%global _empty_manifest_terminate_build 0 Name: python-cachetools Version: 5.3.0 Release: 1 Summary: Extensible memoizing collections and decorators License: MIT URL: https://github.com/tkem/cachetools/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/4d/91/5837e9f9e77342bb4f3ffac19ba216eef2cd9b77d67456af420e7bafe51d/cachetools-5.3.0.tar.gz BuildArch: noarch %description This module provides various memoizing collections and decorators, including variants of the Python Standard Library's `@lru_cache`_ function decorator. from cachetools import cached, LRUCache, TTLCache # speed up calculating Fibonacci numbers with dynamic programming @cached(cache={}) def fib(n): return n if n < 2 else fib(n - 1) + fib(n - 2) # cache least recently used Python Enhancement Proposals @cached(cache=LRUCache(maxsize=32)) def get_pep(num): url = 'http://www.python.org/dev/peps/pep-%04d/' % num with urllib.request.urlopen(url) as s: return s.read() # cache weather data for no longer than ten minutes @cached(cache=TTLCache(maxsize=1024, ttl=600)) def get_weather(place): return owm.weather_at_place(place).get_weather() For the purpose of this module, a *cache* is a mutable_ mapping_ of a fixed maximum size. When the cache is full, i.e. by adding another item the cache would exceed its maximum size, the cache must choose which item(s) to discard based on a suitable `cache algorithm`_. This module provides multiple cache classes based on different cache algorithms, as well as decorators for easily memoizing function and method calls. %package -n python3-cachetools Summary: Extensible memoizing collections and decorators Provides: python-cachetools BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-cachetools This module provides various memoizing collections and decorators, including variants of the Python Standard Library's `@lru_cache`_ function decorator. from cachetools import cached, LRUCache, TTLCache # speed up calculating Fibonacci numbers with dynamic programming @cached(cache={}) def fib(n): return n if n < 2 else fib(n - 1) + fib(n - 2) # cache least recently used Python Enhancement Proposals @cached(cache=LRUCache(maxsize=32)) def get_pep(num): url = 'http://www.python.org/dev/peps/pep-%04d/' % num with urllib.request.urlopen(url) as s: return s.read() # cache weather data for no longer than ten minutes @cached(cache=TTLCache(maxsize=1024, ttl=600)) def get_weather(place): return owm.weather_at_place(place).get_weather() For the purpose of this module, a *cache* is a mutable_ mapping_ of a fixed maximum size. When the cache is full, i.e. by adding another item the cache would exceed its maximum size, the cache must choose which item(s) to discard based on a suitable `cache algorithm`_. This module provides multiple cache classes based on different cache algorithms, as well as decorators for easily memoizing function and method calls. %package help Summary: Development documents and examples for cachetools Provides: python3-cachetools-doc %description help This module provides various memoizing collections and decorators, including variants of the Python Standard Library's `@lru_cache`_ function decorator. from cachetools import cached, LRUCache, TTLCache # speed up calculating Fibonacci numbers with dynamic programming @cached(cache={}) def fib(n): return n if n < 2 else fib(n - 1) + fib(n - 2) # cache least recently used Python Enhancement Proposals @cached(cache=LRUCache(maxsize=32)) def get_pep(num): url = 'http://www.python.org/dev/peps/pep-%04d/' % num with urllib.request.urlopen(url) as s: return s.read() # cache weather data for no longer than ten minutes @cached(cache=TTLCache(maxsize=1024, ttl=600)) def get_weather(place): return owm.weather_at_place(place).get_weather() For the purpose of this module, a *cache* is a mutable_ mapping_ of a fixed maximum size. When the cache is full, i.e. by adding another item the cache would exceed its maximum size, the cache must choose which item(s) to discard based on a suitable `cache algorithm`_. This module provides multiple cache classes based on different cache algorithms, as well as decorators for easily memoizing function and method calls. %prep %autosetup -n cachetools-5.3.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-cachetools -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon Apr 10 2023 Python_Bot - 5.3.0-1 - Package Spec generated