%global _empty_manifest_terminate_build 0
Name: python-kats
Version: 0.2.0
Release: 1
Summary: kats: kit to analyze time series
License: MIT
URL: https://github.com/facebookresearch/Kats
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/68/63/f5e85aff48eefa196b0cb9e21debedf451e842925b12fb5b724f765ca249/kats-0.2.0.tar.gz
BuildArch: noarch
Requires: python3-attrs
Requires: python3-deprecated
Requires: python3-matplotlib
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-dateutil
Requires: python3-pystan
Requires: python3-fbprophet
Requires: python3-scikit-learn
Requires: python3-scipy
Requires: python3-seaborn
Requires: python3-setuptools-git
Requires: python3-statsmodels
Requires: python3-LunarCalendar
Requires: python3-ax-platform
Requires: python3-gpytorch
Requires: python3-holidays
Requires: python3-numba
Requires: python3-parameterized
Requires: python3-plotly
Requires: python3-pymannkendall
Requires: python3-pytest-mpl
Requires: python3-torch
Requires: python3-tqdm
Requires: python3-importlib-metadata
Requires: python3-typing-extensions
%description
## Description
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis. Time series analysis is an essential component of Data Science and Engineering work at industry, from understanding the key statistics and characteristics, detecting regressions and anomalies, to forecasting future trends. Kats aims to provide the one-stop shop for time series analysis, including detection, forecasting, feature extraction/embedding, multivariate analysis, etc.
Kats is released by Facebook's *Infrastructure Data Science* team. It is available for download on [PyPI](https://pypi.python.org/pypi/kats/).
## Important links
- Homepage: https://facebookresearch.github.io/Kats/
- Kats Python package: https://pypi.org/project/kats/0.1.0/
- Facebook Engineering Blog Post: https://engineering.fb.com/2021/06/21/open-source/kats/
- Source code repository: https://github.com/facebookresearch/kats
- Contributing: https://github.com/facebookresearch/Kats/blob/master/CONTRIBUTING.md
- Tutorials: https://github.com/facebookresearch/Kats/tree/master/tutorials
## Installation in Python
Kats is on PyPI, so you can use `pip` to install it.
```bash
pip install --upgrade pip
pip install kats
```
If you need only a small subset of Kats, you can install a minimal version of Kats with
```bash
MINIMAL_KATS=1 pip install kats
```
which omits many dependencies (everything in `test_requirements.txt`).
However, this will disable many functionalities and cause `import kats` to log
warnings. See `setup.py` for full details and options.
## Examples
Here are a few sample snippets from a subset of Kats offerings:
### Forecasting
Using `Prophet` model to forecast the `air_passengers` data set.
```python
import pandas as pd
from kats.consts import TimeSeriesData
from kats.models.prophet import ProphetModel, ProphetParams
# take `air_passengers` data as an example
air_passengers_df = pd.read_csv(
"../kats/data/air_passengers.csv",
header=0,
names=["time", "passengers"],
)
# convert to TimeSeriesData object
air_passengers_ts = TimeSeriesData(air_passengers_df)
# create a model param instance
params = ProphetParams(seasonality_mode='multiplicative') # additive mode gives worse results
# create a prophet model instance
m = ProphetModel(air_passengers_ts, params)
# fit model simply by calling m.fit()
m.fit()
# make prediction for next 30 month
fcst = m.predict(steps=30, freq="MS")
```
### Detection
Using `CUSUM` detection algorithm on simulated data set.
```python
# import packages
import numpy as np
import pandas as pd
from kats.consts import TimeSeriesData
from kats.detectors.cusum_detection import CUSUMDetector
# simulate time series with increase
np.random.seed(10)
df_increase = pd.DataFrame(
{
'time': pd.date_range('2019-01-01', '2019-03-01'),
'increase':np.concatenate([np.random.normal(1,0.2,30), np.random.normal(2,0.2,30)]),
}
)
# convert to TimeSeriesData object
timeseries = TimeSeriesData(df_increase)
# run detector and find change points
change_points = CUSUMDetector(timeseries).detector()
```
### TSFeatures
We can extract meaningful features from the given time series data
```python
# Initiate feature extraction class
import pandas as pd
from kats.consts import TimeSeriesData
from kats.tsfeatures.tsfeatures import TsFeatures
# take `air_passengers` data as an example
air_passengers_df = pd.read_csv(
"../kats/data/air_passengers.csv",
header=0,
names=["time", "passengers"],
)
# convert to TimeSeriesData object
air_passengers_ts = TimeSeriesData(air_passengers_df)
# calculate the TsFeatures
features = TsFeatures().transform(air_passengers_ts)
```
## Changelog
### Version 0.2.0
* Forecasting
* Added global model, a neural network forecasting model
* Added [global model tutorial](https://github.com/facebookresearch/Kats/blob/main/tutorials/kats_205_globalmodel.ipynb)
* Consolidated backtesting APIs and some minor bug fixes
* Detection
* Added model optimizer for anomaly/ changepoint detection
* Added evaluators for anomaly/changepoint detection
* Improved simulators, to build synthetic data and inject anomalies
* Added new detectors: ProphetTrendDetector, Dynamic Time Warping based detectors
* Support for meta-learning, to recommend anomaly detection algorithms and parameters for your dataset
* Standardized API for some of our legacy detectors: OutlierDetector, MKDetector
* Support for Seasonality Removal in StatSigDetector
* TsFeatures
* Added time-based features
* Others
* Bug fixes, code coverage improvement, etc.
### Version 0.1.0
* Initial release
## Contributors
Kats is a project with several skillful researchers and engineers contributing to it.
Kats is currently maintained by [Xiaodong Jiang](https://www.linkedin.com/in/xdjiang/) with major contributions coming
from many talented individuals in various forms and means. A non-exhaustive but growing list needs to mention: [Sudeep Srivastava](https://www.linkedin.com/in/sudeep-srivastava-2129484/), [Sourav Chatterjee](https://www.linkedin.com/in/souravc83/), [Jeff Handler](https://www.linkedin.com/in/jeffhandl/), [Rohan Bopardikar](https://www.linkedin.com/in/rohan-bopardikar-30a99638), [Dawei Li](https://www.linkedin.com/in/lidawei/), [Yanjun Lin](https://www.linkedin.com/in/yanjun-lin/), [Yang Yu](https://www.linkedin.com/in/yangyu2720/), [Michael Brundage](https://www.linkedin.com/in/michaelb), [Caner Komurlu](https://www.linkedin.com/in/ckomurlu/), [Rakshita Nagalla](https://www.linkedin.com/in/rakshita-nagalla/), [Zhichao Wang](https://www.linkedin.com/in/zhichaowang/), [Hechao Sun](https://www.linkedin.com/in/hechao-sun-83b9ba4b/), [Peng Gao](https://www.linkedin.com/in/peng-gao-9137a24b/), [Wei Cheung](https://www.linkedin.com/in/weizhicheung/), [Jun Gao](https://www.linkedin.com/in/jun-gao-71352b64/), [Qi Wang](https://www.linkedin.com/in/qi-wang-9231a783/), [Morteza Kazemi](https://www.linkedin.com/in/morteza-kazemi-pmp-csm/), [Tihamér Levendovszky](https://www.linkedin.com/in/tiham%C3%A9r-levendovszky-29639b5/), [Jian Zhang](https://www.linkedin.com/in/jian-zhang-73718917/), [Ahmet Koylan](https://www.linkedin.com/in/ahmetburhan/), [Kun Jiang](https://www.linkedin.com/in/kunqiang-jiang-ph-d-0988aa1b/), [Aida Shoydokova](https://www.linkedin.com/in/ashoydok/), [Ploy Temiyasathit](https://www.linkedin.com/in/nutcha-temiyasathit/), Sean Lee, [Nikolay Pavlovich Laptev](http://www.nikolaylaptev.com/), [Peiyi Zhang](https://www.linkedin.com/in/pyzhang/), [Emre Yurtbay](https://www.linkedin.com/in/emre-yurtbay-27516313a/), [Daniel Dequech](https://www.linkedin.com/in/daniel-dequech/), [Rui Yan](https://www.linkedin.com/in/rui-yan/), [William Luo](https://www.linkedin.com/in/wqcluo/), [Marius Guerard](https://www.linkedin.com/in/mariusguerard/), and [Pietari Pulkkinen](https://www.linkedin.com/in/pietaripulkkinen/).
## License
Kats is licensed under the [MIT license](LICENSE).
%package -n python3-kats
Summary: kats: kit to analyze time series
Provides: python-kats
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-kats
## Description
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis. Time series analysis is an essential component of Data Science and Engineering work at industry, from understanding the key statistics and characteristics, detecting regressions and anomalies, to forecasting future trends. Kats aims to provide the one-stop shop for time series analysis, including detection, forecasting, feature extraction/embedding, multivariate analysis, etc.
Kats is released by Facebook's *Infrastructure Data Science* team. It is available for download on [PyPI](https://pypi.python.org/pypi/kats/).
## Important links
- Homepage: https://facebookresearch.github.io/Kats/
- Kats Python package: https://pypi.org/project/kats/0.1.0/
- Facebook Engineering Blog Post: https://engineering.fb.com/2021/06/21/open-source/kats/
- Source code repository: https://github.com/facebookresearch/kats
- Contributing: https://github.com/facebookresearch/Kats/blob/master/CONTRIBUTING.md
- Tutorials: https://github.com/facebookresearch/Kats/tree/master/tutorials
## Installation in Python
Kats is on PyPI, so you can use `pip` to install it.
```bash
pip install --upgrade pip
pip install kats
```
If you need only a small subset of Kats, you can install a minimal version of Kats with
```bash
MINIMAL_KATS=1 pip install kats
```
which omits many dependencies (everything in `test_requirements.txt`).
However, this will disable many functionalities and cause `import kats` to log
warnings. See `setup.py` for full details and options.
## Examples
Here are a few sample snippets from a subset of Kats offerings:
### Forecasting
Using `Prophet` model to forecast the `air_passengers` data set.
```python
import pandas as pd
from kats.consts import TimeSeriesData
from kats.models.prophet import ProphetModel, ProphetParams
# take `air_passengers` data as an example
air_passengers_df = pd.read_csv(
"../kats/data/air_passengers.csv",
header=0,
names=["time", "passengers"],
)
# convert to TimeSeriesData object
air_passengers_ts = TimeSeriesData(air_passengers_df)
# create a model param instance
params = ProphetParams(seasonality_mode='multiplicative') # additive mode gives worse results
# create a prophet model instance
m = ProphetModel(air_passengers_ts, params)
# fit model simply by calling m.fit()
m.fit()
# make prediction for next 30 month
fcst = m.predict(steps=30, freq="MS")
```
### Detection
Using `CUSUM` detection algorithm on simulated data set.
```python
# import packages
import numpy as np
import pandas as pd
from kats.consts import TimeSeriesData
from kats.detectors.cusum_detection import CUSUMDetector
# simulate time series with increase
np.random.seed(10)
df_increase = pd.DataFrame(
{
'time': pd.date_range('2019-01-01', '2019-03-01'),
'increase':np.concatenate([np.random.normal(1,0.2,30), np.random.normal(2,0.2,30)]),
}
)
# convert to TimeSeriesData object
timeseries = TimeSeriesData(df_increase)
# run detector and find change points
change_points = CUSUMDetector(timeseries).detector()
```
### TSFeatures
We can extract meaningful features from the given time series data
```python
# Initiate feature extraction class
import pandas as pd
from kats.consts import TimeSeriesData
from kats.tsfeatures.tsfeatures import TsFeatures
# take `air_passengers` data as an example
air_passengers_df = pd.read_csv(
"../kats/data/air_passengers.csv",
header=0,
names=["time", "passengers"],
)
# convert to TimeSeriesData object
air_passengers_ts = TimeSeriesData(air_passengers_df)
# calculate the TsFeatures
features = TsFeatures().transform(air_passengers_ts)
```
## Changelog
### Version 0.2.0
* Forecasting
* Added global model, a neural network forecasting model
* Added [global model tutorial](https://github.com/facebookresearch/Kats/blob/main/tutorials/kats_205_globalmodel.ipynb)
* Consolidated backtesting APIs and some minor bug fixes
* Detection
* Added model optimizer for anomaly/ changepoint detection
* Added evaluators for anomaly/changepoint detection
* Improved simulators, to build synthetic data and inject anomalies
* Added new detectors: ProphetTrendDetector, Dynamic Time Warping based detectors
* Support for meta-learning, to recommend anomaly detection algorithms and parameters for your dataset
* Standardized API for some of our legacy detectors: OutlierDetector, MKDetector
* Support for Seasonality Removal in StatSigDetector
* TsFeatures
* Added time-based features
* Others
* Bug fixes, code coverage improvement, etc.
### Version 0.1.0
* Initial release
## Contributors
Kats is a project with several skillful researchers and engineers contributing to it.
Kats is currently maintained by [Xiaodong Jiang](https://www.linkedin.com/in/xdjiang/) with major contributions coming
from many talented individuals in various forms and means. A non-exhaustive but growing list needs to mention: [Sudeep Srivastava](https://www.linkedin.com/in/sudeep-srivastava-2129484/), [Sourav Chatterjee](https://www.linkedin.com/in/souravc83/), [Jeff Handler](https://www.linkedin.com/in/jeffhandl/), [Rohan Bopardikar](https://www.linkedin.com/in/rohan-bopardikar-30a99638), [Dawei Li](https://www.linkedin.com/in/lidawei/), [Yanjun Lin](https://www.linkedin.com/in/yanjun-lin/), [Yang Yu](https://www.linkedin.com/in/yangyu2720/), [Michael Brundage](https://www.linkedin.com/in/michaelb), [Caner Komurlu](https://www.linkedin.com/in/ckomurlu/), [Rakshita Nagalla](https://www.linkedin.com/in/rakshita-nagalla/), [Zhichao Wang](https://www.linkedin.com/in/zhichaowang/), [Hechao Sun](https://www.linkedin.com/in/hechao-sun-83b9ba4b/), [Peng Gao](https://www.linkedin.com/in/peng-gao-9137a24b/), [Wei Cheung](https://www.linkedin.com/in/weizhicheung/), [Jun Gao](https://www.linkedin.com/in/jun-gao-71352b64/), [Qi Wang](https://www.linkedin.com/in/qi-wang-9231a783/), [Morteza Kazemi](https://www.linkedin.com/in/morteza-kazemi-pmp-csm/), [Tihamér Levendovszky](https://www.linkedin.com/in/tiham%C3%A9r-levendovszky-29639b5/), [Jian Zhang](https://www.linkedin.com/in/jian-zhang-73718917/), [Ahmet Koylan](https://www.linkedin.com/in/ahmetburhan/), [Kun Jiang](https://www.linkedin.com/in/kunqiang-jiang-ph-d-0988aa1b/), [Aida Shoydokova](https://www.linkedin.com/in/ashoydok/), [Ploy Temiyasathit](https://www.linkedin.com/in/nutcha-temiyasathit/), Sean Lee, [Nikolay Pavlovich Laptev](http://www.nikolaylaptev.com/), [Peiyi Zhang](https://www.linkedin.com/in/pyzhang/), [Emre Yurtbay](https://www.linkedin.com/in/emre-yurtbay-27516313a/), [Daniel Dequech](https://www.linkedin.com/in/daniel-dequech/), [Rui Yan](https://www.linkedin.com/in/rui-yan/), [William Luo](https://www.linkedin.com/in/wqcluo/), [Marius Guerard](https://www.linkedin.com/in/mariusguerard/), and [Pietari Pulkkinen](https://www.linkedin.com/in/pietaripulkkinen/).
## License
Kats is licensed under the [MIT license](LICENSE).
%package help
Summary: Development documents and examples for kats
Provides: python3-kats-doc
%description help
## Description
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis. Time series analysis is an essential component of Data Science and Engineering work at industry, from understanding the key statistics and characteristics, detecting regressions and anomalies, to forecasting future trends. Kats aims to provide the one-stop shop for time series analysis, including detection, forecasting, feature extraction/embedding, multivariate analysis, etc.
Kats is released by Facebook's *Infrastructure Data Science* team. It is available for download on [PyPI](https://pypi.python.org/pypi/kats/).
## Important links
- Homepage: https://facebookresearch.github.io/Kats/
- Kats Python package: https://pypi.org/project/kats/0.1.0/
- Facebook Engineering Blog Post: https://engineering.fb.com/2021/06/21/open-source/kats/
- Source code repository: https://github.com/facebookresearch/kats
- Contributing: https://github.com/facebookresearch/Kats/blob/master/CONTRIBUTING.md
- Tutorials: https://github.com/facebookresearch/Kats/tree/master/tutorials
## Installation in Python
Kats is on PyPI, so you can use `pip` to install it.
```bash
pip install --upgrade pip
pip install kats
```
If you need only a small subset of Kats, you can install a minimal version of Kats with
```bash
MINIMAL_KATS=1 pip install kats
```
which omits many dependencies (everything in `test_requirements.txt`).
However, this will disable many functionalities and cause `import kats` to log
warnings. See `setup.py` for full details and options.
## Examples
Here are a few sample snippets from a subset of Kats offerings:
### Forecasting
Using `Prophet` model to forecast the `air_passengers` data set.
```python
import pandas as pd
from kats.consts import TimeSeriesData
from kats.models.prophet import ProphetModel, ProphetParams
# take `air_passengers` data as an example
air_passengers_df = pd.read_csv(
"../kats/data/air_passengers.csv",
header=0,
names=["time", "passengers"],
)
# convert to TimeSeriesData object
air_passengers_ts = TimeSeriesData(air_passengers_df)
# create a model param instance
params = ProphetParams(seasonality_mode='multiplicative') # additive mode gives worse results
# create a prophet model instance
m = ProphetModel(air_passengers_ts, params)
# fit model simply by calling m.fit()
m.fit()
# make prediction for next 30 month
fcst = m.predict(steps=30, freq="MS")
```
### Detection
Using `CUSUM` detection algorithm on simulated data set.
```python
# import packages
import numpy as np
import pandas as pd
from kats.consts import TimeSeriesData
from kats.detectors.cusum_detection import CUSUMDetector
# simulate time series with increase
np.random.seed(10)
df_increase = pd.DataFrame(
{
'time': pd.date_range('2019-01-01', '2019-03-01'),
'increase':np.concatenate([np.random.normal(1,0.2,30), np.random.normal(2,0.2,30)]),
}
)
# convert to TimeSeriesData object
timeseries = TimeSeriesData(df_increase)
# run detector and find change points
change_points = CUSUMDetector(timeseries).detector()
```
### TSFeatures
We can extract meaningful features from the given time series data
```python
# Initiate feature extraction class
import pandas as pd
from kats.consts import TimeSeriesData
from kats.tsfeatures.tsfeatures import TsFeatures
# take `air_passengers` data as an example
air_passengers_df = pd.read_csv(
"../kats/data/air_passengers.csv",
header=0,
names=["time", "passengers"],
)
# convert to TimeSeriesData object
air_passengers_ts = TimeSeriesData(air_passengers_df)
# calculate the TsFeatures
features = TsFeatures().transform(air_passengers_ts)
```
## Changelog
### Version 0.2.0
* Forecasting
* Added global model, a neural network forecasting model
* Added [global model tutorial](https://github.com/facebookresearch/Kats/blob/main/tutorials/kats_205_globalmodel.ipynb)
* Consolidated backtesting APIs and some minor bug fixes
* Detection
* Added model optimizer for anomaly/ changepoint detection
* Added evaluators for anomaly/changepoint detection
* Improved simulators, to build synthetic data and inject anomalies
* Added new detectors: ProphetTrendDetector, Dynamic Time Warping based detectors
* Support for meta-learning, to recommend anomaly detection algorithms and parameters for your dataset
* Standardized API for some of our legacy detectors: OutlierDetector, MKDetector
* Support for Seasonality Removal in StatSigDetector
* TsFeatures
* Added time-based features
* Others
* Bug fixes, code coverage improvement, etc.
### Version 0.1.0
* Initial release
## Contributors
Kats is a project with several skillful researchers and engineers contributing to it.
Kats is currently maintained by [Xiaodong Jiang](https://www.linkedin.com/in/xdjiang/) with major contributions coming
from many talented individuals in various forms and means. A non-exhaustive but growing list needs to mention: [Sudeep Srivastava](https://www.linkedin.com/in/sudeep-srivastava-2129484/), [Sourav Chatterjee](https://www.linkedin.com/in/souravc83/), [Jeff Handler](https://www.linkedin.com/in/jeffhandl/), [Rohan Bopardikar](https://www.linkedin.com/in/rohan-bopardikar-30a99638), [Dawei Li](https://www.linkedin.com/in/lidawei/), [Yanjun Lin](https://www.linkedin.com/in/yanjun-lin/), [Yang Yu](https://www.linkedin.com/in/yangyu2720/), [Michael Brundage](https://www.linkedin.com/in/michaelb), [Caner Komurlu](https://www.linkedin.com/in/ckomurlu/), [Rakshita Nagalla](https://www.linkedin.com/in/rakshita-nagalla/), [Zhichao Wang](https://www.linkedin.com/in/zhichaowang/), [Hechao Sun](https://www.linkedin.com/in/hechao-sun-83b9ba4b/), [Peng Gao](https://www.linkedin.com/in/peng-gao-9137a24b/), [Wei Cheung](https://www.linkedin.com/in/weizhicheung/), [Jun Gao](https://www.linkedin.com/in/jun-gao-71352b64/), [Qi Wang](https://www.linkedin.com/in/qi-wang-9231a783/), [Morteza Kazemi](https://www.linkedin.com/in/morteza-kazemi-pmp-csm/), [Tihamér Levendovszky](https://www.linkedin.com/in/tiham%C3%A9r-levendovszky-29639b5/), [Jian Zhang](https://www.linkedin.com/in/jian-zhang-73718917/), [Ahmet Koylan](https://www.linkedin.com/in/ahmetburhan/), [Kun Jiang](https://www.linkedin.com/in/kunqiang-jiang-ph-d-0988aa1b/), [Aida Shoydokova](https://www.linkedin.com/in/ashoydok/), [Ploy Temiyasathit](https://www.linkedin.com/in/nutcha-temiyasathit/), Sean Lee, [Nikolay Pavlovich Laptev](http://www.nikolaylaptev.com/), [Peiyi Zhang](https://www.linkedin.com/in/pyzhang/), [Emre Yurtbay](https://www.linkedin.com/in/emre-yurtbay-27516313a/), [Daniel Dequech](https://www.linkedin.com/in/daniel-dequech/), [Rui Yan](https://www.linkedin.com/in/rui-yan/), [William Luo](https://www.linkedin.com/in/wqcluo/), [Marius Guerard](https://www.linkedin.com/in/mariusguerard/), and [Pietari Pulkkinen](https://www.linkedin.com/in/pietaripulkkinen/).
## License
Kats is licensed under the [MIT license](LICENSE).
%prep
%autosetup -n kats-0.2.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-kats -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 11 2023 Python_Bot - 0.2.0-1
- Package Spec generated