%global _empty_manifest_terminate_build 0 Name: python-nptyping Version: 2.5.0 Release: 1 Summary: Type hints for NumPy. License: MIT URL: https://github.com/ramonhagenaars/nptyping Source0: https://mirrors.nju.edu.cn/pypi/web/packages/e1/b7/ffe533358c32506b1708feec0fb04ba0a35a959a94163fff5333671909da/nptyping-2.5.0.tar.gz BuildArch: noarch Requires: python3-typing-extensions Requires: python3-numpy Requires: python3-numpy Requires: python3-invoke Requires: python3-pip-tools Requires: python3-pandas Requires: python3-pandas-stubs-fork Requires: python3-invoke Requires: python3-pip-tools Requires: python3-autoflake Requires: python3-black Requires: python3-coverage Requires: python3-codecov Requires: python3-feedparser Requires: python3-isort Requires: python3-mypy Requires: python3-pylint Requires: python3-pyright Requires: python3-setuptools Requires: python3-typeguard Requires: python3-wheel Requires: python3-pandas Requires: python3-beartype Requires: python3-beartype Requires: python3-pandas-stubs-fork Requires: python3-pandas Requires: python3-pandas-stubs-fork Requires: python3-autoflake Requires: python3-black Requires: python3-coverage Requires: python3-codecov Requires: python3-feedparser Requires: python3-isort Requires: python3-mypy Requires: python3-pylint Requires: python3-pyright Requires: python3-setuptools Requires: python3-typeguard Requires: python3-wheel Requires: python3-beartype Requires: python3-beartype %description [![PyPI version](https://img.shields.io/pypi/pyversions/nptyping.svg)](https://img.shields.io/pypi/pyversions/nptyping.svg) [![Downloads](https://pepy.tech/badge/nptyping/month)](https://pepy.tech/project/nptyping) [![PyPI version](https://badge.fury.io/py/nptyping.svg)](https://badge.fury.io/py/nptyping) [![codecov](https://codecov.io/gh/ramonhagenaars/nptyping/branch/master/graph/badge.svg)](https://codecov.io/gh/ramonhagenaars/nptyping) [![Code style](https://img.shields.io/badge/code%20style-black-black)](https://img.shields.io/badge/code%20style-black-black)

🧊 *Type hints for `NumPy`*
🐼 *Type hints for `pandas.DataFrame`*
💡 *Extensive dynamic type checks for dtypes shapes and structures*
🚀 *[Jump to the Quickstart](https://github.com/ramonhagenaars/nptyping/blob/master/USERDOCS.md#Quickstart)* Example of a hinted `numpy.ndarray`: ```python >>> from nptyping import NDArray, Int, Shape >>> arr: NDArray[Shape["2, 2"], Int] ``` Example of a hinted `pandas.DataFrame`: ```python >>> from nptyping import DataFrame, Structure as S >>> df: DataFrame[S["name: Str, x: Float, y: Float"]] ``` ### Installation | Command | Description | |:---------------------------------|-------------------------------| | `pip install nptyping` | Install the basics | | `pip install nptyping[pandas]` | Install with pandas extension | | `pip install nptyping[complete]` | Install with all extensions | ### Instance checking Example of instance checking: ```python >>> import numpy as np >>> isinstance(np.array([[1, 2], [3, 4]]), NDArray[Shape["2, 2"], Int]) True >>> isinstance(np.array([[1., 2.], [3., 4.]]), NDArray[Shape["2, 2"], Int]) False >>> isinstance(np.array([1, 2, 3, 4]), NDArray[Shape["2, 2"], Int]) False ``` `nptyping` also provides `assert_isinstance`. In contrast to `assert isinstance(...)`, this won't cause IDEs or MyPy complaints. Here is an example: ```python >>> from nptyping import assert_isinstance >>> assert_isinstance(np.array([1]), NDArray[Shape["1"], Int]) True ``` ### NumPy Structured arrays You can also express structured arrays using `nptyping.Structure`: ```python >>> from nptyping import Structure >>> Structure["name: Str, age: Int"] Structure['age: Int, name: Str'] ``` Here is an example to see it in action: ```python >>> from typing import Any >>> import numpy as np >>> from nptyping import NDArray, Structure >>> arr = np.array([("Peter", 34)], dtype=[("name", "U10"), ("age", "i4")]) >>> isinstance(arr, NDArray[Any, Structure["name: Str, age: Int"]]) True ``` Subarrays can be expressed with a shape expression between square brackets: ```python >>> Structure["name: Int[3, 3]"] Structure['name: Int[3, 3]'] ``` ### NumPy Record arrays The recarray is a specialization of a structured array. You can use `RecArray` to express them. ```python >>> from nptyping import RecArray >>> arr = np.array([("Peter", 34)], dtype=[("name", "U10"), ("age", "i4")]) >>> rec_arr = arr.view(np.recarray) >>> isinstance(rec_arr, RecArray[Any, Structure["name: Str, age: Int"]]) True ``` ### Pandas DataFrames Pandas DataFrames can be expressed with `Structure` also. To make it more concise, you may want to alias `Structure`. ```python >>> from nptyping import DataFrame, Structure as S >>> df: DataFrame[S["x: Float, y: Float"]] ``` ### More examples Here is an example of a rich expression that can be done with `nptyping`: ```python def plan_route( locations: NDArray[Shape["[from, to], [x, y]"], Float] ) -> NDArray[Shape["* stops, [x, y]"], Float]: ... ``` More examples can be found in the [documentation](https://github.com/ramonhagenaars/nptyping/blob/master/USERDOCS.md#Examples). ## Documentation * [User documentation](https://github.com/ramonhagenaars/nptyping/blob/master/USERDOCS.md)
The place to go if you are using this library.

* [Release notes](https://github.com/ramonhagenaars/nptyping/blob/master/HISTORY.md)
To see what's new, check out the release notes.

* [Contributing](https://github.com/ramonhagenaars/nptyping/blob/master/CONTRIBUTING.md)
If you're interested in developing along, find the guidelines here.

* [License](https://github.com/ramonhagenaars/nptyping/blob/master/LICENSE)
If you want to check out how open source this library is. %package -n python3-nptyping Summary: Type hints for NumPy. Provides: python-nptyping BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-nptyping [![PyPI version](https://img.shields.io/pypi/pyversions/nptyping.svg)](https://img.shields.io/pypi/pyversions/nptyping.svg) [![Downloads](https://pepy.tech/badge/nptyping/month)](https://pepy.tech/project/nptyping) [![PyPI version](https://badge.fury.io/py/nptyping.svg)](https://badge.fury.io/py/nptyping) [![codecov](https://codecov.io/gh/ramonhagenaars/nptyping/branch/master/graph/badge.svg)](https://codecov.io/gh/ramonhagenaars/nptyping) [![Code style](https://img.shields.io/badge/code%20style-black-black)](https://img.shields.io/badge/code%20style-black-black)

🧊 *Type hints for `NumPy`*
🐼 *Type hints for `pandas.DataFrame`*
💡 *Extensive dynamic type checks for dtypes shapes and structures*
🚀 *[Jump to the Quickstart](https://github.com/ramonhagenaars/nptyping/blob/master/USERDOCS.md#Quickstart)* Example of a hinted `numpy.ndarray`: ```python >>> from nptyping import NDArray, Int, Shape >>> arr: NDArray[Shape["2, 2"], Int] ``` Example of a hinted `pandas.DataFrame`: ```python >>> from nptyping import DataFrame, Structure as S >>> df: DataFrame[S["name: Str, x: Float, y: Float"]] ``` ### Installation | Command | Description | |:---------------------------------|-------------------------------| | `pip install nptyping` | Install the basics | | `pip install nptyping[pandas]` | Install with pandas extension | | `pip install nptyping[complete]` | Install with all extensions | ### Instance checking Example of instance checking: ```python >>> import numpy as np >>> isinstance(np.array([[1, 2], [3, 4]]), NDArray[Shape["2, 2"], Int]) True >>> isinstance(np.array([[1., 2.], [3., 4.]]), NDArray[Shape["2, 2"], Int]) False >>> isinstance(np.array([1, 2, 3, 4]), NDArray[Shape["2, 2"], Int]) False ``` `nptyping` also provides `assert_isinstance`. In contrast to `assert isinstance(...)`, this won't cause IDEs or MyPy complaints. Here is an example: ```python >>> from nptyping import assert_isinstance >>> assert_isinstance(np.array([1]), NDArray[Shape["1"], Int]) True ``` ### NumPy Structured arrays You can also express structured arrays using `nptyping.Structure`: ```python >>> from nptyping import Structure >>> Structure["name: Str, age: Int"] Structure['age: Int, name: Str'] ``` Here is an example to see it in action: ```python >>> from typing import Any >>> import numpy as np >>> from nptyping import NDArray, Structure >>> arr = np.array([("Peter", 34)], dtype=[("name", "U10"), ("age", "i4")]) >>> isinstance(arr, NDArray[Any, Structure["name: Str, age: Int"]]) True ``` Subarrays can be expressed with a shape expression between square brackets: ```python >>> Structure["name: Int[3, 3]"] Structure['name: Int[3, 3]'] ``` ### NumPy Record arrays The recarray is a specialization of a structured array. You can use `RecArray` to express them. ```python >>> from nptyping import RecArray >>> arr = np.array([("Peter", 34)], dtype=[("name", "U10"), ("age", "i4")]) >>> rec_arr = arr.view(np.recarray) >>> isinstance(rec_arr, RecArray[Any, Structure["name: Str, age: Int"]]) True ``` ### Pandas DataFrames Pandas DataFrames can be expressed with `Structure` also. To make it more concise, you may want to alias `Structure`. ```python >>> from nptyping import DataFrame, Structure as S >>> df: DataFrame[S["x: Float, y: Float"]] ``` ### More examples Here is an example of a rich expression that can be done with `nptyping`: ```python def plan_route( locations: NDArray[Shape["[from, to], [x, y]"], Float] ) -> NDArray[Shape["* stops, [x, y]"], Float]: ... ``` More examples can be found in the [documentation](https://github.com/ramonhagenaars/nptyping/blob/master/USERDOCS.md#Examples). ## Documentation * [User documentation](https://github.com/ramonhagenaars/nptyping/blob/master/USERDOCS.md)
The place to go if you are using this library.

* [Release notes](https://github.com/ramonhagenaars/nptyping/blob/master/HISTORY.md)
To see what's new, check out the release notes.

* [Contributing](https://github.com/ramonhagenaars/nptyping/blob/master/CONTRIBUTING.md)
If you're interested in developing along, find the guidelines here.

* [License](https://github.com/ramonhagenaars/nptyping/blob/master/LICENSE)
If you want to check out how open source this library is. %package help Summary: Development documents and examples for nptyping Provides: python3-nptyping-doc %description help [![PyPI version](https://img.shields.io/pypi/pyversions/nptyping.svg)](https://img.shields.io/pypi/pyversions/nptyping.svg) [![Downloads](https://pepy.tech/badge/nptyping/month)](https://pepy.tech/project/nptyping) [![PyPI version](https://badge.fury.io/py/nptyping.svg)](https://badge.fury.io/py/nptyping) [![codecov](https://codecov.io/gh/ramonhagenaars/nptyping/branch/master/graph/badge.svg)](https://codecov.io/gh/ramonhagenaars/nptyping) [![Code style](https://img.shields.io/badge/code%20style-black-black)](https://img.shields.io/badge/code%20style-black-black)

🧊 *Type hints for `NumPy`*
🐼 *Type hints for `pandas.DataFrame`*
💡 *Extensive dynamic type checks for dtypes shapes and structures*
🚀 *[Jump to the Quickstart](https://github.com/ramonhagenaars/nptyping/blob/master/USERDOCS.md#Quickstart)* Example of a hinted `numpy.ndarray`: ```python >>> from nptyping import NDArray, Int, Shape >>> arr: NDArray[Shape["2, 2"], Int] ``` Example of a hinted `pandas.DataFrame`: ```python >>> from nptyping import DataFrame, Structure as S >>> df: DataFrame[S["name: Str, x: Float, y: Float"]] ``` ### Installation | Command | Description | |:---------------------------------|-------------------------------| | `pip install nptyping` | Install the basics | | `pip install nptyping[pandas]` | Install with pandas extension | | `pip install nptyping[complete]` | Install with all extensions | ### Instance checking Example of instance checking: ```python >>> import numpy as np >>> isinstance(np.array([[1, 2], [3, 4]]), NDArray[Shape["2, 2"], Int]) True >>> isinstance(np.array([[1., 2.], [3., 4.]]), NDArray[Shape["2, 2"], Int]) False >>> isinstance(np.array([1, 2, 3, 4]), NDArray[Shape["2, 2"], Int]) False ``` `nptyping` also provides `assert_isinstance`. In contrast to `assert isinstance(...)`, this won't cause IDEs or MyPy complaints. Here is an example: ```python >>> from nptyping import assert_isinstance >>> assert_isinstance(np.array([1]), NDArray[Shape["1"], Int]) True ``` ### NumPy Structured arrays You can also express structured arrays using `nptyping.Structure`: ```python >>> from nptyping import Structure >>> Structure["name: Str, age: Int"] Structure['age: Int, name: Str'] ``` Here is an example to see it in action: ```python >>> from typing import Any >>> import numpy as np >>> from nptyping import NDArray, Structure >>> arr = np.array([("Peter", 34)], dtype=[("name", "U10"), ("age", "i4")]) >>> isinstance(arr, NDArray[Any, Structure["name: Str, age: Int"]]) True ``` Subarrays can be expressed with a shape expression between square brackets: ```python >>> Structure["name: Int[3, 3]"] Structure['name: Int[3, 3]'] ``` ### NumPy Record arrays The recarray is a specialization of a structured array. You can use `RecArray` to express them. ```python >>> from nptyping import RecArray >>> arr = np.array([("Peter", 34)], dtype=[("name", "U10"), ("age", "i4")]) >>> rec_arr = arr.view(np.recarray) >>> isinstance(rec_arr, RecArray[Any, Structure["name: Str, age: Int"]]) True ``` ### Pandas DataFrames Pandas DataFrames can be expressed with `Structure` also. To make it more concise, you may want to alias `Structure`. ```python >>> from nptyping import DataFrame, Structure as S >>> df: DataFrame[S["x: Float, y: Float"]] ``` ### More examples Here is an example of a rich expression that can be done with `nptyping`: ```python def plan_route( locations: NDArray[Shape["[from, to], [x, y]"], Float] ) -> NDArray[Shape["* stops, [x, y]"], Float]: ... ``` More examples can be found in the [documentation](https://github.com/ramonhagenaars/nptyping/blob/master/USERDOCS.md#Examples). ## Documentation * [User documentation](https://github.com/ramonhagenaars/nptyping/blob/master/USERDOCS.md)
The place to go if you are using this library.

* [Release notes](https://github.com/ramonhagenaars/nptyping/blob/master/HISTORY.md)
To see what's new, check out the release notes.

* [Contributing](https://github.com/ramonhagenaars/nptyping/blob/master/CONTRIBUTING.md)
If you're interested in developing along, find the guidelines here.

* [License](https://github.com/ramonhagenaars/nptyping/blob/master/LICENSE)
If you want to check out how open source this library is. %prep %autosetup -n nptyping-2.5.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-nptyping -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Thu Mar 09 2023 Python_Bot - 2.5.0-1 - Package Spec generated