58d5c56c5cba1c30e6e2d17d75c3f94 Debug information for package gala-gopher This package provides debug information for package gala-gopher. Debug information is useful when developing applications that use this package or when debugging this package. https://gitee.com/openeuler/gala-gopher gala-gopher-debugsource x86_64 9c9628c83be878a7497a598639e250fbaa32857c268cd004b12c4da0ac51f987 Debug sources for package gala-gopher This package provides debug sources for package gala-gopher. Debug sources are useful when developing applications that use this package or when debugging this package. https://gitee.com/openeuler/gala-gopher gala-inference x86_64 3f90e6f6de8dbdc035f3a6aa7c213872647b7a5e49506c192c35e661fa90b7bd Cause inference module for gala-ops project Cause inference module for A-Ops project https://gitee.com/openeuler/gala-spider gala-ops x86_64 d522ea65bb8a93a1d2c907931e7b37d92383033f80e69c8cff99ff2be2e3a91d gala-anteater/spider/inference installation package This package requires gala-anteater/spider/inference, allowing users to install them all at once https://gitee.com/openeuler/gala-spider gala-spider src fc0d10204fe73ca1f76a3574f5df1e622acc0ef43ba2283974a129edf77edb98 OS topological graph storage service and cause inference service for gala-ops project OS topological graph storage service for gala-ops project https://gitee.com/openeuler/gala-spider gala-spider x86_64 236607e93356f49bc2e795efecd96717cc3c01e22478041b1522ca6562746d24 OS topological graph storage service and cause inference service for gala-ops project OS topological graph storage service for gala-ops project https://gitee.com/openeuler/gala-spider python-pandas-flavor src decd51c17499b8f45d24595d247f55d97c69610d5efdd2782648575c9d84fded The easy way to write your own Pandas flavor. **The easy way to write your own flavor of Pandas** Pandas 0.23 added a (simple) API for registering accessors with Pandas objects. Pandas-flavor extends Pandas' extension API by: 1. adding support for registering methods as well. 2. making each of these functions backwards compatible with older versions of Pandas. ***What does this mean?*** It is now simpler to add custom functionality to Pandas DataFrames and Series. Import this package. Write a simple python function. Register the function using one of the following decorators. ***Why?*** Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library". **Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases. Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else? Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an accessor that provides plotting functionality. Add an accessor by registering the function with the following decorator and passing the decorator an accessor name. ```python import pandas_flavor as pf @pf.register_dataframe_accessor('my_flavor') class MyFlavor(object): def __init__(self, data): self._data = data def row_by_value(self, col, value): """Slice out row from DataFrame by a value.""" return self._data[self._data[col] == value].squeeze() ``` Every dataframe now has this accessor as an attribute. ```python import my_flavor df = pd.DataFrame(data={ "x": [10, 20, 25], "y": [0, 2, 5] }) print(df) df.my_flavor.row_by_value('x', 10) ``` To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega), [PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)! Using this package, you can attach functions directly to Pandas objects. No intermediate accessor is needed. ```python import pandas_flavor as pf @pf.register_dataframe_method def row_by_value(df, col, value): """Slice out row from DataFrame by a value.""" return df[df[col] == value].squeeze() ``` ```python import pandas as pd import my_flavor df = pd.DataFrame(data={ "x": [10, 20, 25], "y": [0, 2, 5] }) print(df) df.row_by_value('x', 10) ``` The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz) - **register_dataframe_method**: register a method directly with a pandas DataFrame. - **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame. - **register_series_method**: register a methods directly with a pandas Series. - **register_series_accessor**: register an accessor (and it's methods) with a pandas Series. You can install using **pip**: ``` pip install pandas_flavor ``` or conda (thanks @ericmjl)! ``` conda install -c conda-forge pandas-flavor ``` Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github). If you have a feature request, please open an issue or submit a PR! Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series. Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote) <a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.* **So how does method registration work?** When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by: 1. inheriting the docstring of your function 2. overriding the `__call__` method to call your function. https://github.com/Zsailer/pandas_flavor python-pandas-flavor-help noarch a8a94d5fd8640908e1a270ac0a1d7a8d801fabdc416f880f15bd2ab0ba8d8fb4 Development documents and examples for pandas-flavor **The easy way to write your own flavor of Pandas** Pandas 0.23 added a (simple) API for registering accessors with Pandas objects. Pandas-flavor extends Pandas' extension API by: 1. adding support for registering methods as well. 2. making each of these functions backwards compatible with older versions of Pandas. ***What does this mean?*** It is now simpler to add custom functionality to Pandas DataFrames and Series. Import this package. Write a simple python function. Register the function using one of the following decorators. ***Why?*** Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library". **Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases. Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else? Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an accessor that provides plotting functionality. Add an accessor by registering the function with the following decorator and passing the decorator an accessor name. ```python import pandas_flavor as pf @pf.register_dataframe_accessor('my_flavor') class MyFlavor(object): def __init__(self, data): self._data = data def row_by_value(self, col, value): """Slice out row from DataFrame by a value.""" return self._data[self._data[col] == value].squeeze() ``` Every dataframe now has this accessor as an attribute. ```python import my_flavor df = pd.DataFrame(data={ "x": [10, 20, 25], "y": [0, 2, 5] }) print(df) df.my_flavor.row_by_value('x', 10) ``` To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega), [PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)! Using this package, you can attach functions directly to Pandas objects. No intermediate accessor is needed. ```python import pandas_flavor as pf @pf.register_dataframe_method def row_by_value(df, col, value): """Slice out row from DataFrame by a value.""" return df[df[col] == value].squeeze() ``` ```python import pandas as pd import my_flavor df = pd.DataFrame(data={ "x": [10, 20, 25], "y": [0, 2, 5] }) print(df) df.row_by_value('x', 10) ``` The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz) - **register_dataframe_method**: register a method directly with a pandas DataFrame. - **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame. - **register_series_method**: register a methods directly with a pandas Series. - **register_series_accessor**: register an accessor (and it's methods) with a pandas Series. You can install using **pip**: ``` pip install pandas_flavor ``` or conda (thanks @ericmjl)! ``` conda install -c conda-forge pandas-flavor ``` Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github). If you have a feature request, please open an issue or submit a PR! Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series. Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote) <a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.* **So how does method registration work?** When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by: 1. inheriting the docstring of your function 2. overriding the `__call__` method to call your function. https://github.com/Zsailer/pandas_flavor python-pingouin src edfd29410533af468fb0c3b2882bde8ea9a70b5ccbeb8cb30039fc7f3aab3e2d Pingouin: statistical package for Python **Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_. 1. ANOVAs: N-ways, repeated measures, mixed, ancova 2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations 3. Robust, partial, distance and repeated measures correlations 4. Linear/logistic regression and mediation analysis 5. Bayes Factors 6. Multivariate tests 7. Reliability and consistency 8. Effect sizes and power analysis 9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient 10. Circular statistics 11. Chi-squared tests 12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation... Pingouin is designed for users who want **simple yet exhaustive statistical functions**. For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast, the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test. https://pingouin-stats.org/index.html python-pingouin-help noarch 83d743d1ee0ac08263b3b7cb806316f8bb4069818aaaf1b175045fe6d7e8dbe2 Development documents and examples for pingouin **Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_. 1. ANOVAs: N-ways, repeated measures, mixed, ancova 2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations 3. Robust, partial, distance and repeated measures correlations 4. Linear/logistic regression and mediation analysis 5. Bayes Factors 6. Multivariate tests 7. Reliability and consistency 8. Effect sizes and power analysis 9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient 10. Circular statistics 11. Chi-squared tests 12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation... Pingouin is designed for users who want **simple yet exhaustive statistical functions**. For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast, the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test. https://pingouin-stats.org/index.html python-seaborn src 46ede315f532c0da90f5dd58b8fba28a9ce0d649ffddde7f3e5d8cfdc57a3963 Statistical data visualization https://pypi.org/project/seaborn/ python-seaborn-help noarch 82cc942efeee064f476a83490c6e1a4114af97c975932af3b8662cc7ce0dae82 Development documents and examples for seaborn https://pypi.org/project/seaborn/ python3-gala-anteater x86_64 0a465c1a6732c424dbbfa763cc1480ac032343fe4d35b8462e9cc92b78ccdc45 Python3 package of gala-anteater Python3 package of gala-anteater https://gitee.com/openeuler/gala-anteater python3-gala-inference x86_64 00f4285880e1894e910899554299d7ec865ac8993839325e09375756cae6671a Python3 package of gala-inference Python3 package of gala-inference https://gitee.com/openeuler/gala-spider python3-gala-spider x86_64 c742cf261d82d9d4085272b4b20de56593584835dd212eb994a3ae29f0472f50 Python3 package of gala-spider Python3 package of gala-spider https://gitee.com/openeuler/gala-spider python3-pandas-flavor noarch ef97b684170f04ce32d2e9963ce9345c54ee3c22f6e2bdc7bbf00240de1bdfd8 The easy way to write your own Pandas flavor. **The easy way to write your own flavor of Pandas** Pandas 0.23 added a (simple) API for registering accessors with Pandas objects. Pandas-flavor extends Pandas' extension API by: 1. adding support for registering methods as well. 2. making each of these functions backwards compatible with older versions of Pandas. ***What does this mean?*** It is now simpler to add custom functionality to Pandas DataFrames and Series. Import this package. Write a simple python function. Register the function using one of the following decorators. ***Why?*** Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library". **Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases. Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else? Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an accessor that provides plotting functionality. Add an accessor by registering the function with the following decorator and passing the decorator an accessor name. ```python import pandas_flavor as pf @pf.register_dataframe_accessor('my_flavor') class MyFlavor(object): def __init__(self, data): self._data = data def row_by_value(self, col, value): """Slice out row from DataFrame by a value.""" return self._data[self._data[col] == value].squeeze() ``` Every dataframe now has this accessor as an attribute. ```python import my_flavor df = pd.DataFrame(data={ "x": [10, 20, 25], "y": [0, 2, 5] }) print(df) df.my_flavor.row_by_value('x', 10) ``` To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega), [PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)! Using this package, you can attach functions directly to Pandas objects. No intermediate accessor is needed. ```python import pandas_flavor as pf @pf.register_dataframe_method def row_by_value(df, col, value): """Slice out row from DataFrame by a value.""" return df[df[col] == value].squeeze() ``` ```python import pandas as pd import my_flavor df = pd.DataFrame(data={ "x": [10, 20, 25], "y": [0, 2, 5] }) print(df) df.row_by_value('x', 10) ``` The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz) - **register_dataframe_method**: register a method directly with a pandas DataFrame. - **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame. - **register_series_method**: register a methods directly with a pandas Series. - **register_series_accessor**: register an accessor (and it's methods) with a pandas Series. You can install using **pip**: ``` pip install pandas_flavor ``` or conda (thanks @ericmjl)! ``` conda install -c conda-forge pandas-flavor ``` Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github). If you have a feature request, please open an issue or submit a PR! Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series. Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote) <a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.* **So how does method registration work?** When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by: 1. inheriting the docstring of your function 2. overriding the `__call__` method to call your function. https://github.com/Zsailer/pandas_flavor python3-pingouin noarch d3c017e967a69a049426292a81f8bf0b9b268500ebfd9ffb2f52dd44153fbbd0 Pingouin: statistical package for Python **Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_. 1. ANOVAs: N-ways, repeated measures, mixed, ancova 2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations 3. Robust, partial, distance and repeated measures correlations 4. Linear/logistic regression and mediation analysis 5. Bayes Factors 6. Multivariate tests 7. Reliability and consistency 8. Effect sizes and power analysis 9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient 10. Circular statistics 11. Chi-squared tests 12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation... Pingouin is designed for users who want **simple yet exhaustive statistical functions**. For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast, the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test. https://pingouin-stats.org/index.html python3-seaborn noarch fe394017cc0ad604ab73a89465a80021ab583bc45629928605f3f40373821867 Statistical data visualization https://pypi.org/project/seaborn/ zeus-distribute x86_64 ce0eef7d9dbdf5cf586c58bf53e1686c40eecffa99f1a839c4bef8ef197198b5 A distributed service of aops. A distributed service of aops. https://gitee.com/openeuler/aops-zeus zeus-host-information x86_64 f5afb7bec700c86d0189788756b8c33429429cde5f1a21f0bccae95ea0acf3e0 A host manager service which is the foundation of aops. A host manager service which is the foundation of aops. https://gitee.com/openeuler/aops-zeus zeus-operation x86_64 482571d01c2c604eb2ed222aafb86882ca3914e1d9a1a518edae7fd24cebfcc9 A operation manager service which is the foundation of aops. A operation manager of aops. https://gitee.com/openeuler/aops-zeus zeus-user-access x86_64 593b1a64185bdb3974b75ec45585448a85186ad46326c1638d12bab5701808b6 A user manager service which is the foundation of aops. A user manager service which is the foundation of aops. https://gitee.com/openeuler/aops-zeus