%global _empty_manifest_terminate_build 0 Name: python-featuretools Version: 1.24.0 Release: 1 Summary: a framework for automated feature engineering License: BSD 3-clause URL: https://pypi.org/project/featuretools/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/01/c3/a1b500df4cbf1f071458b4d30c962c90a8e1641ede796987d9a5169bfd68/featuretools-1.24.0.tar.gz BuildArch: noarch Requires: python3-cloudpickle Requires: python3-dask[dataframe] Requires: python3-distributed Requires: python3-holidays Requires: python3-numpy Requires: python3-packaging Requires: python3-pandas Requires: python3-psutil Requires: python3-scipy Requires: python3-tqdm Requires: python3-woodwork[dask] Requires: python3-autonormalize Requires: python3-featuretools[autonormalize,nlp,sklearn,spark,sql,tsfresh,updater] Requires: python3-ruff Requires: python3-black[jupyter] Requires: python3-pre-commit Requires: python3-featuretools[docs,spark,test] Requires: python3-ipython Requires: python3-jupyter Requires: python3-jupyter-client Requires: python3-matplotlib Requires: python3-Sphinx Requires: python3-nbsphinx Requires: python3-nbconvert Requires: python3-pydata-sphinx-theme Requires: python3-sphinx-inline-tabs Requires: python3-sphinx-copybutton Requires: python3-myst-parser Requires: python3-nlp-primitives Requires: python3-autonormalize Requires: python3-click Requires: python3-featuretools[sklearn,spark,test] Requires: python3-nlp-primitives[complete] Requires: python3-featuretools-sklearn-transformer Requires: python3-woodwork[spark] Requires: python3-pyspark Requires: python3-numpy Requires: python3-featuretools-sql Requires: python3-boto3 Requires: python3-composeml Requires: python3-graphviz Requires: python3-moto[all] Requires: python3-pip Requires: python3-pyarrow Requires: python3-pympler Requires: python3-pytest Requires: python3-pytest-cov Requires: python3-pytest-xdist Requires: python3-smart-open Requires: python3-urllib3 Requires: python3-pytest-timeout Requires: python3-featuretools-tsfresh-primitives Requires: python3-alteryx-open-src-update-checker %description
"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to Know about Machine Learning
Featuretools can automatically create a single table of features for any "target dataframe"
```python
>> feature_matrix, features_defs = ft.dfs(entityset=es, target_dataframe_name="customers")
>> feature_matrix.head(5)
```
```
            zip_code  COUNT(transactions)  COUNT(sessions)  SUM(transactions.amount) MODE(sessions.device)  MIN(transactions.amount)  MAX(transactions.amount)  YEAR(join_date)  SKEW(transactions.amount)  DAY(join_date)                   ...                     SUM(sessions.MIN(transactions.amount))  MAX(sessions.SKEW(transactions.amount))  MAX(sessions.MIN(transactions.amount))  SUM(sessions.MEAN(transactions.amount))  STD(sessions.SUM(transactions.amount))  STD(sessions.MEAN(transactions.amount))  SKEW(sessions.MEAN(transactions.amount))  STD(sessions.MAX(transactions.amount))  NUM_UNIQUE(sessions.DAY(session_start))  MIN(sessions.SKEW(transactions.amount))
customer_id                                                                                                                                                                                                                                  ...
1              60091                  131               10                  10236.77               desktop                      5.60                    149.95             2008                   0.070041               1                   ...                                                     169.77                                 0.610052                                   41.95                               791.976505                              175.939423                                 9.299023                                 -0.377150                                5.857976                                        1                                -0.395358
2              02139                  122                8                   9118.81                mobile                      5.81                    149.15             2008                   0.028647              20                   ...                                                     114.85                                 0.492531                                   42.96                               596.243506                              230.333502                                10.925037                                  0.962350                                7.420480                                        1                                -0.470007
3              02139                   78                5                   5758.24               desktop                      6.78                    147.73             2008                   0.070814              10                   ...                                                      64.98                                 0.645728                                   21.77                               369.770121                              471.048551                                 9.819148                                 -0.244976                               12.537259                                        1                                -0.630425
4              60091                  111                8                   8205.28               desktop                      5.73                    149.56             2008                   0.087986              30                   ...                                                      83.53                                 0.516262                                   17.27                               584.673126                              322.883448                                13.065436                                 -0.548969                               12.738488                                        1                                -0.497169
5              02139                   58                4                   4571.37                tablet                      5.91                    148.17             2008                   0.085883              19                   ...                                                      73.09                                 0.830112                                   27.46                               313.448942                              198.522508                                 8.950528                                  0.098885                                5.599228                                        1                                -0.396571
[5 rows x 69 columns]
```
We now have a feature vector for each customer that can be used for machine learning. See the [documentation on Deep Feature Synthesis](https://featuretools.alteryx.com/en/stable/getting_started/afe.html) for more examples.
Featuretools contains many different types of built-in primitives for creating features. If the primitive you need is not included, Featuretools also allows you to [define your own custom primitives](https://featuretools.alteryx.com/en/stable/getting_started/primitives.html#defining-custom-primitives).
## Demos
**Predict Next Purchase**
[Repository](https://github.com/alteryx/open_source_demos/blob/main/predict-next-purchase/) | [Notebook](https://github.com/alteryx/open_source_demos/blob/main/predict-next-purchase/Tutorial.ipynb)
In this demonstration, we use a multi-table dataset of 3 million online grocery orders from Instacart to predict what a customer will buy next. We show how to generate features with automated feature engineering and build an accurate machine learning pipeline using Featuretools, which can be reused for multiple prediction problems. For more advanced users, we show how to scale that pipeline to a large dataset using Dask.
For more examples of how to use Featuretools, check out our [demos](https://www.featuretools.com/demos) page.
## Testing & Development
The Featuretools community welcomes pull requests. Instructions for testing and development are available [here.](https://featuretools.alteryx.com/en/stable/install.html#development)
## Support
The Featuretools community is happy to provide support to users of Featuretools. Project support can be found in four places depending on the type of question:
1. For usage questions, use [Stack Overflow](https://stackoverflow.com/questions/tagged/featuretools) with the `featuretools` tag.
2. For bugs, issues, or feature requests start a [Github issue](https://github.com/alteryx/featuretools/issues).
3. For discussion regarding development on the core library, use [Slack](https://join.slack.com/t/alteryx-oss/shared_invite/zt-182tyvuxv-NzIn6eiCEf8TBziuKp0bNA).
4. For everything else, the core developers can be reached by email at open_source_support@alteryx.com
## Citing Featuretools
If you use Featuretools, please consider citing the following paper:
James Max Kanter, Kalyan Veeramachaneni. [Deep feature synthesis: Towards automating data science endeavors.](https://dai.lids.mit.edu/wp-content/uploads/2017/10/DSAA_DSM_2015.pdf) *IEEE DSAA 2015*.
BibTeX entry:
```bibtex
@inproceedings{kanter2015deep,
  author    = {James Max Kanter and Kalyan Veeramachaneni},
  title     = {Deep feature synthesis: Towards automating data science endeavors},
  booktitle = {2015 {IEEE} International Conference on Data Science and Advanced Analytics, DSAA 2015, Paris, France, October 19-21, 2015},
  pages     = {1--10},
  year      = {2015},
  organization={IEEE}
}
```
## Built at Alteryx
**Featuretools** is an open source project maintained by [Alteryx](https://www.alteryx.com). To see the other open source projects we’re working on visit [Alteryx Open Source](https://www.alteryx.com/open-source). If building impactful data science pipelines is important to you or your business, please get in touch.
%package -n python3-featuretools
Summary:	a framework for automated feature engineering
Provides:	python-featuretools
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-featuretools
"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to Know about Machine Learning
Featuretools can automatically create a single table of features for any "target dataframe"
```python
>> feature_matrix, features_defs = ft.dfs(entityset=es, target_dataframe_name="customers")
>> feature_matrix.head(5)
```
```
            zip_code  COUNT(transactions)  COUNT(sessions)  SUM(transactions.amount) MODE(sessions.device)  MIN(transactions.amount)  MAX(transactions.amount)  YEAR(join_date)  SKEW(transactions.amount)  DAY(join_date)                   ...                     SUM(sessions.MIN(transactions.amount))  MAX(sessions.SKEW(transactions.amount))  MAX(sessions.MIN(transactions.amount))  SUM(sessions.MEAN(transactions.amount))  STD(sessions.SUM(transactions.amount))  STD(sessions.MEAN(transactions.amount))  SKEW(sessions.MEAN(transactions.amount))  STD(sessions.MAX(transactions.amount))  NUM_UNIQUE(sessions.DAY(session_start))  MIN(sessions.SKEW(transactions.amount))
customer_id                                                                                                                                                                                                                                  ...
1              60091                  131               10                  10236.77               desktop                      5.60                    149.95             2008                   0.070041               1                   ...                                                     169.77                                 0.610052                                   41.95                               791.976505                              175.939423                                 9.299023                                 -0.377150                                5.857976                                        1                                -0.395358
2              02139                  122                8                   9118.81                mobile                      5.81                    149.15             2008                   0.028647              20                   ...                                                     114.85                                 0.492531                                   42.96                               596.243506                              230.333502                                10.925037                                  0.962350                                7.420480                                        1                                -0.470007
3              02139                   78                5                   5758.24               desktop                      6.78                    147.73             2008                   0.070814              10                   ...                                                      64.98                                 0.645728                                   21.77                               369.770121                              471.048551                                 9.819148                                 -0.244976                               12.537259                                        1                                -0.630425
4              60091                  111                8                   8205.28               desktop                      5.73                    149.56             2008                   0.087986              30                   ...                                                      83.53                                 0.516262                                   17.27                               584.673126                              322.883448                                13.065436                                 -0.548969                               12.738488                                        1                                -0.497169
5              02139                   58                4                   4571.37                tablet                      5.91                    148.17             2008                   0.085883              19                   ...                                                      73.09                                 0.830112                                   27.46                               313.448942                              198.522508                                 8.950528                                  0.098885                                5.599228                                        1                                -0.396571
[5 rows x 69 columns]
```
We now have a feature vector for each customer that can be used for machine learning. See the [documentation on Deep Feature Synthesis](https://featuretools.alteryx.com/en/stable/getting_started/afe.html) for more examples.
Featuretools contains many different types of built-in primitives for creating features. If the primitive you need is not included, Featuretools also allows you to [define your own custom primitives](https://featuretools.alteryx.com/en/stable/getting_started/primitives.html#defining-custom-primitives).
## Demos
**Predict Next Purchase**
[Repository](https://github.com/alteryx/open_source_demos/blob/main/predict-next-purchase/) | [Notebook](https://github.com/alteryx/open_source_demos/blob/main/predict-next-purchase/Tutorial.ipynb)
In this demonstration, we use a multi-table dataset of 3 million online grocery orders from Instacart to predict what a customer will buy next. We show how to generate features with automated feature engineering and build an accurate machine learning pipeline using Featuretools, which can be reused for multiple prediction problems. For more advanced users, we show how to scale that pipeline to a large dataset using Dask.
For more examples of how to use Featuretools, check out our [demos](https://www.featuretools.com/demos) page.
## Testing & Development
The Featuretools community welcomes pull requests. Instructions for testing and development are available [here.](https://featuretools.alteryx.com/en/stable/install.html#development)
## Support
The Featuretools community is happy to provide support to users of Featuretools. Project support can be found in four places depending on the type of question:
1. For usage questions, use [Stack Overflow](https://stackoverflow.com/questions/tagged/featuretools) with the `featuretools` tag.
2. For bugs, issues, or feature requests start a [Github issue](https://github.com/alteryx/featuretools/issues).
3. For discussion regarding development on the core library, use [Slack](https://join.slack.com/t/alteryx-oss/shared_invite/zt-182tyvuxv-NzIn6eiCEf8TBziuKp0bNA).
4. For everything else, the core developers can be reached by email at open_source_support@alteryx.com
## Citing Featuretools
If you use Featuretools, please consider citing the following paper:
James Max Kanter, Kalyan Veeramachaneni. [Deep feature synthesis: Towards automating data science endeavors.](https://dai.lids.mit.edu/wp-content/uploads/2017/10/DSAA_DSM_2015.pdf) *IEEE DSAA 2015*.
BibTeX entry:
```bibtex
@inproceedings{kanter2015deep,
  author    = {James Max Kanter and Kalyan Veeramachaneni},
  title     = {Deep feature synthesis: Towards automating data science endeavors},
  booktitle = {2015 {IEEE} International Conference on Data Science and Advanced Analytics, DSAA 2015, Paris, France, October 19-21, 2015},
  pages     = {1--10},
  year      = {2015},
  organization={IEEE}
}
```
## Built at Alteryx
**Featuretools** is an open source project maintained by [Alteryx](https://www.alteryx.com). To see the other open source projects we’re working on visit [Alteryx Open Source](https://www.alteryx.com/open-source). If building impactful data science pipelines is important to you or your business, please get in touch.
%package help
Summary:	Development documents and examples for featuretools
Provides:	python3-featuretools-doc
%description help
"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to Know about Machine Learning
Featuretools can automatically create a single table of features for any "target dataframe"
```python
>> feature_matrix, features_defs = ft.dfs(entityset=es, target_dataframe_name="customers")
>> feature_matrix.head(5)
```
```
            zip_code  COUNT(transactions)  COUNT(sessions)  SUM(transactions.amount) MODE(sessions.device)  MIN(transactions.amount)  MAX(transactions.amount)  YEAR(join_date)  SKEW(transactions.amount)  DAY(join_date)                   ...                     SUM(sessions.MIN(transactions.amount))  MAX(sessions.SKEW(transactions.amount))  MAX(sessions.MIN(transactions.amount))  SUM(sessions.MEAN(transactions.amount))  STD(sessions.SUM(transactions.amount))  STD(sessions.MEAN(transactions.amount))  SKEW(sessions.MEAN(transactions.amount))  STD(sessions.MAX(transactions.amount))  NUM_UNIQUE(sessions.DAY(session_start))  MIN(sessions.SKEW(transactions.amount))
customer_id                                                                                                                                                                                                                                  ...
1              60091                  131               10                  10236.77               desktop                      5.60                    149.95             2008                   0.070041               1                   ...                                                     169.77                                 0.610052                                   41.95                               791.976505                              175.939423                                 9.299023                                 -0.377150                                5.857976                                        1                                -0.395358
2              02139                  122                8                   9118.81                mobile                      5.81                    149.15             2008                   0.028647              20                   ...                                                     114.85                                 0.492531                                   42.96                               596.243506                              230.333502                                10.925037                                  0.962350                                7.420480                                        1                                -0.470007
3              02139                   78                5                   5758.24               desktop                      6.78                    147.73             2008                   0.070814              10                   ...                                                      64.98                                 0.645728                                   21.77                               369.770121                              471.048551                                 9.819148                                 -0.244976                               12.537259                                        1                                -0.630425
4              60091                  111                8                   8205.28               desktop                      5.73                    149.56             2008                   0.087986              30                   ...                                                      83.53                                 0.516262                                   17.27                               584.673126                              322.883448                                13.065436                                 -0.548969                               12.738488                                        1                                -0.497169
5              02139                   58                4                   4571.37                tablet                      5.91                    148.17             2008                   0.085883              19                   ...                                                      73.09                                 0.830112                                   27.46                               313.448942                              198.522508                                 8.950528                                  0.098885                                5.599228                                        1                                -0.396571
[5 rows x 69 columns]
```
We now have a feature vector for each customer that can be used for machine learning. See the [documentation on Deep Feature Synthesis](https://featuretools.alteryx.com/en/stable/getting_started/afe.html) for more examples.
Featuretools contains many different types of built-in primitives for creating features. If the primitive you need is not included, Featuretools also allows you to [define your own custom primitives](https://featuretools.alteryx.com/en/stable/getting_started/primitives.html#defining-custom-primitives).
## Demos
**Predict Next Purchase**
[Repository](https://github.com/alteryx/open_source_demos/blob/main/predict-next-purchase/) | [Notebook](https://github.com/alteryx/open_source_demos/blob/main/predict-next-purchase/Tutorial.ipynb)
In this demonstration, we use a multi-table dataset of 3 million online grocery orders from Instacart to predict what a customer will buy next. We show how to generate features with automated feature engineering and build an accurate machine learning pipeline using Featuretools, which can be reused for multiple prediction problems. For more advanced users, we show how to scale that pipeline to a large dataset using Dask.
For more examples of how to use Featuretools, check out our [demos](https://www.featuretools.com/demos) page.
## Testing & Development
The Featuretools community welcomes pull requests. Instructions for testing and development are available [here.](https://featuretools.alteryx.com/en/stable/install.html#development)
## Support
The Featuretools community is happy to provide support to users of Featuretools. Project support can be found in four places depending on the type of question:
1. For usage questions, use [Stack Overflow](https://stackoverflow.com/questions/tagged/featuretools) with the `featuretools` tag.
2. For bugs, issues, or feature requests start a [Github issue](https://github.com/alteryx/featuretools/issues).
3. For discussion regarding development on the core library, use [Slack](https://join.slack.com/t/alteryx-oss/shared_invite/zt-182tyvuxv-NzIn6eiCEf8TBziuKp0bNA).
4. For everything else, the core developers can be reached by email at open_source_support@alteryx.com
## Citing Featuretools
If you use Featuretools, please consider citing the following paper:
James Max Kanter, Kalyan Veeramachaneni. [Deep feature synthesis: Towards automating data science endeavors.](https://dai.lids.mit.edu/wp-content/uploads/2017/10/DSAA_DSM_2015.pdf) *IEEE DSAA 2015*.
BibTeX entry:
```bibtex
@inproceedings{kanter2015deep,
  author    = {James Max Kanter and Kalyan Veeramachaneni},
  title     = {Deep feature synthesis: Towards automating data science endeavors},
  booktitle = {2015 {IEEE} International Conference on Data Science and Advanced Analytics, DSAA 2015, Paris, France, October 19-21, 2015},
  pages     = {1--10},
  year      = {2015},
  organization={IEEE}
}
```
## Built at Alteryx
**Featuretools** is an open source project maintained by [Alteryx](https://www.alteryx.com). To see the other open source projects we’re working on visit [Alteryx Open Source](https://www.alteryx.com/open-source). If building impactful data science pipelines is important to you or your business, please get in touch.
%prep
%autosetup -n featuretools-1.24.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-featuretools -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon Apr 10 2023 Python_Bot