%global _empty_manifest_terminate_build 0 Name: python-pampy Version: 0.3.0 Release: 1 Summary: The Pattern Matching for Python you always dreamed of License: MIT License URL: https://github.com/santinic/pampy Source0: https://mirrors.nju.edu.cn/pypi/web/packages/4c/07/576e0f0ed7c7e8488930a0506fd54926c58b79e45eec400914a8e5edb242/pampy-0.3.0.tar.gz BuildArch: noarch %description ![Pampy in Star Wars](https://raw.githubusercontent.com/santinic/pampy/master/imgs/pampy.png "Pampy in Star Wars") # Pampy: Pattern Matching for Python [![License MIT](https://go-shields.herokuapp.com/license-MIT-blue.png)]() [![Travis-CI Status](https://api.travis-ci.org/santinic/pampy.svg?branch=master)](https://travis-ci.org/santinic/pampy) [![Coverage Status](https://coveralls.io/repos/github/santinic/pampy/badge.svg?branch=master)](https://coveralls.io/github/santinic/pampy?branch=master) [![PyPI version](https://badge.fury.io/py/pampy.svg)](https://badge.fury.io/py/pampy) Pampy is pretty small (150 lines), reasonably fast, and often makes your code more readable and hence easier to reason about. [There is also a JavaScript version, called Pampy.js](https://github.com/santinic/pampy.js). ## You can write many patterns Patterns are evaluated in the order they appear. ## You can write Fibonacci The operator _ means "any other case I didn't think of". ```python from pampy import match, _ def fibonacci(n): return match(n, 1, 1, 2, 1, _, lambda x: fibonacci(x-1) + fibonacci(x-2) ) ``` ## You can write a Lisp calculator in 5 lines ```python from pampy import match, REST, _ def lisp(exp): return match(exp, int, lambda x: x, callable, lambda x: x, (callable, REST), lambda f, rest: f(*map(lisp, rest)), tuple, lambda t: list(map(lisp, t)), ) plus = lambda a, b: a + b minus = lambda a, b: a - b from functools import reduce lisp((plus, 1, 2)) # => 3 lisp((plus, 1, (minus, 4, 2))) # => 3 lisp((reduce, plus, (range, 10))) # => 45 ``` ## You can match so many things! ```python match(x, 3, "this matches the number 3", int, "matches any integer", (str, int), lambda a, b: "a tuple (a, b) you can use in a function", [1, 2, _], "any list of 3 elements that begins with [1, 2]", {'x': _}, "any dict with a key 'x' and any value associated", _, "anything else" ) ``` ## You can match [HEAD, TAIL] ```python from pampy import match, HEAD, TAIL, _ x = [1, 2, 3] match(x, [1, TAIL], lambda t: t) # => [2, 3] match(x, [HEAD, TAIL], lambda h, t: (h, t)) # => (1, [2, 3]) ``` `TAIL` and `REST` actually mean the same thing. ## You can nest lists and tuples ```python from pampy import match, _ x = [1, [2, 3], 4] match(x, [1, [_, 3], _], lambda a, b: [1, [a, 3], b]) # => [1, [2, 3], 4] ``` ## You can nest dicts. And you can use _ as key! ```python pet = { 'type': 'dog', 'details': { 'age': 3 } } match(pet, { 'details': { 'age': _ } }, lambda age: age) # => 3 match(pet, { _ : { 'age': _ } }, lambda a, b: (a, b)) # => ('details', 3) ``` It feels like putting multiple _ inside dicts shouldn't work. Isn't ordering in dicts not guaranteed ? But it does because [in Python 3.7, dict maintains insertion key order by default](https://mail.python.org/pipermail/python-dev/2017-December/151283.html) ## You can match class hierarchies ```python class Pet: pass class Dog(Pet): pass class Cat(Pet): pass class Hamster(Pet): pass def what_is(x): return match(x, Dog, 'dog', Cat, 'cat', Pet, 'any other pet', _, 'this is not a pet at all', ) what_is(Cat()) # => 'cat' what_is(Dog()) # => 'dog' what_is(Hamster()) # => 'any other pet' what_is(Pet()) # => 'any other pet' what_is(42) # => 'this is not a pet at all' ``` ## Using Dataclasses Pampy supports Python 3.7 dataclasses. You can pass the operator `_` as arguments and it will match those fields. ```python @dataclass class Pet: name: str age: int pet = Pet('rover', 7) match(pet, Pet('rover', _), lambda age: age) # => 7 match(pet, Pet(_, 7), lambda name: name) # => 'rover' match(pet, Pet(_, _), lambda name, age: (name, age)) # => ('rover', 7) ``` ## Using typing Pampy supports typing annotations. ```python class Pet: pass class Dog(Pet): pass class Cat(Pet): pass class Hamster(Pet): pass timestamp = NewType("year", Union[int, float]) def annotated(a: Tuple[int, float], b: str, c: E) -> timestamp: pass match((1, 2), Tuple[int, int], lambda a, b: (a, b)) # => (1, 2) match(1, Union[str, int], lambda x: x) # => 1 match('a', Union[str, int], lambda x: x) # => 'a' match('a', Optional[str], lambda x: x) # => 'a' match(None, Optional[str], lambda x: x) # => None match(Pet, Type[Pet], lambda x: x) # => Pet match(Cat, Type[Pet], lambda x: x) # => Cat match(Dog, Any, lambda x: x) # => Dog match(Dog, Type[Any], lambda x: x) # => Dog match(15, timestamp, lambda x: x) # => 15 match(10.0, timestamp, lambda x: x) # => 10.0 match([1, 2, 3], List[int], lambda x: x) # => [1, 2, 3] match({'a': 1, 'b': 2}, Dict[str, int], lambda x: x) # => {'a': 1, 'b': 2} match(annotated, Callable[[Tuple[int, float], str, Pet], timestamp], lambda x: x ) # => annotated ``` For iterable generics actual type of value is guessed based on the first element. ```python match([1, 2, 3], List[int], lambda x: x) # => [1, 2, 3] match([1, "b", "a"], List[int], lambda x: x) # => [1, "b", "a"] match(["a", "b", "c"], List[int], lambda x: x) # raises MatchError match(["a", "b", "c"], List[Union[str, int]], lambda x: x) # ["a", "b", "c"] match({"a": 1, "b": 2}, Dict[str, int], lambda x: x) # {"a": 1, "b": 2} match({"a": 1, "b": "dog"}, Dict[str, int], lambda x: x) # {"a": 1, "b": "dog"} match({"a": 1, 1: 2}, Dict[str, int], lambda x: x) # {"a": 1, 1: 2} match({2: 1, 1: 2}, Dict[str, int], lambda x: x) # raises MatchError match({2: 1, 1: 2}, Dict[Union[str, int], int], lambda x: x) # {2: 1, 1: 2} ``` Iterable generics also match with any of their subtypes. ```python match([1, 2, 3], Iterable[int], lambda x: x) # => [1, 2, 3] match({1, 2, 3}, Iterable[int], lambda x: x) # => {1, 2, 3} match(range(10), Iterable[int], lambda x: x) # => range(10) match([1, 2, 3], List[int], lambda x: x) # => [1, 2, 3] match({1, 2, 3}, List[int], lambda x: x) # => raises MatchError match(range(10), List[int], lambda x: x) # => raises MatchError match([1, 2, 3], Set[int], lambda x: x) # => raises MatchError match({1, 2, 3}, Set[int], lambda x: x) # => {1, 2, 3} match(range(10), Set[int], lambda x: x) # => raises MatchError ``` For Callable any arg without annotation treated as Any. ```python def annotated(a: int, b: int) -> float: pass def not_annotated(a, b): pass def partially_annotated(a, b: float): pass match(annotated, Callable[[int, int], float], lambda x: x) # => annotated match(not_annotated, Callable[[int, int], float], lambda x: x) # => raises MatchError match(not_annotated, Callable[[Any, Any], Any], lambda x: x) # => not_annotated match(annotated, Callable[[Any, Any], Any], lambda x: x) # => raises MatchError match(partially_annotated, Callable[[Any, float], Any], lambda x: x ) # => partially_annotated ``` TypeVar is not supported. ## All the things you can match As Pattern you can use any Python type, any class, or any Python value. The operator `_` and built-in types like `int` or `str`, extract variables that are passed to functions. Types and Classes are matched via `instanceof(value, pattern)`. `Iterable` Patterns match recursively through all their elements. The same goes for dictionaries. | Pattern Example | What it means | Matched Example | Arguments Passed to function | NOT Matched Example | | --------------- | --------------| --------------- | ----------------------------- | ------------------ | | `"hello"` | only the string `"hello"` matches | `"hello"` | nothing | any other value | | `None` | only `None` | `None` | nothing | any other value | | `int` | Any integer | `42` | `42` | any other value | | `float` | Any float number | `2.35` | `2.35` | any other value | | `str` | Any string | `"hello"` | `"hello"` | any other value | | `tuple` | Any tuple | `(1, 2)` | `(1, 2)` | any other value | | `list` | Any list | `[1, 2]` | `[1, 2]` | any other value | | `MyClass` | Any instance of MyClass. **And any object that extends MyClass.** | `MyClass()` | that instance | any other object | | `_` | Any object (even None) | | that value | | | `ANY` | The same as `_` | | that value | | | `(int, int)` | A tuple made of any two integers | `(1, 2)` | `1` and `2` | (True, False) | | `[1, 2, _]` | A list that starts with 1, 2 and ends with any value | `[1, 2, 3]` | `3` | `[1, 2, 3, 4]` | | `[1, 2, TAIL]` | A list that start with 1, 2 and ends with any sequence | `[1, 2, 3, 4]`| `[3, 4]` | `[1, 7, 7, 7]` | | `{'type':'dog', age: _ }` | Any dict with `type: "dog"` and with an age | `{"type":"dog", "age": 3}` | `3` | `{"type":"cat", "age":2}` | | `{'type':'dog', age: int }` | Any dict with `type: "dog"` and with an `int` age | `{"type":"dog", "age": 3}` | `3` | `{"type":"dog", "age":2.3}` | | `re.compile('(\w+)-(\w+)-cat$')` | Any string that matches that regular expression expr | `"my-fuffy-cat"` | `"my"` and `"puffy"` | `"fuffy-dog"` | | `Pet(name=_, age=7)` | Any Pet dataclass with `age == 7` | `Pet('rover', 7)` | `['rover']` | `Pet('rover', 8)` | | `Any` | The same as `_` | | that value | | | `Union[int, float, None]` | Any integer or float number or None | `2.35` | `2.35` | any other value | | `Optional[int]` | The same as `Union[int, None]` | `2` | `2` | any other value | | `Type[MyClass]` | Any subclass of MyClass. **And any class that extends MyClass.** | `MyClass` | that class | any other object | | `Callable[[int], float]` | Any callable with exactly that signature | `def a(q:int) -> float: ...` | that function | `def a(q) -> float: ...` | | `Tuple[MyClass, int, float]` | The same as `(MyClass, int, float)` | | | | | `Mapping[str, int]` Any subtype of `Mapping` acceptable too | any mapping or subtype of mapping with string keys and integer values | `{'a': 2, 'b': 3}` | that dict | `{'a': 'b', 'b': 'c'}` | | `Iterable[int]` Any subtype of `Iterable` acceptable too | any iterable or subtype of iterable with integer values | `range(10)` and `[1, 2, 3]` | that iterable | `['a', 'b', 'v']` | ## Using default By default `match()` is strict. If no pattern matches, it raises a `MatchError`. You can instead provide a fallback value using `default` to be used when nothing matches. ``` >>> match([1, 2], [1, 2, 3], "whatever") MatchError: '_' not provided. This case is not handled: [1, 2] >>> match([1, 2], [1, 2, 3], "whatever", default=False) False ``` ## Using Regular Expressions Pampy supports Python's Regex. You can pass a compiled regex as pattern, and Pampy is going to run `patter.search()`, and then pass to the action function the result of `.groups()`. ```python def what_is(pet): return match(pet, re.compile('(\w+)-(\w+)-cat$'), lambda name, my: 'cat '+name, re.compile('(\w+)-(\w+)-dog$'), lambda name, my: 'dog '+name, _, "something else" ) what_is('fuffy-my-dog') # => 'dog fuffy' what_is('puffy-her-dog') # => 'dog puffy' what_is('carla-your-cat') # => 'cat carla' what_is('roger-my-hamster') # => 'something else' ``` ## Install for Python3 Pampy works in Python >= 3.6 [Because dict matching can work only in the latest Pythons](https://mail.python.org/pipermail/python-dev/2017-December/151283.html). To install it: ```$ pip install pampy``` or ```$ pip3 install pampy``` ## If you really must use Python2 Pampy is Python3-first, but you can use most of its features in Python2 via [this backport](https://pypi.org/project/backports.pampy/) by Manuel Barkhau: ```pip install backports.pampy``` ```python from backports.pampy import match, HEAD, TAIL, _ ``` %package -n python3-pampy Summary: The Pattern Matching for Python you always dreamed of Provides: python-pampy BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-pampy ![Pampy in Star Wars](https://raw.githubusercontent.com/santinic/pampy/master/imgs/pampy.png "Pampy in Star Wars") # Pampy: Pattern Matching for Python [![License MIT](https://go-shields.herokuapp.com/license-MIT-blue.png)]() [![Travis-CI Status](https://api.travis-ci.org/santinic/pampy.svg?branch=master)](https://travis-ci.org/santinic/pampy) [![Coverage Status](https://coveralls.io/repos/github/santinic/pampy/badge.svg?branch=master)](https://coveralls.io/github/santinic/pampy?branch=master) [![PyPI version](https://badge.fury.io/py/pampy.svg)](https://badge.fury.io/py/pampy) Pampy is pretty small (150 lines), reasonably fast, and often makes your code more readable and hence easier to reason about. [There is also a JavaScript version, called Pampy.js](https://github.com/santinic/pampy.js). ## You can write many patterns Patterns are evaluated in the order they appear. ## You can write Fibonacci The operator _ means "any other case I didn't think of". ```python from pampy import match, _ def fibonacci(n): return match(n, 1, 1, 2, 1, _, lambda x: fibonacci(x-1) + fibonacci(x-2) ) ``` ## You can write a Lisp calculator in 5 lines ```python from pampy import match, REST, _ def lisp(exp): return match(exp, int, lambda x: x, callable, lambda x: x, (callable, REST), lambda f, rest: f(*map(lisp, rest)), tuple, lambda t: list(map(lisp, t)), ) plus = lambda a, b: a + b minus = lambda a, b: a - b from functools import reduce lisp((plus, 1, 2)) # => 3 lisp((plus, 1, (minus, 4, 2))) # => 3 lisp((reduce, plus, (range, 10))) # => 45 ``` ## You can match so many things! ```python match(x, 3, "this matches the number 3", int, "matches any integer", (str, int), lambda a, b: "a tuple (a, b) you can use in a function", [1, 2, _], "any list of 3 elements that begins with [1, 2]", {'x': _}, "any dict with a key 'x' and any value associated", _, "anything else" ) ``` ## You can match [HEAD, TAIL] ```python from pampy import match, HEAD, TAIL, _ x = [1, 2, 3] match(x, [1, TAIL], lambda t: t) # => [2, 3] match(x, [HEAD, TAIL], lambda h, t: (h, t)) # => (1, [2, 3]) ``` `TAIL` and `REST` actually mean the same thing. ## You can nest lists and tuples ```python from pampy import match, _ x = [1, [2, 3], 4] match(x, [1, [_, 3], _], lambda a, b: [1, [a, 3], b]) # => [1, [2, 3], 4] ``` ## You can nest dicts. And you can use _ as key! ```python pet = { 'type': 'dog', 'details': { 'age': 3 } } match(pet, { 'details': { 'age': _ } }, lambda age: age) # => 3 match(pet, { _ : { 'age': _ } }, lambda a, b: (a, b)) # => ('details', 3) ``` It feels like putting multiple _ inside dicts shouldn't work. Isn't ordering in dicts not guaranteed ? But it does because [in Python 3.7, dict maintains insertion key order by default](https://mail.python.org/pipermail/python-dev/2017-December/151283.html) ## You can match class hierarchies ```python class Pet: pass class Dog(Pet): pass class Cat(Pet): pass class Hamster(Pet): pass def what_is(x): return match(x, Dog, 'dog', Cat, 'cat', Pet, 'any other pet', _, 'this is not a pet at all', ) what_is(Cat()) # => 'cat' what_is(Dog()) # => 'dog' what_is(Hamster()) # => 'any other pet' what_is(Pet()) # => 'any other pet' what_is(42) # => 'this is not a pet at all' ``` ## Using Dataclasses Pampy supports Python 3.7 dataclasses. You can pass the operator `_` as arguments and it will match those fields. ```python @dataclass class Pet: name: str age: int pet = Pet('rover', 7) match(pet, Pet('rover', _), lambda age: age) # => 7 match(pet, Pet(_, 7), lambda name: name) # => 'rover' match(pet, Pet(_, _), lambda name, age: (name, age)) # => ('rover', 7) ``` ## Using typing Pampy supports typing annotations. ```python class Pet: pass class Dog(Pet): pass class Cat(Pet): pass class Hamster(Pet): pass timestamp = NewType("year", Union[int, float]) def annotated(a: Tuple[int, float], b: str, c: E) -> timestamp: pass match((1, 2), Tuple[int, int], lambda a, b: (a, b)) # => (1, 2) match(1, Union[str, int], lambda x: x) # => 1 match('a', Union[str, int], lambda x: x) # => 'a' match('a', Optional[str], lambda x: x) # => 'a' match(None, Optional[str], lambda x: x) # => None match(Pet, Type[Pet], lambda x: x) # => Pet match(Cat, Type[Pet], lambda x: x) # => Cat match(Dog, Any, lambda x: x) # => Dog match(Dog, Type[Any], lambda x: x) # => Dog match(15, timestamp, lambda x: x) # => 15 match(10.0, timestamp, lambda x: x) # => 10.0 match([1, 2, 3], List[int], lambda x: x) # => [1, 2, 3] match({'a': 1, 'b': 2}, Dict[str, int], lambda x: x) # => {'a': 1, 'b': 2} match(annotated, Callable[[Tuple[int, float], str, Pet], timestamp], lambda x: x ) # => annotated ``` For iterable generics actual type of value is guessed based on the first element. ```python match([1, 2, 3], List[int], lambda x: x) # => [1, 2, 3] match([1, "b", "a"], List[int], lambda x: x) # => [1, "b", "a"] match(["a", "b", "c"], List[int], lambda x: x) # raises MatchError match(["a", "b", "c"], List[Union[str, int]], lambda x: x) # ["a", "b", "c"] match({"a": 1, "b": 2}, Dict[str, int], lambda x: x) # {"a": 1, "b": 2} match({"a": 1, "b": "dog"}, Dict[str, int], lambda x: x) # {"a": 1, "b": "dog"} match({"a": 1, 1: 2}, Dict[str, int], lambda x: x) # {"a": 1, 1: 2} match({2: 1, 1: 2}, Dict[str, int], lambda x: x) # raises MatchError match({2: 1, 1: 2}, Dict[Union[str, int], int], lambda x: x) # {2: 1, 1: 2} ``` Iterable generics also match with any of their subtypes. ```python match([1, 2, 3], Iterable[int], lambda x: x) # => [1, 2, 3] match({1, 2, 3}, Iterable[int], lambda x: x) # => {1, 2, 3} match(range(10), Iterable[int], lambda x: x) # => range(10) match([1, 2, 3], List[int], lambda x: x) # => [1, 2, 3] match({1, 2, 3}, List[int], lambda x: x) # => raises MatchError match(range(10), List[int], lambda x: x) # => raises MatchError match([1, 2, 3], Set[int], lambda x: x) # => raises MatchError match({1, 2, 3}, Set[int], lambda x: x) # => {1, 2, 3} match(range(10), Set[int], lambda x: x) # => raises MatchError ``` For Callable any arg without annotation treated as Any. ```python def annotated(a: int, b: int) -> float: pass def not_annotated(a, b): pass def partially_annotated(a, b: float): pass match(annotated, Callable[[int, int], float], lambda x: x) # => annotated match(not_annotated, Callable[[int, int], float], lambda x: x) # => raises MatchError match(not_annotated, Callable[[Any, Any], Any], lambda x: x) # => not_annotated match(annotated, Callable[[Any, Any], Any], lambda x: x) # => raises MatchError match(partially_annotated, Callable[[Any, float], Any], lambda x: x ) # => partially_annotated ``` TypeVar is not supported. ## All the things you can match As Pattern you can use any Python type, any class, or any Python value. The operator `_` and built-in types like `int` or `str`, extract variables that are passed to functions. Types and Classes are matched via `instanceof(value, pattern)`. `Iterable` Patterns match recursively through all their elements. The same goes for dictionaries. | Pattern Example | What it means | Matched Example | Arguments Passed to function | NOT Matched Example | | --------------- | --------------| --------------- | ----------------------------- | ------------------ | | `"hello"` | only the string `"hello"` matches | `"hello"` | nothing | any other value | | `None` | only `None` | `None` | nothing | any other value | | `int` | Any integer | `42` | `42` | any other value | | `float` | Any float number | `2.35` | `2.35` | any other value | | `str` | Any string | `"hello"` | `"hello"` | any other value | | `tuple` | Any tuple | `(1, 2)` | `(1, 2)` | any other value | | `list` | Any list | `[1, 2]` | `[1, 2]` | any other value | | `MyClass` | Any instance of MyClass. **And any object that extends MyClass.** | `MyClass()` | that instance | any other object | | `_` | Any object (even None) | | that value | | | `ANY` | The same as `_` | | that value | | | `(int, int)` | A tuple made of any two integers | `(1, 2)` | `1` and `2` | (True, False) | | `[1, 2, _]` | A list that starts with 1, 2 and ends with any value | `[1, 2, 3]` | `3` | `[1, 2, 3, 4]` | | `[1, 2, TAIL]` | A list that start with 1, 2 and ends with any sequence | `[1, 2, 3, 4]`| `[3, 4]` | `[1, 7, 7, 7]` | | `{'type':'dog', age: _ }` | Any dict with `type: "dog"` and with an age | `{"type":"dog", "age": 3}` | `3` | `{"type":"cat", "age":2}` | | `{'type':'dog', age: int }` | Any dict with `type: "dog"` and with an `int` age | `{"type":"dog", "age": 3}` | `3` | `{"type":"dog", "age":2.3}` | | `re.compile('(\w+)-(\w+)-cat$')` | Any string that matches that regular expression expr | `"my-fuffy-cat"` | `"my"` and `"puffy"` | `"fuffy-dog"` | | `Pet(name=_, age=7)` | Any Pet dataclass with `age == 7` | `Pet('rover', 7)` | `['rover']` | `Pet('rover', 8)` | | `Any` | The same as `_` | | that value | | | `Union[int, float, None]` | Any integer or float number or None | `2.35` | `2.35` | any other value | | `Optional[int]` | The same as `Union[int, None]` | `2` | `2` | any other value | | `Type[MyClass]` | Any subclass of MyClass. **And any class that extends MyClass.** | `MyClass` | that class | any other object | | `Callable[[int], float]` | Any callable with exactly that signature | `def a(q:int) -> float: ...` | that function | `def a(q) -> float: ...` | | `Tuple[MyClass, int, float]` | The same as `(MyClass, int, float)` | | | | | `Mapping[str, int]` Any subtype of `Mapping` acceptable too | any mapping or subtype of mapping with string keys and integer values | `{'a': 2, 'b': 3}` | that dict | `{'a': 'b', 'b': 'c'}` | | `Iterable[int]` Any subtype of `Iterable` acceptable too | any iterable or subtype of iterable with integer values | `range(10)` and `[1, 2, 3]` | that iterable | `['a', 'b', 'v']` | ## Using default By default `match()` is strict. If no pattern matches, it raises a `MatchError`. You can instead provide a fallback value using `default` to be used when nothing matches. ``` >>> match([1, 2], [1, 2, 3], "whatever") MatchError: '_' not provided. This case is not handled: [1, 2] >>> match([1, 2], [1, 2, 3], "whatever", default=False) False ``` ## Using Regular Expressions Pampy supports Python's Regex. You can pass a compiled regex as pattern, and Pampy is going to run `patter.search()`, and then pass to the action function the result of `.groups()`. ```python def what_is(pet): return match(pet, re.compile('(\w+)-(\w+)-cat$'), lambda name, my: 'cat '+name, re.compile('(\w+)-(\w+)-dog$'), lambda name, my: 'dog '+name, _, "something else" ) what_is('fuffy-my-dog') # => 'dog fuffy' what_is('puffy-her-dog') # => 'dog puffy' what_is('carla-your-cat') # => 'cat carla' what_is('roger-my-hamster') # => 'something else' ``` ## Install for Python3 Pampy works in Python >= 3.6 [Because dict matching can work only in the latest Pythons](https://mail.python.org/pipermail/python-dev/2017-December/151283.html). To install it: ```$ pip install pampy``` or ```$ pip3 install pampy``` ## If you really must use Python2 Pampy is Python3-first, but you can use most of its features in Python2 via [this backport](https://pypi.org/project/backports.pampy/) by Manuel Barkhau: ```pip install backports.pampy``` ```python from backports.pampy import match, HEAD, TAIL, _ ``` %package help Summary: Development documents and examples for pampy Provides: python3-pampy-doc %description help ![Pampy in Star Wars](https://raw.githubusercontent.com/santinic/pampy/master/imgs/pampy.png "Pampy in Star Wars") # Pampy: Pattern Matching for Python [![License MIT](https://go-shields.herokuapp.com/license-MIT-blue.png)]() [![Travis-CI Status](https://api.travis-ci.org/santinic/pampy.svg?branch=master)](https://travis-ci.org/santinic/pampy) [![Coverage Status](https://coveralls.io/repos/github/santinic/pampy/badge.svg?branch=master)](https://coveralls.io/github/santinic/pampy?branch=master) [![PyPI version](https://badge.fury.io/py/pampy.svg)](https://badge.fury.io/py/pampy) Pampy is pretty small (150 lines), reasonably fast, and often makes your code more readable and hence easier to reason about. [There is also a JavaScript version, called Pampy.js](https://github.com/santinic/pampy.js). ## You can write many patterns Patterns are evaluated in the order they appear. ## You can write Fibonacci The operator _ means "any other case I didn't think of". ```python from pampy import match, _ def fibonacci(n): return match(n, 1, 1, 2, 1, _, lambda x: fibonacci(x-1) + fibonacci(x-2) ) ``` ## You can write a Lisp calculator in 5 lines ```python from pampy import match, REST, _ def lisp(exp): return match(exp, int, lambda x: x, callable, lambda x: x, (callable, REST), lambda f, rest: f(*map(lisp, rest)), tuple, lambda t: list(map(lisp, t)), ) plus = lambda a, b: a + b minus = lambda a, b: a - b from functools import reduce lisp((plus, 1, 2)) # => 3 lisp((plus, 1, (minus, 4, 2))) # => 3 lisp((reduce, plus, (range, 10))) # => 45 ``` ## You can match so many things! ```python match(x, 3, "this matches the number 3", int, "matches any integer", (str, int), lambda a, b: "a tuple (a, b) you can use in a function", [1, 2, _], "any list of 3 elements that begins with [1, 2]", {'x': _}, "any dict with a key 'x' and any value associated", _, "anything else" ) ``` ## You can match [HEAD, TAIL] ```python from pampy import match, HEAD, TAIL, _ x = [1, 2, 3] match(x, [1, TAIL], lambda t: t) # => [2, 3] match(x, [HEAD, TAIL], lambda h, t: (h, t)) # => (1, [2, 3]) ``` `TAIL` and `REST` actually mean the same thing. ## You can nest lists and tuples ```python from pampy import match, _ x = [1, [2, 3], 4] match(x, [1, [_, 3], _], lambda a, b: [1, [a, 3], b]) # => [1, [2, 3], 4] ``` ## You can nest dicts. And you can use _ as key! ```python pet = { 'type': 'dog', 'details': { 'age': 3 } } match(pet, { 'details': { 'age': _ } }, lambda age: age) # => 3 match(pet, { _ : { 'age': _ } }, lambda a, b: (a, b)) # => ('details', 3) ``` It feels like putting multiple _ inside dicts shouldn't work. Isn't ordering in dicts not guaranteed ? But it does because [in Python 3.7, dict maintains insertion key order by default](https://mail.python.org/pipermail/python-dev/2017-December/151283.html) ## You can match class hierarchies ```python class Pet: pass class Dog(Pet): pass class Cat(Pet): pass class Hamster(Pet): pass def what_is(x): return match(x, Dog, 'dog', Cat, 'cat', Pet, 'any other pet', _, 'this is not a pet at all', ) what_is(Cat()) # => 'cat' what_is(Dog()) # => 'dog' what_is(Hamster()) # => 'any other pet' what_is(Pet()) # => 'any other pet' what_is(42) # => 'this is not a pet at all' ``` ## Using Dataclasses Pampy supports Python 3.7 dataclasses. You can pass the operator `_` as arguments and it will match those fields. ```python @dataclass class Pet: name: str age: int pet = Pet('rover', 7) match(pet, Pet('rover', _), lambda age: age) # => 7 match(pet, Pet(_, 7), lambda name: name) # => 'rover' match(pet, Pet(_, _), lambda name, age: (name, age)) # => ('rover', 7) ``` ## Using typing Pampy supports typing annotations. ```python class Pet: pass class Dog(Pet): pass class Cat(Pet): pass class Hamster(Pet): pass timestamp = NewType("year", Union[int, float]) def annotated(a: Tuple[int, float], b: str, c: E) -> timestamp: pass match((1, 2), Tuple[int, int], lambda a, b: (a, b)) # => (1, 2) match(1, Union[str, int], lambda x: x) # => 1 match('a', Union[str, int], lambda x: x) # => 'a' match('a', Optional[str], lambda x: x) # => 'a' match(None, Optional[str], lambda x: x) # => None match(Pet, Type[Pet], lambda x: x) # => Pet match(Cat, Type[Pet], lambda x: x) # => Cat match(Dog, Any, lambda x: x) # => Dog match(Dog, Type[Any], lambda x: x) # => Dog match(15, timestamp, lambda x: x) # => 15 match(10.0, timestamp, lambda x: x) # => 10.0 match([1, 2, 3], List[int], lambda x: x) # => [1, 2, 3] match({'a': 1, 'b': 2}, Dict[str, int], lambda x: x) # => {'a': 1, 'b': 2} match(annotated, Callable[[Tuple[int, float], str, Pet], timestamp], lambda x: x ) # => annotated ``` For iterable generics actual type of value is guessed based on the first element. ```python match([1, 2, 3], List[int], lambda x: x) # => [1, 2, 3] match([1, "b", "a"], List[int], lambda x: x) # => [1, "b", "a"] match(["a", "b", "c"], List[int], lambda x: x) # raises MatchError match(["a", "b", "c"], List[Union[str, int]], lambda x: x) # ["a", "b", "c"] match({"a": 1, "b": 2}, Dict[str, int], lambda x: x) # {"a": 1, "b": 2} match({"a": 1, "b": "dog"}, Dict[str, int], lambda x: x) # {"a": 1, "b": "dog"} match({"a": 1, 1: 2}, Dict[str, int], lambda x: x) # {"a": 1, 1: 2} match({2: 1, 1: 2}, Dict[str, int], lambda x: x) # raises MatchError match({2: 1, 1: 2}, Dict[Union[str, int], int], lambda x: x) # {2: 1, 1: 2} ``` Iterable generics also match with any of their subtypes. ```python match([1, 2, 3], Iterable[int], lambda x: x) # => [1, 2, 3] match({1, 2, 3}, Iterable[int], lambda x: x) # => {1, 2, 3} match(range(10), Iterable[int], lambda x: x) # => range(10) match([1, 2, 3], List[int], lambda x: x) # => [1, 2, 3] match({1, 2, 3}, List[int], lambda x: x) # => raises MatchError match(range(10), List[int], lambda x: x) # => raises MatchError match([1, 2, 3], Set[int], lambda x: x) # => raises MatchError match({1, 2, 3}, Set[int], lambda x: x) # => {1, 2, 3} match(range(10), Set[int], lambda x: x) # => raises MatchError ``` For Callable any arg without annotation treated as Any. ```python def annotated(a: int, b: int) -> float: pass def not_annotated(a, b): pass def partially_annotated(a, b: float): pass match(annotated, Callable[[int, int], float], lambda x: x) # => annotated match(not_annotated, Callable[[int, int], float], lambda x: x) # => raises MatchError match(not_annotated, Callable[[Any, Any], Any], lambda x: x) # => not_annotated match(annotated, Callable[[Any, Any], Any], lambda x: x) # => raises MatchError match(partially_annotated, Callable[[Any, float], Any], lambda x: x ) # => partially_annotated ``` TypeVar is not supported. ## All the things you can match As Pattern you can use any Python type, any class, or any Python value. The operator `_` and built-in types like `int` or `str`, extract variables that are passed to functions. Types and Classes are matched via `instanceof(value, pattern)`. `Iterable` Patterns match recursively through all their elements. The same goes for dictionaries. | Pattern Example | What it means | Matched Example | Arguments Passed to function | NOT Matched Example | | --------------- | --------------| --------------- | ----------------------------- | ------------------ | | `"hello"` | only the string `"hello"` matches | `"hello"` | nothing | any other value | | `None` | only `None` | `None` | nothing | any other value | | `int` | Any integer | `42` | `42` | any other value | | `float` | Any float number | `2.35` | `2.35` | any other value | | `str` | Any string | `"hello"` | `"hello"` | any other value | | `tuple` | Any tuple | `(1, 2)` | `(1, 2)` | any other value | | `list` | Any list | `[1, 2]` | `[1, 2]` | any other value | | `MyClass` | Any instance of MyClass. **And any object that extends MyClass.** | `MyClass()` | that instance | any other object | | `_` | Any object (even None) | | that value | | | `ANY` | The same as `_` | | that value | | | `(int, int)` | A tuple made of any two integers | `(1, 2)` | `1` and `2` | (True, False) | | `[1, 2, _]` | A list that starts with 1, 2 and ends with any value | `[1, 2, 3]` | `3` | `[1, 2, 3, 4]` | | `[1, 2, TAIL]` | A list that start with 1, 2 and ends with any sequence | `[1, 2, 3, 4]`| `[3, 4]` | `[1, 7, 7, 7]` | | `{'type':'dog', age: _ }` | Any dict with `type: "dog"` and with an age | `{"type":"dog", "age": 3}` | `3` | `{"type":"cat", "age":2}` | | `{'type':'dog', age: int }` | Any dict with `type: "dog"` and with an `int` age | `{"type":"dog", "age": 3}` | `3` | `{"type":"dog", "age":2.3}` | | `re.compile('(\w+)-(\w+)-cat$')` | Any string that matches that regular expression expr | `"my-fuffy-cat"` | `"my"` and `"puffy"` | `"fuffy-dog"` | | `Pet(name=_, age=7)` | Any Pet dataclass with `age == 7` | `Pet('rover', 7)` | `['rover']` | `Pet('rover', 8)` | | `Any` | The same as `_` | | that value | | | `Union[int, float, None]` | Any integer or float number or None | `2.35` | `2.35` | any other value | | `Optional[int]` | The same as `Union[int, None]` | `2` | `2` | any other value | | `Type[MyClass]` | Any subclass of MyClass. **And any class that extends MyClass.** | `MyClass` | that class | any other object | | `Callable[[int], float]` | Any callable with exactly that signature | `def a(q:int) -> float: ...` | that function | `def a(q) -> float: ...` | | `Tuple[MyClass, int, float]` | The same as `(MyClass, int, float)` | | | | | `Mapping[str, int]` Any subtype of `Mapping` acceptable too | any mapping or subtype of mapping with string keys and integer values | `{'a': 2, 'b': 3}` | that dict | `{'a': 'b', 'b': 'c'}` | | `Iterable[int]` Any subtype of `Iterable` acceptable too | any iterable or subtype of iterable with integer values | `range(10)` and `[1, 2, 3]` | that iterable | `['a', 'b', 'v']` | ## Using default By default `match()` is strict. If no pattern matches, it raises a `MatchError`. You can instead provide a fallback value using `default` to be used when nothing matches. ``` >>> match([1, 2], [1, 2, 3], "whatever") MatchError: '_' not provided. This case is not handled: [1, 2] >>> match([1, 2], [1, 2, 3], "whatever", default=False) False ``` ## Using Regular Expressions Pampy supports Python's Regex. You can pass a compiled regex as pattern, and Pampy is going to run `patter.search()`, and then pass to the action function the result of `.groups()`. ```python def what_is(pet): return match(pet, re.compile('(\w+)-(\w+)-cat$'), lambda name, my: 'cat '+name, re.compile('(\w+)-(\w+)-dog$'), lambda name, my: 'dog '+name, _, "something else" ) what_is('fuffy-my-dog') # => 'dog fuffy' what_is('puffy-her-dog') # => 'dog puffy' what_is('carla-your-cat') # => 'cat carla' what_is('roger-my-hamster') # => 'something else' ``` ## Install for Python3 Pampy works in Python >= 3.6 [Because dict matching can work only in the latest Pythons](https://mail.python.org/pipermail/python-dev/2017-December/151283.html). To install it: ```$ pip install pampy``` or ```$ pip3 install pampy``` ## If you really must use Python2 Pampy is Python3-first, but you can use most of its features in Python2 via [this backport](https://pypi.org/project/backports.pampy/) by Manuel Barkhau: ```pip install backports.pampy``` ```python from backports.pampy import match, HEAD, TAIL, _ ``` %prep %autosetup -n pampy-0.3.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-pampy -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Mon Apr 10 2023 Python_Bot - 0.3.0-1 - Package Spec generated