aops-apollo-toolx86_648777505c8b2324eb7d4d5c6f1f33ce451976dd5570c7101c9a1ec6220ad76f02Small tools for aops-apollo, e.g. updateinfo.xml generatersmalltools for aops-apollo, e.g.updateinfo.xml generaterhttps://gitee.com/openeuler/aops-apolloMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164aops-apollo-v2.2.0-1.oe2403sp2.src.rpm/etc/aops_apollo_tool/updateinfo_config.ini/usr/bin/gen-updateinfoaops-apollosrc84765abbdc298727b36515246bba2880d6063fabdd9d54f347095feb10349105Cve management service, monitor machine vulnerabilities and provide fix functions.Cve management service, monitor machine vulnerabilities and provide fix functions.https://gitee.com/openeuler/aops-apolloMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164aops-apollox86_6457d177277d223517468e355aecd0379d55509c9ccb34d25c05c8dab5b5ac92a2Cve management service, monitor machine vulnerabilities and provide fix functions.Cve management service, monitor machine vulnerabilities and provide fix functions.https://gitee.com/openeuler/aops-apolloMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164aops-apollo-v2.2.0-1.oe2403sp2.src.rpm/etc/aops/conf.d/aops-apollo.ymlaops-ceressrc0e9a5c59fa6b074242d469bb2c5ba6813be6070057f27bcd974bdb1561a5248cAn agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.https://gitee.com/openeuler/aops-ceresMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843869-20251015-02174aops-ceresx86_645d892292ddcdfccba11212542010ba09073901fad460183dd4b07706013d1154An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.An agent which needs to be adopted in client, it managers some plugins, such as gala-gopher(kpi collection), fluentd(log collection) and so on.https://gitee.com/openeuler/aops-ceresMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843869-20251015-02174aops-ceres-v2.2.0-1.oe2403sp2.src.rpm/etc/aops/ceres.conf/usr/bin/aops-ceresaops-hermessrcecedef012120786f5638981c19eb4d0d443372e18323f6fcb59468bb8be9cb13Web for an intelligent diagnose frameWeb for an intelligent diagnose framehttps://gitee.com/openeuler/aops-hermesMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844270-20251125-09564aops-hermesx86_6448411c084b009759161b91e8b4047d3e16b804ce4c1ee0aa159f1453a21e263eWeb for an intelligent diagnose frameWeb for an intelligent diagnose framehttps://gitee.com/openeuler/aops-hermesMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844270-20251125-09564aops-hermes-v2.2.0-1.oe2403sp2.src.rpmaops-mcpsrc1e81f1c9cef6f8cb0a349f6673c4b5e3f61fee908b78572e4b419458041f4e9bAops MCP ServiceAops MCP Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844192-20251110-10105aops-mcpx86_64e08352317a462b6f5c3ab7ae9a504f0fe56c435b7cee40e7ccfdc606915a7eceAops MCP ServiceAops MCP Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844192-20251110-10105aops-mcp-1.0.0-1.oe2403sp2.src.rpm/opt/aops-mcp/venv/bin/Activate.ps1/opt/aops-mcp/venv/bin/activate/opt/aops-mcp/venv/bin/activate.csh/opt/aops-mcp/venv/bin/activate.fish/opt/aops-mcp/venv/bin/aops-mcp/opt/aops-mcp/venv/bin/dotenv/opt/aops-mcp/venv/bin/fastmcp/opt/aops-mcp/venv/bin/httpx/opt/aops-mcp/venv/bin/jsonschema/opt/aops-mcp/venv/bin/markdown-it/opt/aops-mcp/venv/bin/mcp/opt/aops-mcp/venv/bin/pip/opt/aops-mcp/venv/bin/pip3/opt/aops-mcp/venv/bin/pip3.11/opt/aops-mcp/venv/bin/pygmentize/opt/aops-mcp/venv/bin/python/opt/aops-mcp/venv/bin/python3/opt/aops-mcp/venv/bin/python3.11/opt/aops-mcp/venv/bin/typer/opt/aops-mcp/venv/bin/uvicorn/opt/aops-mcp/venv/bin/websockets/usr/bin/aops-mcpaops-toolsx86_64fe0fff77543a082ce433126d07044def3a211528b4e9ec110e38715196d92611aops scriptstools for aops, it's about aops deployhttps://gitee.com/openeuler/aops-vulcanusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843860-20251014-07192aops-vulcanus-v2.2.0-1.oe2403sp2.src.rpmaops-vulcanussrc58a8c6ca12a1e656ac015d4ec08f8a5094f82d2395b2c5279241d256efd317a0A basic tool libraries of aops, including logging, configure and response, etc.A basic tool libraries of aops, including logging, configure and response, etc.https://gitee.com/openeuler/aops-vulcanusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843860-20251014-07192aops-vulcanusx86_64b7203e1771f38b03ce405488dfd4eadda8502ac44de299ba8ff5bd7f4fcf9a54A basic tool libraries of aops, including logging, configure and response, etc.A basic tool libraries of aops, including logging, configure and response, etc.https://gitee.com/openeuler/aops-vulcanusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843860-20251014-07192aops-vulcanus-v2.2.0-1.oe2403sp2.src.rpm/etc/aops/aops-config.ymlaops-zeussrc3aadfa4967e8992375575f38c10ce081b25d40d3261b13fd90d2b516ee4dce44A service which is the foundation of aops.Provide one-click aops deployment, service start and stop, hot loading of
configuration files, and database initialization.
Provides: aops-zeushttps://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843865-20251015-02150aops-zeusx86_64ec4475db975b53e1af4f5d8a83f6c00cda197aa2a74fe35629c8ee0a60e9247eA service which is the foundation of aops.Provide one-click aops deployment, service start and stop, hot loading of
configuration files, and database initialization.
Provides: aops-zeushttps://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843865-20251015-02150aops-zeus-v2.2.0-1.oe2403sp2.src.rpm/usr/bin/aops-cliasync-taskx86_6416730d52b745feb6ba344c8844e3893a697749756afe56e5a902f6c3bb19b3deA async task of aops.A async task of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843865-20251015-02150aops-zeus-v2.2.0-1.oe2403sp2.src.rpm/etc/aops/crontab.yml/etc/aops/sync-conf.d/instance.properties/etc/aops/sync-conf.d/rdb/cve_fix_task.yml/etc/aops/sync-conf.d/rdb/cve_host_match.yml/etc/aops/sync-conf.d/rdb/cve_rollback_task.yml/etc/aops/sync-conf.d/rdb/domain.yml/etc/aops/sync-conf.d/rdb/domain_conf_info.yml/etc/aops/sync-conf.d/rdb/domain_host.yml/etc/aops/sync-conf.d/rdb/host.yml/etc/aops/sync-conf.d/rdb/host_conf_sync_status.yml/etc/aops/sync-conf.d/rdb/host_group.yml/etc/aops/sync-conf.d/rdb/hotpatch_remove_task.yml/etc/aops/sync-conf.d/rdb/repo.yml/etc/aops/sync-conf.d/rdb/task_host_repo.yml/etc/aops/sync-conf.d/rdb/vul_task.yml/usr/bin/async-taskauthHubsrc8b6b09f0da9ef557ed5183cb4fcf51ae6aad5d9a8844c6d6e6c1b2de31d7d660Authentication authority based on oauth2authhub is a specialized authentication center built on OAuth2, providing robust authentication and authorization capabilities for secure user access control in your applications..https://gitee.com/openeuler/authHubMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164authHubx86_648c1b65af5a0d97b96bd6c70b384887a2a8e65dfd27ec1b4602f78764bfee8c92Authentication authority based on oauth2authhub is a specialized authentication center built on OAuth2, providing robust authentication and authorization capabilities for secure user access control in your applications..https://gitee.com/openeuler/authHubMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164authHub-v2.2.0-3.oe2403sp2.src.rpm/etc/aops/conf.d/authhub.yml/etc/nginx/conf.d/authhub.nginx.confauthhub-webx86_6450681a68e37380f9f1430beea2e1e3da8c27fca1166a4146b07b4a682d8ca96aAuthentication authority web based on oauth2Authentication authority web based on oauth2https://gitee.com/openeuler/authHubMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164authHub-v2.2.0-3.oe2403sp2.src.rpmdnf-hotpatch-pluginx86_6457146dadcb4e217ed542c578fc73bf38bfae4ab997882cefdcc8876c20b1e12bdnf hotpatch plugindnf hotpatch plugin, it's about hotpatch query and fixhttps://gitee.com/openeuler/aops-ceresMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843869-20251015-02174aops-ceres-v2.2.0-1.oe2403sp2.src.rpmgala-anteatersrce3cb8864b1c93482de54667a499bfd91bd9066b38c2307bf9bf67a7fb8e245b4A time-series anomaly detection platform for operating system.Abnormal detection module for A-Ops projecthttps://gitee.com/openeuler/gala-anteaterMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140gala-anteaterx86_64b3c4ce28fd989496d836249dbf4d73a37e7f55b662acb69b0b3edaf7d55fabd5A time-series anomaly detection platform for operating system.Abnormal detection module for A-Ops projecthttps://gitee.com/openeuler/gala-anteaterMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140gala-anteater-3.0.1-1.oe2403sp2.src.rpm/etc/gala-anteater/config/gala-anteater.yaml/etc/gala-anteater/config/log.settings.ini/etc/gala-anteater/config/metricinfo.json/etc/gala-anteater/entity/app_entity.json/etc/gala-anteater/entity/pod_entity.json/etc/gala-anteater/entity/vm_entity.json/etc/gala-anteater/module/app_sli_rtt.job.json/etc/gala-anteater/module/container_disruption.job.json/etc/gala-anteater/module/disk_throughput.job.json/etc/gala-anteater/module/jvm_oom.job.json/etc/gala-anteater/module/proc_io_latency.job.json/etc/gala-anteater/module/rca.job.json/etc/gala-anteater/module/slow_node_detection.job.json/etc/gala-anteater/module/sys_io_latency.job.json/etc/gala-anteater/module/sys_nic_loss.job.json/etc/gala-anteater/module/sys_tcp_establish.job.json/etc/gala-anteater/module/sys_tcp_transmission_latency.job.json/etc/gala-anteater/module/usad_model.job.json/usr/bin/gala-anteatergala-gophersrc2a5986ae5b5740f4b667d31433136a70fc8014ab91264ab12d53113e0a4527f5Intelligent ops toolkit for openEulergala-gopher is a low-overhead eBPF-based probes frameworkhttps://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844161-20251107-09423gala-gopherx86_648e96b555488b50cc6271cd89358e0210f764cd64278181737992517475cd0dc3Intelligent ops toolkit for openEulergala-gopher is a low-overhead eBPF-based probes frameworkhttps://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844161-20251107-09423gala-gopher-2.0.3-2.oe2403sp2.src.rpm/etc/gala-gopher/extend_probes/cadvisor_probe.conf/etc/gala-gopher/extend_probes/pg_stat_probe.conf/etc/gala-gopher/gala-gopher-custom.json/etc/gala-gopher/gala-gopher.conf/etc/gala-gopher/probes.init/usr/bin/gala-gopher/usr/bin/gopher-ctlgala-gopher-debuginfox86_64b5a9f62d8a09839391ecd6b5b3cbe1ed275b6998a42169a4fce65b10bc7c9afdDebug information for package gala-gopherThis package provides debug information for package gala-gopher.
Debug information is useful when developing applications that use this
package or when debugging this package.https://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Development/Debugeur-prod-workerlocal-x86-64-normal-prod-00844161-20251107-09423gala-gopher-2.0.3-2.oe2403sp2.src.rpm/usr/lib/debug/usr/bin/gala-gopher-2.0.3-2.oe2403sp2.x86_64.debug/usr/lib/debug/usr/bin/gopher-ctl-2.0.3-2.oe2403sp2.x86_64.debuggala-gopher-debugsourcex86_64f85ac4eefcf1beb18a11c13428a94840e80cbf7527254da56ff649e792f0efbeDebug sources for package gala-gopherThis package provides debug sources for package gala-gopher.
Debug sources are useful when developing applications that use this
package or when debugging this package.https://gitee.com/openeuler/gala-gopherMulan PSL v2openEuler Copr - user HLG523653667Development/Debugeur-prod-workerlocal-x86-64-normal-prod-00844161-20251107-09423gala-gopher-2.0.3-2.oe2403sp2.src.rpmgala-inferencex86_649880d05f5ca8e1ce1b15c9245cadc250fe4ca38b853252742db8a058fe3e8c5bCause inference module for gala-ops projectCause inference module for A-Ops projecthttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843877-20251015-02211gala-spider-2.0.1-1.oe2403sp2.src.rpm/etc/gala-inference/cause-keyword.yaml/etc/gala-inference/ext-observe-meta.yaml/etc/gala-inference/gala-inference.yaml/etc/gala-inference/infer-rule.yaml/usr/bin/gala-inferencegala-opsx86_64a9b7d9ddd76cd82b9b73d1e2a868c4e3ab1428784fdea9b62601caa015286bbagala-anteater/spider/inference installation packageThis package requires gala-anteater/spider/inference, allowing users to install them all at oncehttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843877-20251015-02211gala-spider-2.0.1-1.oe2403sp2.src.rpmgala-spidersrca0c6c3d415bc56d009cbadb19ac081d96a69c0bf62689c88776baa1f693bf125OS topological graph storage service and cause inference service for gala-ops projectOS topological graph storage service for gala-ops projecthttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843877-20251015-02211gala-spiderx86_647e487b23dc787d3302565fc2f0c3ce9f95fa796ecb520e0b548298b7d1ed8bbaOS topological graph storage service and cause inference service for gala-ops projectOS topological graph storage service for gala-ops projecthttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843877-20251015-02211gala-spider-2.0.1-1.oe2403sp2.src.rpm/etc/gala-spider/ext-observe-meta.yaml/etc/gala-spider/gala-spider.yaml/etc/gala-spider/topo-relation.yaml/usr/bin/spider-storageloggptsrc9d2bb6b4e517fa3f7987210019a97041ab2c9d6ea101eb3c775aa3ce861c11b2loggpt Serviceloggpt Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844169-20251107-09460loggptx86_6411f66b44a0946b5ff601a4aa32ecbe2b2f44d5e8b0597ea509b711eafe664b64loggpt Serviceloggpt Service packaged as RPM.https://gitee.com/Victeo/AOPS_MCP_ServerMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844169-20251107-09460loggpt-1.0.0-1.oe2403sp2.src.rpm/usr/bin/loggptosmind-aisrc253acad7e1e1b7bc35ba23b1e1bb4b2cd06bbff9a4ac6bf56aa91f50c59f5a6aOSMind AI ServiceOSMind AI Service packaged as RPM.https://gitee.com/Victeo/osmind-aiserviceMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844185-20251110-07215osmind-aix86_64e5fc034ef342f9e4f3c73d3ca1e5e16cbf22deef6eec0361f97c9f43c66add94OSMind AI ServiceOSMind AI Service packaged as RPM.https://gitee.com/Victeo/osmind-aiserviceMulanPSL-2.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00844185-20251110-07215osmind-ai-1.0.0-1.oe2403sp2.src.rpmpython-Authlibsrcf0c6d9b88a0bb3192928a51d3b3f87b00fa1ad33a3ed55c67658db3ebf609374The ultimate Python library in building OAuth and OpenID Connect servers and clients.The ultimate Python library in building OAuth and OpenID Connect servers.
JWS, JWK, JWA, JWT are included.https://authlib.org/BSD 3-Clause LicenseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843891-20251015-06331python-Authlib-helpnoarch3f23d2fb885ff5f0360e1c36ebfc3bee55a12fb79bb2fc054f86596f4ad903f3Development documents and examples for AuthlibThe ultimate Python library in building OAuth and OpenID Connect servers.
JWS, JWK, JWA, JWT are included.https://authlib.org/BSD 3-Clause LicenseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843891-20251015-06331python-Authlib-1.2.0-2.oe2403sp2.src.rpmpython-billiardsrc3cd488dc9f056d2c1c3d8a9b05f79e67d79bc6fa1e7f08ad0faa8220b9d23220Python multiprocessing fork with improvements and bugfixesMultiprocessing Pool Extensionshttps://github.com/celery/billiardBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843887-20251015-05561python-billiard-helpnoarch974103cf549fa97082a9a94073243fd37153eb1293f07f0ca1eecec71231b0aaDevelopment documents and examples for billiardMultiprocessing Pool Extensionshttps://github.com/celery/billiardBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843887-20251015-05561python-billiard-4.2.1-1.oe2403sp2.src.rpmpython-celerysrc690ee2ec4bdb721e00806a4242e2c24210eede8a57a659c832cb1bd105b0aa82Distributed Task Queue.Distributed Task Queue.https://github.com/celery/celeryBSD-3-Clause and CC-BY-SA-4.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140python-celery-helpnoarchd3ac4564799c55574d9197e2f7fe3303488620a70be3b0a0add170f1d1109201Development documents and examples for celeryDistributed Task Queue.https://github.com/celery/celeryBSD-3-Clause and CC-BY-SA-4.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140python-celery-5.3.4-1.oe2403sp2.src.rpmpython-click-didyoumeansrcd97372447537d72b5c006047459f51dfb51e6b85eb11f780db9d3621ab35e4bfEnables git-like *did-you-mean* feature in clickEnables git-like *did-you-mean* feature in clickhttps://github.com/click-contrib/click-didyoumeanMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843882-20251015-02534python-click-didyoumean-helpnoarcha6d5812da72453c03bcdab43383713f356f1e480968c1107c16eba331951e1d2Enables git-like *did-you-mean* feature in clickEnables git-like *did-you-mean* feature in clickhttps://github.com/click-contrib/click-didyoumeanMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843882-20251015-02534python-click-didyoumean-0.3.1-1.oe2403sp2.src.rpmpython-click-pluginssrc8809a6f9972e8b2fff42829f54ca458769fbd3fbdae7595f0714607568fa3becAn extension module for click to enable registering CLI commands via setuptools entry-points.An extension module for click to enable registering CLI commands via setuptools entry-points.https://github.com/click-contrib/click-pluginsBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843882-20251015-02534python-click-plugins-helpnoarchd42b9aa63c12d2c2fbc44a931a22b2b7b50c08a0ce4e3dd49dea11b5bbdc0c86Development documents and examples for click-pluginsAn extension module for click to enable registering CLI commands via setuptools entry-points.https://github.com/click-contrib/click-pluginsBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843882-20251015-02534python-click-plugins-1.1.1-1.oe2403sp2.src.rpmpython-click-replsrc51c63daf9fc4e17c6a6488f85c03e77e1b4048c6b08b6d945d3223609ac8cf64REPL plugin for ClickREPL plugin for Clickhttps://github.com/untitaker/click-replMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843885-20251015-05552python-click-repl-helpnoarch2bdf2da468a2e8cd8ee611c262cdcfdbf3f16df38d0de24a3fa2df06e40a52a9Development documents and examples for click-replREPL plugin for Clickhttps://github.com/untitaker/click-replMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843885-20251015-05552python-click-repl-0.3.0-1.oe2403sp2.src.rpmpython-pandas-flavorsrc97c2af0a8bce4b7a2b820dd489180b1354745332fc60ca8df69d97a6ec9d249cThe easy way to write your own Pandas flavor.
**The easy way to write your own flavor of Pandas**
Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
Pandas-flavor extends Pandas' extension API by:
1. adding support for registering methods as well.
2. making each of these functions backwards compatible with older versions of Pandas.
***What does this mean?***
It is now simpler to add custom functionality to Pandas DataFrames and Series.
Import this package. Write a simple python function. Register the function using one of the following decorators.
***Why?***
Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
accessor that provides plotting functionality.
Add an accessor by registering the function with the following decorator
and passing the decorator an accessor name.
```python
import pandas_flavor as pf
@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):
def __init__(self, data):
self._data = data
def row_by_value(self, col, value):
"""Slice out row from DataFrame by a value."""
return self._data[self._data[col] == value].squeeze()
```
Every dataframe now has this accessor as an attribute.
```python
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.my_flavor.row_by_value('x', 10)
```
To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
Using this package, you can attach functions directly to Pandas objects. No
intermediate accessor is needed.
```python
import pandas_flavor as pf
@pf.register_dataframe_method
def row_by_value(df, col, value):
"""Slice out row from DataFrame by a value."""
return df[df[col] == value].squeeze()
```
```python
import pandas as pd
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.row_by_value('x', 10)
```
The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced
to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz)
- **register_dataframe_method**: register a method directly with a pandas DataFrame.
- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
- **register_series_method**: register a methods directly with a pandas Series.
- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
You can install using **pip**:
```
pip install pandas_flavor
```
or conda (thanks @ericmjl)!
```
conda install -c conda-forge pandas-flavor
```
Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
If you have a feature request, please open an issue or submit a PR!
Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
**So how does method registration work?**
When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
1. inheriting the docstring of your function
2. overriding the `__call__` method to call your function.https://github.com/Zsailer/pandas_flavorMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201python-pandas-flavor-helpnoarchf193c4c8a02267cc1a13cbc8d7d2ecb964c45bfd3aa3edd3f384ac1520fc1ebfDevelopment documents and examples for pandas-flavor
**The easy way to write your own flavor of Pandas**
Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
Pandas-flavor extends Pandas' extension API by:
1. adding support for registering methods as well.
2. making each of these functions backwards compatible with older versions of Pandas.
***What does this mean?***
It is now simpler to add custom functionality to Pandas DataFrames and Series.
Import this package. Write a simple python function. Register the function using one of the following decorators.
***Why?***
Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
accessor that provides plotting functionality.
Add an accessor by registering the function with the following decorator
and passing the decorator an accessor name.
```python
import pandas_flavor as pf
@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):
def __init__(self, data):
self._data = data
def row_by_value(self, col, value):
"""Slice out row from DataFrame by a value."""
return self._data[self._data[col] == value].squeeze()
```
Every dataframe now has this accessor as an attribute.
```python
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.my_flavor.row_by_value('x', 10)
```
To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
Using this package, you can attach functions directly to Pandas objects. No
intermediate accessor is needed.
```python
import pandas_flavor as pf
@pf.register_dataframe_method
def row_by_value(df, col, value):
"""Slice out row from DataFrame by a value."""
return df[df[col] == value].squeeze()
```
```python
import pandas as pd
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.row_by_value('x', 10)
```
The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced
to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz)
- **register_dataframe_method**: register a method directly with a pandas DataFrame.
- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
- **register_series_method**: register a methods directly with a pandas Series.
- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
You can install using **pip**:
```
pip install pandas_flavor
```
or conda (thanks @ericmjl)!
```
conda install -c conda-forge pandas-flavor
```
Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
If you have a feature request, please open an issue or submit a PR!
Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
**So how does method registration work?**
When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
1. inheriting the docstring of your function
2. overriding the `__call__` method to call your function.https://github.com/Zsailer/pandas_flavorMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201python-pandas-flavor-0.6.0-1.oe2403sp2.src.rpmpython-pingouinsrc9a630e0a84e4155637524e5d92741268a3ebaca6d603a1efd8845d5eef23b9c8Pingouin: statistical package for Python**Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_.
1. ANOVAs: N-ways, repeated measures, mixed, ancova
2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations
3. Robust, partial, distance and repeated measures correlations
4. Linear/logistic regression and mediation analysis
5. Bayes Factors
6. Multivariate tests
7. Reliability and consistency
8. Effect sizes and power analysis
9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient
10. Circular statistics
11. Chi-squared tests
12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation...
Pingouin is designed for users who want **simple yet exhaustive statistical functions**.
For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast,
the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.https://pingouin-stats.org/index.htmlGPL-3.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843869-20251015-02174python-pingouin-helpnoarchb67d2c4b35516d56fc6700119322802bffdd3fed21c290635d2cfe785970d681Development documents and examples for pingouin**Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_.
1. ANOVAs: N-ways, repeated measures, mixed, ancova
2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations
3. Robust, partial, distance and repeated measures correlations
4. Linear/logistic regression and mediation analysis
5. Bayes Factors
6. Multivariate tests
7. Reliability and consistency
8. Effect sizes and power analysis
9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient
10. Circular statistics
11. Chi-squared tests
12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation...
Pingouin is designed for users who want **simple yet exhaustive statistical functions**.
For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast,
the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.https://pingouin-stats.org/index.htmlGPL-3.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843869-20251015-02174python-pingouin-0.5.5-1.oe2403sp2.src.rpmpython-seabornsrc66d801a410ad408084a7d42e6e4444575287f9b474e99284b62a8668947e3b1cStatistical data visualizationhttps://pypi.org/project/seaborn/NoneopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164python-seaborn-helpnoarch564d61e30efbecf0e24a73c373d2b5a29ec3febe8c4b9183567a651cfea44818Development documents and examples for seabornhttps://pypi.org/project/seaborn/NoneopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164python-seaborn-0.13.2-1.oe2403sp2.src.rpmpython3-Authlibnoarchc9447f9f3645852459c4d605ac6489a988beb0c9ecdc74ca9452f3a749400a06The ultimate Python library in building OAuth and OpenID Connect servers and clients.The ultimate Python library in building OAuth and OpenID Connect servers.
JWS, JWK, JWA, JWT are included.https://authlib.org/BSD 3-Clause LicenseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843891-20251015-06331python-Authlib-1.2.0-2.oe2403sp2.src.rpmpython3-billiardnoarchbf49f37847f14134c8781ab04fa9c0f25db6e3f25c57844915a8ed3fa6cef473Python multiprocessing fork with improvements and bugfixesMultiprocessing Pool Extensionshttps://github.com/celery/billiardBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843887-20251015-05561python-billiard-4.2.1-1.oe2403sp2.src.rpmpython3-celerynoarch978fd533aab818859915f1d01e84f83bc65db6c491fd4ad8909712a201c1e83cDistributed Task Queue.Distributed Task Queue.https://github.com/celery/celeryBSD-3-Clause and CC-BY-SA-4.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140python-celery-5.3.4-1.oe2403sp2.src.rpm/usr/bin/celery/usr/lib/python3.11/site-packages/celery/bin/__init__.py/usr/lib/python3.11/site-packages/celery/bin/__pycache__/__init__.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/__init__.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/amqp.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/amqp.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/base.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/base.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/beat.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/beat.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/call.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/call.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/celery.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/celery.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/control.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/control.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/events.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/events.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/graph.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/graph.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/list.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/list.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/logtool.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/logtool.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/migrate.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/migrate.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/multi.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/multi.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/purge.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/purge.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/result.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/result.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/shell.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/shell.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/upgrade.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/upgrade.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/worker.cpython-311.opt-1.pyc/usr/lib/python3.11/site-packages/celery/bin/__pycache__/worker.cpython-311.pyc/usr/lib/python3.11/site-packages/celery/bin/amqp.py/usr/lib/python3.11/site-packages/celery/bin/base.py/usr/lib/python3.11/site-packages/celery/bin/beat.py/usr/lib/python3.11/site-packages/celery/bin/call.py/usr/lib/python3.11/site-packages/celery/bin/celery.py/usr/lib/python3.11/site-packages/celery/bin/control.py/usr/lib/python3.11/site-packages/celery/bin/events.py/usr/lib/python3.11/site-packages/celery/bin/graph.py/usr/lib/python3.11/site-packages/celery/bin/list.py/usr/lib/python3.11/site-packages/celery/bin/logtool.py/usr/lib/python3.11/site-packages/celery/bin/migrate.py/usr/lib/python3.11/site-packages/celery/bin/multi.py/usr/lib/python3.11/site-packages/celery/bin/purge.py/usr/lib/python3.11/site-packages/celery/bin/result.py/usr/lib/python3.11/site-packages/celery/bin/shell.py/usr/lib/python3.11/site-packages/celery/bin/upgrade.py/usr/lib/python3.11/site-packages/celery/bin/worker.pypython3-click-didyoumeannoarch4c3b8fcbca7b42f12a5c9fe2aded744ebe06e0d6fed544ad3362363a7bca760dEnables git-like *did-you-mean* feature in clickEnables git-like *did-you-mean* feature in clickhttps://github.com/click-contrib/click-didyoumeanMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843882-20251015-02534python-click-didyoumean-0.3.1-1.oe2403sp2.src.rpmpython3-click-pluginsnoarchb438a375e36d179ab6dc3fbe4f2b9d094a54b7c000613189caeddad9ba202423An extension module for click to enable registering CLI commands via setuptools entry-points.An extension module for click to enable registering CLI commands via setuptools entry-points.https://github.com/click-contrib/click-pluginsBSD-3-ClauseopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843882-20251015-02534python-click-plugins-1.1.1-1.oe2403sp2.src.rpmpython3-click-replnoarch141ee8eef28bee9ec5400920ef6cce16e226ea79ac26e562f41e479ec298dae8REPL plugin for ClickREPL plugin for Clickhttps://github.com/untitaker/click-replMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843885-20251015-05552python-click-repl-0.3.0-1.oe2403sp2.src.rpmpython3-gala-anteaterx86_6433fe03d7af87481a55f3b4a41919db95a4fc7930f6d2e93aacd8c53c942aa39ePython3 package of gala-anteaterPython3 package of gala-anteaterhttps://gitee.com/openeuler/gala-anteaterMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843864-20251015-02140gala-anteater-3.0.1-1.oe2403sp2.src.rpmpython3-gala-inferencex86_644743f76787d943e8d82b8d2443945ec68674584a03ae3ef1e438514e66c68441Python3 package of gala-inferencePython3 package of gala-inferencehttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843877-20251015-02211gala-spider-2.0.1-1.oe2403sp2.src.rpmpython3-gala-spiderx86_64bf60d1d03fb79197a702fa1289264a1c3641879e1c6e484cfb311c737c15453fPython3 package of gala-spiderPython3 package of gala-spiderhttps://gitee.com/openeuler/gala-spiderMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843877-20251015-02211gala-spider-2.0.1-1.oe2403sp2.src.rpmpython3-pandas-flavornoarch2d2cf4378720d27d2db2253bf883fd91a2bc8d62fee0af029adf48bf41bea2a6The easy way to write your own Pandas flavor.
**The easy way to write your own flavor of Pandas**
Pandas 0.23 added a (simple) API for registering accessors with Pandas objects.
Pandas-flavor extends Pandas' extension API by:
1. adding support for registering methods as well.
2. making each of these functions backwards compatible with older versions of Pandas.
***What does this mean?***
It is now simpler to add custom functionality to Pandas DataFrames and Series.
Import this package. Write a simple python function. Register the function using one of the following decorators.
***Why?***
Pandas is super handy. Its general purpose is to be a "flexible and powerful data analysis/manipulation library".
**Pandas Flavor** allows you add functionality that tailors Pandas to specific fields or use cases.
Maybe you want to add new write methods to the Pandas DataFrame? Maybe you want custom plot functionality? Maybe something else?
Accessors (in pandas) are objects attached to a attribute on the Pandas DataFrame/Series
that provide extra, specific functionality. For example, `pandas.DataFrame.plot` is an
accessor that provides plotting functionality.
Add an accessor by registering the function with the following decorator
and passing the decorator an accessor name.
```python
import pandas_flavor as pf
@pf.register_dataframe_accessor('my_flavor')
class MyFlavor(object):
def __init__(self, data):
self._data = data
def row_by_value(self, col, value):
"""Slice out row from DataFrame by a value."""
return self._data[self._data[col] == value].squeeze()
```
Every dataframe now has this accessor as an attribute.
```python
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.my_flavor.row_by_value('x', 10)
```
To see this in action, check out [pdvega](https://github.com/jakevdp/pdvega),
[PhyloPandas](https://github.com/Zsailer/phylopandas), and [pyjanitor](https://github.com/ericmjl/pyjanitor)!
Using this package, you can attach functions directly to Pandas objects. No
intermediate accessor is needed.
```python
import pandas_flavor as pf
@pf.register_dataframe_method
def row_by_value(df, col, value):
"""Slice out row from DataFrame by a value."""
return df[df[col] == value].squeeze()
```
```python
import pandas as pd
import my_flavor
df = pd.DataFrame(data={
"x": [10, 20, 25],
"y": [0, 2, 5]
})
print(df)
df.row_by_value('x', 10)
```
The pandas_flavor 0.5.0 release introduced [tracing of the registered method calls](/docs/tracing_ext.md). Now it is possible to add additional run-time logic around registered method execution which can be used for some support tasks. This extension was introduced
to allow visualization of [pyjanitor](https://github.com/pyjanitor-devs/pyjanitor) method chains as implemented in [pyjviz](https://github.com/pyjanitor-devs/pyjviz)
- **register_dataframe_method**: register a method directly with a pandas DataFrame.
- **register_dataframe_accessor**: register an accessor (and it's methods) with a pandas DataFrame.
- **register_series_method**: register a methods directly with a pandas Series.
- **register_series_accessor**: register an accessor (and it's methods) with a pandas Series.
You can install using **pip**:
```
pip install pandas_flavor
```
or conda (thanks @ericmjl)!
```
conda install -c conda-forge pandas-flavor
```
Pull requests are always welcome! If you find a bug, don't hestitate to open an issue or submit a PR. If you're not sure how to do that, check out this [simple guide](https://github.com/Zsailer/guide-to-working-as-team-on-github).
If you have a feature request, please open an issue or submit a PR!
Pandas 0.23 introduced a simpler API for [extending Pandas](https://pandas.pydata.org/pandas-docs/stable/development/extending.html#extending-pandas). This API provided two key decorators, `register_dataframe_accessor` and `register_series_accessor`, that enable users to register **accessors** with Pandas DataFrames and Series.
Pandas Flavor originated as a library to backport these decorators to older versions of Pandas (<0.23). While doing the backporting, it became clear that registering **methods** directly to Pandas objects might be a desired feature as well.[*](#footnote)
<a name="footnote">*</a>*It is likely that Pandas deliberately chose not implement to this feature. If everyone starts monkeypatching DataFrames with their custom methods, it could lead to confusion in the Pandas community. The preferred Pandas approach is to namespace your methods by registering an accessor that contains your custom methods.*
**So how does method registration work?**
When you register a method, Pandas flavor actually creates and registers a (this is subtle, but important) **custom accessor class that mimics** the behavior of a method by:
1. inheriting the docstring of your function
2. overriding the `__call__` method to call your function.https://github.com/Zsailer/pandas_flavorMITopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843875-20251015-02201python-pandas-flavor-0.6.0-1.oe2403sp2.src.rpmpython3-pingouinnoarch3bcae4b214909c0e94b65e00f3b95ff3471c07fe3ce6aac0adc45f46f78e26efPingouin: statistical package for Python**Pingouin** is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. For a full list of available functions, please refer to the `API documentation <https://pingouin-stats.org/build/html/api.html#>`_.
1. ANOVAs: N-ways, repeated measures, mixed, ancova
2. Pairwise post-hocs tests (parametric and non-parametric) and pairwise correlations
3. Robust, partial, distance and repeated measures correlations
4. Linear/logistic regression and mediation analysis
5. Bayes Factors
6. Multivariate tests
7. Reliability and consistency
8. Effect sizes and power analysis
9. Parametric/bootstrapped confidence intervals around an effect size or a correlation coefficient
10. Circular statistics
11. Chi-squared tests
12. Plotting: Bland-Altman plot, Q-Q plot, paired plot, robust correlation...
Pingouin is designed for users who want **simple yet exhaustive statistical functions**.
For example, the :code:`ttest_ind` function of SciPy returns only the T-value and the p-value. By contrast,
the :code:`ttest` function of Pingouin returns the T-value, the p-value, the degrees of freedom, the effect size (Cohen's d), the 95% confidence intervals of the difference in means, the statistical power and the Bayes Factor (BF10) of the test.https://pingouin-stats.org/index.htmlGPL-3.0openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843869-20251015-02174python-pingouin-0.5.5-1.oe2403sp2.src.rpmpython3-seabornnoarchff961a9632c95474e7a75a1fcabf117bd3a7ba3d3e8b7a31c4d96f49407f8ec5Statistical data visualizationhttps://pypi.org/project/seaborn/NoneopenEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843867-20251015-02164python-seaborn-0.13.2-1.oe2403sp2.src.rpmzeus-distributex86_64f67e8bb04b57518f173940735169267e11525b43f3d815d4a6578fa6d863a32bA distributed service of aops.A distributed service of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843865-20251015-02150aops-zeus-v2.2.0-1.oe2403sp2.src.rpm/etc/aops/conf.d/zeus-distribute.ymlzeus-host-informationx86_64e18fc0e361e4c5f5dc9b50dbf832aaeae2d23348069d495ae014dfd66c8ad12eA host manager service which is the foundation of aops.A host manager service which is the foundation of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843865-20251015-02150aops-zeus-v2.2.0-1.oe2403sp2.src.rpm/etc/aops/conf.d/zeus-host-information.ymlzeus-operationx86_64f6311c2ea08129e543e38a932f588787d31c5e6202209e9d944f5e1bf9984a86A operation manager service which is the foundation of aops.A operation manager of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843865-20251015-02150aops-zeus-v2.2.0-1.oe2403sp2.src.rpm/etc/aops/conf.d/zeus-operation.ymlzeus-user-accessx86_64ae886b391bef7ed81edab3db033273726bf354fdbb7bf61b300d60afe201efd8A user manager service which is the foundation of aops.A user manager service which is the foundation of aops.https://gitee.com/openeuler/aops-zeusMulanPSL2openEuler Copr - user HLG523653667Unspecifiedeur-prod-workerlocal-x86-64-normal-prod-00843865-20251015-02150aops-zeus-v2.2.0-1.oe2403sp2.src.rpm/etc/aops/conf.d/zeus-user-access.yml