%global _empty_manifest_terminate_build 0 Name: python-torch-geometric Version: 2.3.0 Release: 1 Summary: Graph Neural Network Library for PyTorch License: MIT License URL: https://pypi.org/project/torch-geometric/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/43/b5/be9795db7756e6c1fa2606c8145ec637552487e72c6428ed0b231f8bcbd3/torch_geometric-2.3.0.tar.gz BuildArch: noarch %description [![PyPI Version][pypi-image]][pypi-url] [![Testing Status][testing-image]][testing-url] [![Linting Status][linting-image]][linting-url] [![Docs Status][docs-image]][docs-url] [![Contributing][contributing-image]][contributing-url] [![Slack][slack-image]][slack-url] **[Documentation](https://pytorch-geometric.readthedocs.io)** | **[Paper](https://arxiv.org/abs/1903.02428)** | **[Colab Notebooks and Video Tutorials](https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html)** | **[External Resources](https://pytorch-geometric.readthedocs.io/en/latest/external/resources.html)** | **[OGB Examples](https://github.com/snap-stanford/ogb/tree/master/examples)** **PyG** *(PyTorch Geometric)* is a library built upon [PyTorch](https://pytorch.org/) to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as *[geometric deep learning](http://geometricdeeplearning.com/)*, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, [multi GPU-support](https://github.com/pyg-team/pytorch_geometric/tree/master/examples/multi_gpu), [`torch.compile`](https://pytorch-geometric.readthedocs.io/en/latest/tutorial/compile.html) support, [`DataPipe`](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/datapipe.py) support, a large number of common benchmark datasets (based on simple interfaces to create your own), the [GraphGym](https://pytorch-geometric.readthedocs.io/en/latest/advanced/graphgym.html) experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. **[Click here to join our Slack community!][slack-url]**

%package -n python3-torch-geometric Summary: Graph Neural Network Library for PyTorch Provides: python-torch-geometric BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-torch-geometric [![PyPI Version][pypi-image]][pypi-url] [![Testing Status][testing-image]][testing-url] [![Linting Status][linting-image]][linting-url] [![Docs Status][docs-image]][docs-url] [![Contributing][contributing-image]][contributing-url] [![Slack][slack-image]][slack-url] **[Documentation](https://pytorch-geometric.readthedocs.io)** | **[Paper](https://arxiv.org/abs/1903.02428)** | **[Colab Notebooks and Video Tutorials](https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html)** | **[External Resources](https://pytorch-geometric.readthedocs.io/en/latest/external/resources.html)** | **[OGB Examples](https://github.com/snap-stanford/ogb/tree/master/examples)** **PyG** *(PyTorch Geometric)* is a library built upon [PyTorch](https://pytorch.org/) to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as *[geometric deep learning](http://geometricdeeplearning.com/)*, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, [multi GPU-support](https://github.com/pyg-team/pytorch_geometric/tree/master/examples/multi_gpu), [`torch.compile`](https://pytorch-geometric.readthedocs.io/en/latest/tutorial/compile.html) support, [`DataPipe`](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/datapipe.py) support, a large number of common benchmark datasets (based on simple interfaces to create your own), the [GraphGym](https://pytorch-geometric.readthedocs.io/en/latest/advanced/graphgym.html) experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. **[Click here to join our Slack community!][slack-url]**

%package help Summary: Development documents and examples for torch-geometric Provides: python3-torch-geometric-doc %description help [![PyPI Version][pypi-image]][pypi-url] [![Testing Status][testing-image]][testing-url] [![Linting Status][linting-image]][linting-url] [![Docs Status][docs-image]][docs-url] [![Contributing][contributing-image]][contributing-url] [![Slack][slack-image]][slack-url] **[Documentation](https://pytorch-geometric.readthedocs.io)** | **[Paper](https://arxiv.org/abs/1903.02428)** | **[Colab Notebooks and Video Tutorials](https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html)** | **[External Resources](https://pytorch-geometric.readthedocs.io/en/latest/external/resources.html)** | **[OGB Examples](https://github.com/snap-stanford/ogb/tree/master/examples)** **PyG** *(PyTorch Geometric)* is a library built upon [PyTorch](https://pytorch.org/) to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as *[geometric deep learning](http://geometricdeeplearning.com/)*, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, [multi GPU-support](https://github.com/pyg-team/pytorch_geometric/tree/master/examples/multi_gpu), [`torch.compile`](https://pytorch-geometric.readthedocs.io/en/latest/tutorial/compile.html) support, [`DataPipe`](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/datapipe.py) support, a large number of common benchmark datasets (based on simple interfaces to create your own), the [GraphGym](https://pytorch-geometric.readthedocs.io/en/latest/advanced/graphgym.html) experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. **[Click here to join our Slack community!][slack-url]**

%prep %autosetup -n torch-geometric-2.3.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-torch-geometric -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 11 2023 Python_Bot - 2.3.0-1 - Package Spec generated