%global _empty_manifest_terminate_build 0 Name: python-simpletransformers Version: 0.63.9 Release: 1 Summary: An easy-to-use wrapper library for the Transformers library. License: Apache Software License URL: https://github.com/ThilinaRajapakse/simpletransformers/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a2/a8/229be18dae36693e2e8f6f1fe4ecfed0b4c8ed6e79a3a493cb6868167815/simpletransformers-0.63.9.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-requests Requires: python3-tqdm Requires: python3-regex Requires: python3-transformers Requires: python3-datasets Requires: python3-scipy Requires: python3-scikit-learn Requires: python3-seqeval Requires: python3-tensorboard Requires: python3-pandas Requires: python3-tokenizers Requires: python3-wandb Requires: python3-streamlit Requires: python3-sentencepiece %description ## Current Pretrained Models For a list of pretrained models, see [Hugging Face docs](https://huggingface.co/pytorch-transformers/pretrained_models.html). The `model_types` available for each task can be found under their respective section. Any pretrained model of that type found in the Hugging Face docs should work. To use any of them set the correct `model_type` and `model_name` in the `args` %package -n python3-simpletransformers Summary: An easy-to-use wrapper library for the Transformers library. Provides: python-simpletransformers BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-simpletransformers ## Current Pretrained Models For a list of pretrained models, see [Hugging Face docs](https://huggingface.co/pytorch-transformers/pretrained_models.html). The `model_types` available for each task can be found under their respective section. Any pretrained model of that type found in the Hugging Face docs should work. To use any of them set the correct `model_type` and `model_name` in the `args` %package help Summary: Development documents and examples for simpletransformers Provides: python3-simpletransformers-doc %description help ## Current Pretrained Models For a list of pretrained models, see [Hugging Face docs](https://huggingface.co/pytorch-transformers/pretrained_models.html). The `model_types` available for each task can be found under their respective section. Any pretrained model of that type found in the Hugging Face docs should work. To use any of them set the correct `model_type` and `model_name` in the `args` %prep %autosetup -n simpletransformers-0.63.9 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-simpletransformers -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 11 2023 Python_Bot - 0.63.9-1 - Package Spec generated