%global _empty_manifest_terminate_build 0 Name: python-chainer Version: 7.8.1 Release: 1 Summary: A flexible framework of neural networks License: MIT License URL: https://chainer.org/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/86/40/0d27458c1ac3e1c8f1a62ab62e3ec9e443412fa51d1e638ac669706097b7/chainer-7.8.1.tar.gz BuildArch: noarch %description
# Chainer: A deep learning framework [![pypi](https://img.shields.io/pypi/v/chainer.svg)](https://pypi.python.org/pypi/chainer) [![GitHub license](https://img.shields.io/github/license/chainer/chainer.svg)](https://github.com/chainer/chainer) [![travis](https://img.shields.io/travis/chainer/chainer/master.svg)](https://travis-ci.org/chainer/chainer) [![coveralls](https://img.shields.io/coveralls/chainer/chainer.svg)](https://coveralls.io/github/chainer/chainer) [![Read the Docs](https://readthedocs.org/projects/chainer/badge/?version=stable)](https://docs.chainer.org/en/stable/?badge=stable) [![Optuna](https://img.shields.io/badge/Optuna-integrated-blue)](https://optuna.org) [**Website**](https://chainer.org/) | [**Docs**](https://docs.chainer.org/en/stable/) | [**Install Guide**](https://docs.chainer.org/en/stable/install.html) | **Tutorials** ([ja](https://tutorials.chainer.org/ja/)) | **Examples** ([Official](examples), [External](https://github.com/chainer-community/awesome-chainer)) | [**Concepts**](https://docs.chainer.org/en/stable/guides/) | [**ChainerX**](#chainerx) **Forum** ([en](https://groups.google.com/forum/#!forum/chainer), [ja](https://groups.google.com/forum/#!forum/chainer-jp)) | **Slack invitation** ([en](https://bit.ly/go-chainer-slack), [ja](https://bit.ly/go-chainer-jp-slack)) | **Twitter** ([en](https://twitter.com/CuPy_Team), [ja](https://twitter.com/ChainerJP)) *Chainer* is a Python-based deep learning framework aiming at flexibility. It provides automatic differentiation APIs based on the **define-by-run** approach (a.k.a. dynamic computational graphs) as well as object-oriented high-level APIs to build and train neural networks. It also supports CUDA/cuDNN using [CuPy](https://github.com/cupy/cupy) for high performance training and inference. For more details about Chainer, see the documents and resources listed above and join the community in Forum, Slack, and Twitter. ***Notice: As [announced](https://chainer.org/announcement/2019/12/05/released-v7.html), Chainer is under the maintenance phase and further development will be limited to bug-fixes and maintenance only.*** ## Installation *For more details, see the [installation guide](https://docs.chainer.org/en/stable/install.html).* To install Chainer, use `pip`. ```sh $ pip install chainer ``` To enable CUDA support, [CuPy](https://github.com/cupy/cupy) is required. Refer to the [CuPy installation guide](https://docs-cupy.chainer.org/en/stable/install.html). ## Docker image We are providing the official Docker image. This image supports [nvidia-docker](https://github.com/NVIDIA/nvidia-docker). Login to the environment with the following command, and run the Python interpreter to use Chainer with CUDA and cuDNN support. ``` $ nvidia-docker run -it chainer/chainer /bin/bash ``` ## Contribution See the [contribution guide](https://docs.chainer.org/en/stable/contribution.html). ## ChainerX See the [ChainerX documentation](https://docs.chainer.org/en/stable/chainerx/index.html). ## License MIT License (see `LICENSE` file). ## More information - [Release notes](https://github.com/chainer/chainer/releases) ## References Tokui, Seiya, et al. "Chainer: A Deep Learning Framework for Accelerating the Research Cycle." *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. ACM, 2019. [URL](https://dl.acm.org/citation.cfm?id=3330756) [BibTex](chainer2019_bibtex.txt) Tokui, S., Oono, K., Hido, S. and Clayton, J., Chainer: a Next-Generation Open Source Framework for Deep Learning, *Proceedings of Workshop on Machine Learning Systems(LearningSys) in The Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS)*, (2015) [URL](http://learningsys.org/papers/LearningSys_2015_paper_33.pdf), [BibTex](chainer_bibtex.txt) Akiba, T., Fukuda, K. and Suzuki, S., ChainerMN: Scalable Distributed Deep Learning Framework, *Proceedings of Workshop on ML Systems in The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS)*, (2017) [URL](http://learningsys.org/nips17/assets/papers/paper_25.pdf), [BibTex](chainermn_bibtex.txt) %package -n python3-chainer Summary: A flexible framework of neural networks Provides: python-chainer BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-chainer
# Chainer: A deep learning framework [![pypi](https://img.shields.io/pypi/v/chainer.svg)](https://pypi.python.org/pypi/chainer) [![GitHub license](https://img.shields.io/github/license/chainer/chainer.svg)](https://github.com/chainer/chainer) [![travis](https://img.shields.io/travis/chainer/chainer/master.svg)](https://travis-ci.org/chainer/chainer) [![coveralls](https://img.shields.io/coveralls/chainer/chainer.svg)](https://coveralls.io/github/chainer/chainer) [![Read the Docs](https://readthedocs.org/projects/chainer/badge/?version=stable)](https://docs.chainer.org/en/stable/?badge=stable) [![Optuna](https://img.shields.io/badge/Optuna-integrated-blue)](https://optuna.org) [**Website**](https://chainer.org/) | [**Docs**](https://docs.chainer.org/en/stable/) | [**Install Guide**](https://docs.chainer.org/en/stable/install.html) | **Tutorials** ([ja](https://tutorials.chainer.org/ja/)) | **Examples** ([Official](examples), [External](https://github.com/chainer-community/awesome-chainer)) | [**Concepts**](https://docs.chainer.org/en/stable/guides/) | [**ChainerX**](#chainerx) **Forum** ([en](https://groups.google.com/forum/#!forum/chainer), [ja](https://groups.google.com/forum/#!forum/chainer-jp)) | **Slack invitation** ([en](https://bit.ly/go-chainer-slack), [ja](https://bit.ly/go-chainer-jp-slack)) | **Twitter** ([en](https://twitter.com/CuPy_Team), [ja](https://twitter.com/ChainerJP)) *Chainer* is a Python-based deep learning framework aiming at flexibility. It provides automatic differentiation APIs based on the **define-by-run** approach (a.k.a. dynamic computational graphs) as well as object-oriented high-level APIs to build and train neural networks. It also supports CUDA/cuDNN using [CuPy](https://github.com/cupy/cupy) for high performance training and inference. For more details about Chainer, see the documents and resources listed above and join the community in Forum, Slack, and Twitter. ***Notice: As [announced](https://chainer.org/announcement/2019/12/05/released-v7.html), Chainer is under the maintenance phase and further development will be limited to bug-fixes and maintenance only.*** ## Installation *For more details, see the [installation guide](https://docs.chainer.org/en/stable/install.html).* To install Chainer, use `pip`. ```sh $ pip install chainer ``` To enable CUDA support, [CuPy](https://github.com/cupy/cupy) is required. Refer to the [CuPy installation guide](https://docs-cupy.chainer.org/en/stable/install.html). ## Docker image We are providing the official Docker image. This image supports [nvidia-docker](https://github.com/NVIDIA/nvidia-docker). Login to the environment with the following command, and run the Python interpreter to use Chainer with CUDA and cuDNN support. ``` $ nvidia-docker run -it chainer/chainer /bin/bash ``` ## Contribution See the [contribution guide](https://docs.chainer.org/en/stable/contribution.html). ## ChainerX See the [ChainerX documentation](https://docs.chainer.org/en/stable/chainerx/index.html). ## License MIT License (see `LICENSE` file). ## More information - [Release notes](https://github.com/chainer/chainer/releases) ## References Tokui, Seiya, et al. "Chainer: A Deep Learning Framework for Accelerating the Research Cycle." *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. ACM, 2019. [URL](https://dl.acm.org/citation.cfm?id=3330756) [BibTex](chainer2019_bibtex.txt) Tokui, S., Oono, K., Hido, S. and Clayton, J., Chainer: a Next-Generation Open Source Framework for Deep Learning, *Proceedings of Workshop on Machine Learning Systems(LearningSys) in The Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS)*, (2015) [URL](http://learningsys.org/papers/LearningSys_2015_paper_33.pdf), [BibTex](chainer_bibtex.txt) Akiba, T., Fukuda, K. and Suzuki, S., ChainerMN: Scalable Distributed Deep Learning Framework, *Proceedings of Workshop on ML Systems in The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS)*, (2017) [URL](http://learningsys.org/nips17/assets/papers/paper_25.pdf), [BibTex](chainermn_bibtex.txt) %package help Summary: Development documents and examples for chainer Provides: python3-chainer-doc %description help
# Chainer: A deep learning framework [![pypi](https://img.shields.io/pypi/v/chainer.svg)](https://pypi.python.org/pypi/chainer) [![GitHub license](https://img.shields.io/github/license/chainer/chainer.svg)](https://github.com/chainer/chainer) [![travis](https://img.shields.io/travis/chainer/chainer/master.svg)](https://travis-ci.org/chainer/chainer) [![coveralls](https://img.shields.io/coveralls/chainer/chainer.svg)](https://coveralls.io/github/chainer/chainer) [![Read the Docs](https://readthedocs.org/projects/chainer/badge/?version=stable)](https://docs.chainer.org/en/stable/?badge=stable) [![Optuna](https://img.shields.io/badge/Optuna-integrated-blue)](https://optuna.org) [**Website**](https://chainer.org/) | [**Docs**](https://docs.chainer.org/en/stable/) | [**Install Guide**](https://docs.chainer.org/en/stable/install.html) | **Tutorials** ([ja](https://tutorials.chainer.org/ja/)) | **Examples** ([Official](examples), [External](https://github.com/chainer-community/awesome-chainer)) | [**Concepts**](https://docs.chainer.org/en/stable/guides/) | [**ChainerX**](#chainerx) **Forum** ([en](https://groups.google.com/forum/#!forum/chainer), [ja](https://groups.google.com/forum/#!forum/chainer-jp)) | **Slack invitation** ([en](https://bit.ly/go-chainer-slack), [ja](https://bit.ly/go-chainer-jp-slack)) | **Twitter** ([en](https://twitter.com/CuPy_Team), [ja](https://twitter.com/ChainerJP)) *Chainer* is a Python-based deep learning framework aiming at flexibility. It provides automatic differentiation APIs based on the **define-by-run** approach (a.k.a. dynamic computational graphs) as well as object-oriented high-level APIs to build and train neural networks. It also supports CUDA/cuDNN using [CuPy](https://github.com/cupy/cupy) for high performance training and inference. For more details about Chainer, see the documents and resources listed above and join the community in Forum, Slack, and Twitter. ***Notice: As [announced](https://chainer.org/announcement/2019/12/05/released-v7.html), Chainer is under the maintenance phase and further development will be limited to bug-fixes and maintenance only.*** ## Installation *For more details, see the [installation guide](https://docs.chainer.org/en/stable/install.html).* To install Chainer, use `pip`. ```sh $ pip install chainer ``` To enable CUDA support, [CuPy](https://github.com/cupy/cupy) is required. Refer to the [CuPy installation guide](https://docs-cupy.chainer.org/en/stable/install.html). ## Docker image We are providing the official Docker image. This image supports [nvidia-docker](https://github.com/NVIDIA/nvidia-docker). Login to the environment with the following command, and run the Python interpreter to use Chainer with CUDA and cuDNN support. ``` $ nvidia-docker run -it chainer/chainer /bin/bash ``` ## Contribution See the [contribution guide](https://docs.chainer.org/en/stable/contribution.html). ## ChainerX See the [ChainerX documentation](https://docs.chainer.org/en/stable/chainerx/index.html). ## License MIT License (see `LICENSE` file). ## More information - [Release notes](https://github.com/chainer/chainer/releases) ## References Tokui, Seiya, et al. "Chainer: A Deep Learning Framework for Accelerating the Research Cycle." *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. ACM, 2019. [URL](https://dl.acm.org/citation.cfm?id=3330756) [BibTex](chainer2019_bibtex.txt) Tokui, S., Oono, K., Hido, S. and Clayton, J., Chainer: a Next-Generation Open Source Framework for Deep Learning, *Proceedings of Workshop on Machine Learning Systems(LearningSys) in The Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS)*, (2015) [URL](http://learningsys.org/papers/LearningSys_2015_paper_33.pdf), [BibTex](chainer_bibtex.txt) Akiba, T., Fukuda, K. and Suzuki, S., ChainerMN: Scalable Distributed Deep Learning Framework, *Proceedings of Workshop on ML Systems in The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS)*, (2017) [URL](http://learningsys.org/nips17/assets/papers/paper_25.pdf), [BibTex](chainermn_bibtex.txt) %prep %autosetup -n chainer-7.8.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-chainer -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 11 2023 Python_Bot - 7.8.1-1 - Package Spec generated