%global _empty_manifest_terminate_build 0 Name: python-scikit-lego Version: 0.6.14 Release: 1 Summary: a collection of lego bricks for scikit-learn pipelines License: MIT License URL: https://scikit-lego.netlify.app/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/71/24/a01d392933898f660ac2f9d667131f5031083cbad06447d05f5cf61257de/scikit-lego-0.6.14.tar.gz BuildArch: noarch Requires: python3-scikit-learn Requires: python3-pandas Requires: python3-patsy Requires: python3-autograd Requires: python3-Deprecated Requires: python3-umap-learn Requires: python3-cvxpy Requires: python3-scikit-learn Requires: python3-pandas Requires: python3-patsy Requires: python3-autograd Requires: python3-Deprecated Requires: python3-umap-learn Requires: python3-cvxpy Requires: python3-sphinx Requires: python3-sphinx-rtd-theme Requires: python3-nbsphinx Requires: python3-recommonmark Requires: python3-cvxpy Requires: python3-flake8 Requires: python3-nbval Requires: python3-pytest Requires: python3-pytest-xdist Requires: python3-black Requires: python3-pytest-cov Requires: python3-pytest-mock Requires: python3-pre-commit Requires: python3-matplotlib Requires: python3-jupyter Requires: python3-jupyterlab Requires: python3-sphinx Requires: python3-sphinx-rtd-theme Requires: python3-nbsphinx Requires: python3-recommonmark Requires: python3-cvxpy Requires: python3-flake8 Requires: python3-nbval Requires: python3-pytest Requires: python3-pytest-xdist Requires: python3-black Requires: python3-pytest-cov Requires: python3-pytest-mock Requires: python3-pre-commit %description [![Build status](https://github.com/koaning/scikit-lego/workflows/Unit%20Tests/badge.svg)](https://github.com/{github_id}/{repository}/workflows/{workflow_name}/badge.svg) [![Downloads](https://pepy.tech/badge/scikit-lego/month)](https://pepy.tech/project/scikit-lego) [![Version](https://img.shields.io/pypi/v/scikit-lego)](https://pypi.org/project/scikit-lego/) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/scikit-lego.svg)](https://anaconda.org/conda-forge/scikit-lego) ![](https://img.shields.io/github/license/koaning/scikit-lego) ![](https://img.shields.io/pypi/pyversions/scikit-lego) ![](https://img.shields.io/github/contributors/koaning/scikit-lego) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![DOI](https://zenodo.org/badge/166836939.svg)](https://zenodo.org/badge/latestdoi/166836939) # scikit-lego We love scikit learn but very often we find ourselves writing custom transformers, metrics and models. The goal of this project is to attempt to consolidate these into a package that offers code quality/testing. This project started as a collaboration between multiple companies in the Netherlands but has since received contributions from around the globe. It was initiated by [Matthijs Brouns](https://www.mbrouns.com/) and [Vincent D. Warmerdam](https://koaning.io) as a tool to teach people how to contribute to open source. Note that we're not formally affiliated with the scikit-learn project at all, but we aim to strictly adhere to their standards. The same holds with lego. LEGO® is a trademark of the LEGO Group of companies which does not sponsor, authorize or endorse this project. ## Installation Install `scikit-lego` via pip with ```bash python -m pip install scikit-lego ``` Via [conda](https://conda.io/projects/conda/en/latest/) with ```bash conda install -c conda-forge scikit-lego ``` Alternatively, to edit and contribute you can fork/clone and run: ```bash python -m pip install -e ".[dev]" python setup.py develop ``` ## Documentation The documentation can be found [here](https://scikit-lego.netlify.app). ## Usage We offer custom metrics, models and transformers. You can import them just like you would in scikit-learn. ```python # the scikit learn stuff we love from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline # from scikit lego stuff we add from sklego.preprocessing import RandomAdder from sklego.mixture import GMMClassifier ... mod = Pipeline([ ("scale", StandardScaler()), ("random_noise", RandomAdder()), ("model", GMMClassifier()) ]) ... ``` ## Features Here's a list of features that this library currently offers: - `sklego.datasets.load_abalone` loads in the abalone dataset - `sklego.datasets.load_arrests` loads in a dataset with fairness concerns - `sklego.datasets.load_chicken` loads in the joyful chickweight dataset - `sklego.datasets.load_heroes` loads a heroes of the storm dataset - `sklego.datasets.load_hearts` loads a dataset about hearts - `sklego.datasets.load_penguins` loads a lovely dataset about penguins - `sklego.datasets.fetch_creditcard` fetch a fraud dataset from openml - `sklego.datasets.make_simpleseries` make a simulated timeseries - `sklego.pandas_utils.add_lags` adds lag values in a pandas dataframe - `sklego.pandas_utils.log_step` a useful decorator to log your pipeline steps - `sklego.dummy.RandomRegressor` dummy benchmark that predicts random values - `sklego.linear_model.DeadZoneRegressor` experimental feature that has a deadzone in the cost function - `sklego.linear_model.DemographicParityClassifier` logistic classifier constrained on demographic parity - `sklego.linear_model.EqualOpportunityClassifier` logistic classifier constrained on equal opportunity - `sklego.linear_model.ProbWeightRegression` linear model that treats coefficients as probabilistic weights - `sklego.linear_model.LowessRegression` locally weighted linear regression - `sklego.linear_model.LADRegression` least absolute deviation regression - `sklego.linear_model.QuantileRegression` linear quantile regression, generalizes LADRegression - `sklego.linear_model.ImbalancedLinearRegression` punish over/under-estimation of a model directly - `sklego.naive_bayes.GaussianMixtureNB` classifies by training a 1D GMM per column per class - `sklego.naive_bayes.BayesianGaussianMixtureNB` classifies by training a bayesian 1D GMM per class - `sklego.mixture.BayesianGMMClassifier` classifies by training a bayesian GMM per class - `sklego.mixture.BayesianGMMOutlierDetector` detects outliers based on a trained bayesian GMM - `sklego.mixture.GMMClassifier` classifies by training a GMM per class - `sklego.mixture.GMMOutlierDetector` detects outliers based on a trained GMM - `sklego.meta.ConfusionBalancer` experimental feature that allows you to balance the confusion matrix - `sklego.meta.DecayEstimator` adds decay to the sample_weight that the model accepts - `sklego.meta.EstimatorTransformer` adds a model output as a feature - `sklego.meta.OutlierClassifier` turns outlier models into classifiers for gridsearch - `sklego.meta.GroupedPredictor` can split the data into runs and run a model on each - `sklego.meta.GroupedTransformer` can split the data into runs and run a transformer on each - `sklego.meta.SubjectiveClassifier` experimental feature to add a prior to your classifier - `sklego.meta.Thresholder` meta model that allows you to gridsearch over the threshold - `sklego.meta.RegressionOutlierDetector` meta model that finds outliers by adding a threshold to regression - `sklego.meta.ZeroInflatedRegressor` predicts zero or applies a regression based on a classifier - `sklego.preprocessing.ColumnCapper` limits extreme values of the model features - `sklego.preprocessing.ColumnDropper` drops a column from pandas - `sklego.preprocessing.ColumnSelector` selects columns based on column name - `sklego.preprocessing.InformationFilter` transformer that can de-correlate features - `sklego.preprocessing.IdentityTransformer` returns the same data, allows for concatenating pipelines - `sklego.preprocessing.OrthogonalTransformer` makes all features linearly independent - `sklego.preprocessing.PandasTypeSelector` selects columns based on pandas type - `sklego.preprocessing.PatsyTransformer` applies a [patsy](https://patsy.readthedocs.io/en/latest/formulas.html) formula - `sklego.preprocessing.RandomAdder` adds randomness in training - `sklego.preprocessing.RepeatingBasisFunction` repeating feature engineering, useful for timeseries - `sklego.preprocessing.DictMapper` assign numeric values on categorical columns - `sklego.preprocessing.OutlierRemover` experimental method to remove outliers during training - `sklego.model_selection.GroupTimeSeriesSplit` timeseries Kfold for groups with different amount of observations per group - `sklego.model_selection.KlusterFoldValidation` experimental feature that does K folds based on clustering - `sklego.model_selection.TimeGapSplit` timeseries Kfold with a gap between train/test - `sklego.pipeline.DebugPipeline` adds debug information to make debugging easier - `sklego.pipeline.make_debug_pipeline` shorthand function to create a debugable pipeline - `sklego.metrics.correlation_score` calculates correlation between model output and feature - `sklego.metrics.equal_opportunity_score` calculates equal opportunity metric - `sklego.metrics.p_percent_score` proxy for model fairness with regards to sensitive attribute - `sklego.metrics.subset_score` calculate a score on a subset of your data (meant for fairness tracking) ## New Features We want to be rather open here in what we accept but we do demand three things before they become added to the project: 1. any new feature contributes towards a demonstratable real-world usecase 2. any new feature passes standard unit tests (we use the ones from scikit-learn) 3. the feature has been discussed in the issue list beforehand We automate all of our testing and use pre-commit hooks to keep the code working. %package -n python3-scikit-lego Summary: a collection of lego bricks for scikit-learn pipelines Provides: python-scikit-lego BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-scikit-lego [![Build status](https://github.com/koaning/scikit-lego/workflows/Unit%20Tests/badge.svg)](https://github.com/{github_id}/{repository}/workflows/{workflow_name}/badge.svg) [![Downloads](https://pepy.tech/badge/scikit-lego/month)](https://pepy.tech/project/scikit-lego) [![Version](https://img.shields.io/pypi/v/scikit-lego)](https://pypi.org/project/scikit-lego/) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/scikit-lego.svg)](https://anaconda.org/conda-forge/scikit-lego) ![](https://img.shields.io/github/license/koaning/scikit-lego) ![](https://img.shields.io/pypi/pyversions/scikit-lego) ![](https://img.shields.io/github/contributors/koaning/scikit-lego) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![DOI](https://zenodo.org/badge/166836939.svg)](https://zenodo.org/badge/latestdoi/166836939) # scikit-lego We love scikit learn but very often we find ourselves writing custom transformers, metrics and models. The goal of this project is to attempt to consolidate these into a package that offers code quality/testing. This project started as a collaboration between multiple companies in the Netherlands but has since received contributions from around the globe. It was initiated by [Matthijs Brouns](https://www.mbrouns.com/) and [Vincent D. Warmerdam](https://koaning.io) as a tool to teach people how to contribute to open source. Note that we're not formally affiliated with the scikit-learn project at all, but we aim to strictly adhere to their standards. The same holds with lego. LEGO® is a trademark of the LEGO Group of companies which does not sponsor, authorize or endorse this project. ## Installation Install `scikit-lego` via pip with ```bash python -m pip install scikit-lego ``` Via [conda](https://conda.io/projects/conda/en/latest/) with ```bash conda install -c conda-forge scikit-lego ``` Alternatively, to edit and contribute you can fork/clone and run: ```bash python -m pip install -e ".[dev]" python setup.py develop ``` ## Documentation The documentation can be found [here](https://scikit-lego.netlify.app). ## Usage We offer custom metrics, models and transformers. You can import them just like you would in scikit-learn. ```python # the scikit learn stuff we love from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline # from scikit lego stuff we add from sklego.preprocessing import RandomAdder from sklego.mixture import GMMClassifier ... mod = Pipeline([ ("scale", StandardScaler()), ("random_noise", RandomAdder()), ("model", GMMClassifier()) ]) ... ``` ## Features Here's a list of features that this library currently offers: - `sklego.datasets.load_abalone` loads in the abalone dataset - `sklego.datasets.load_arrests` loads in a dataset with fairness concerns - `sklego.datasets.load_chicken` loads in the joyful chickweight dataset - `sklego.datasets.load_heroes` loads a heroes of the storm dataset - `sklego.datasets.load_hearts` loads a dataset about hearts - `sklego.datasets.load_penguins` loads a lovely dataset about penguins - `sklego.datasets.fetch_creditcard` fetch a fraud dataset from openml - `sklego.datasets.make_simpleseries` make a simulated timeseries - `sklego.pandas_utils.add_lags` adds lag values in a pandas dataframe - `sklego.pandas_utils.log_step` a useful decorator to log your pipeline steps - `sklego.dummy.RandomRegressor` dummy benchmark that predicts random values - `sklego.linear_model.DeadZoneRegressor` experimental feature that has a deadzone in the cost function - `sklego.linear_model.DemographicParityClassifier` logistic classifier constrained on demographic parity - `sklego.linear_model.EqualOpportunityClassifier` logistic classifier constrained on equal opportunity - `sklego.linear_model.ProbWeightRegression` linear model that treats coefficients as probabilistic weights - `sklego.linear_model.LowessRegression` locally weighted linear regression - `sklego.linear_model.LADRegression` least absolute deviation regression - `sklego.linear_model.QuantileRegression` linear quantile regression, generalizes LADRegression - `sklego.linear_model.ImbalancedLinearRegression` punish over/under-estimation of a model directly - `sklego.naive_bayes.GaussianMixtureNB` classifies by training a 1D GMM per column per class - `sklego.naive_bayes.BayesianGaussianMixtureNB` classifies by training a bayesian 1D GMM per class - `sklego.mixture.BayesianGMMClassifier` classifies by training a bayesian GMM per class - `sklego.mixture.BayesianGMMOutlierDetector` detects outliers based on a trained bayesian GMM - `sklego.mixture.GMMClassifier` classifies by training a GMM per class - `sklego.mixture.GMMOutlierDetector` detects outliers based on a trained GMM - `sklego.meta.ConfusionBalancer` experimental feature that allows you to balance the confusion matrix - `sklego.meta.DecayEstimator` adds decay to the sample_weight that the model accepts - `sklego.meta.EstimatorTransformer` adds a model output as a feature - `sklego.meta.OutlierClassifier` turns outlier models into classifiers for gridsearch - `sklego.meta.GroupedPredictor` can split the data into runs and run a model on each - `sklego.meta.GroupedTransformer` can split the data into runs and run a transformer on each - `sklego.meta.SubjectiveClassifier` experimental feature to add a prior to your classifier - `sklego.meta.Thresholder` meta model that allows you to gridsearch over the threshold - `sklego.meta.RegressionOutlierDetector` meta model that finds outliers by adding a threshold to regression - `sklego.meta.ZeroInflatedRegressor` predicts zero or applies a regression based on a classifier - `sklego.preprocessing.ColumnCapper` limits extreme values of the model features - `sklego.preprocessing.ColumnDropper` drops a column from pandas - `sklego.preprocessing.ColumnSelector` selects columns based on column name - `sklego.preprocessing.InformationFilter` transformer that can de-correlate features - `sklego.preprocessing.IdentityTransformer` returns the same data, allows for concatenating pipelines - `sklego.preprocessing.OrthogonalTransformer` makes all features linearly independent - `sklego.preprocessing.PandasTypeSelector` selects columns based on pandas type - `sklego.preprocessing.PatsyTransformer` applies a [patsy](https://patsy.readthedocs.io/en/latest/formulas.html) formula - `sklego.preprocessing.RandomAdder` adds randomness in training - `sklego.preprocessing.RepeatingBasisFunction` repeating feature engineering, useful for timeseries - `sklego.preprocessing.DictMapper` assign numeric values on categorical columns - `sklego.preprocessing.OutlierRemover` experimental method to remove outliers during training - `sklego.model_selection.GroupTimeSeriesSplit` timeseries Kfold for groups with different amount of observations per group - `sklego.model_selection.KlusterFoldValidation` experimental feature that does K folds based on clustering - `sklego.model_selection.TimeGapSplit` timeseries Kfold with a gap between train/test - `sklego.pipeline.DebugPipeline` adds debug information to make debugging easier - `sklego.pipeline.make_debug_pipeline` shorthand function to create a debugable pipeline - `sklego.metrics.correlation_score` calculates correlation between model output and feature - `sklego.metrics.equal_opportunity_score` calculates equal opportunity metric - `sklego.metrics.p_percent_score` proxy for model fairness with regards to sensitive attribute - `sklego.metrics.subset_score` calculate a score on a subset of your data (meant for fairness tracking) ## New Features We want to be rather open here in what we accept but we do demand three things before they become added to the project: 1. any new feature contributes towards a demonstratable real-world usecase 2. any new feature passes standard unit tests (we use the ones from scikit-learn) 3. the feature has been discussed in the issue list beforehand We automate all of our testing and use pre-commit hooks to keep the code working. %package help Summary: Development documents and examples for scikit-lego Provides: python3-scikit-lego-doc %description help [![Build status](https://github.com/koaning/scikit-lego/workflows/Unit%20Tests/badge.svg)](https://github.com/{github_id}/{repository}/workflows/{workflow_name}/badge.svg) [![Downloads](https://pepy.tech/badge/scikit-lego/month)](https://pepy.tech/project/scikit-lego) [![Version](https://img.shields.io/pypi/v/scikit-lego)](https://pypi.org/project/scikit-lego/) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/scikit-lego.svg)](https://anaconda.org/conda-forge/scikit-lego) ![](https://img.shields.io/github/license/koaning/scikit-lego) ![](https://img.shields.io/pypi/pyversions/scikit-lego) ![](https://img.shields.io/github/contributors/koaning/scikit-lego) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![DOI](https://zenodo.org/badge/166836939.svg)](https://zenodo.org/badge/latestdoi/166836939) # scikit-lego We love scikit learn but very often we find ourselves writing custom transformers, metrics and models. The goal of this project is to attempt to consolidate these into a package that offers code quality/testing. This project started as a collaboration between multiple companies in the Netherlands but has since received contributions from around the globe. It was initiated by [Matthijs Brouns](https://www.mbrouns.com/) and [Vincent D. Warmerdam](https://koaning.io) as a tool to teach people how to contribute to open source. Note that we're not formally affiliated with the scikit-learn project at all, but we aim to strictly adhere to their standards. The same holds with lego. LEGO® is a trademark of the LEGO Group of companies which does not sponsor, authorize or endorse this project. ## Installation Install `scikit-lego` via pip with ```bash python -m pip install scikit-lego ``` Via [conda](https://conda.io/projects/conda/en/latest/) with ```bash conda install -c conda-forge scikit-lego ``` Alternatively, to edit and contribute you can fork/clone and run: ```bash python -m pip install -e ".[dev]" python setup.py develop ``` ## Documentation The documentation can be found [here](https://scikit-lego.netlify.app). ## Usage We offer custom metrics, models and transformers. You can import them just like you would in scikit-learn. ```python # the scikit learn stuff we love from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline # from scikit lego stuff we add from sklego.preprocessing import RandomAdder from sklego.mixture import GMMClassifier ... mod = Pipeline([ ("scale", StandardScaler()), ("random_noise", RandomAdder()), ("model", GMMClassifier()) ]) ... ``` ## Features Here's a list of features that this library currently offers: - `sklego.datasets.load_abalone` loads in the abalone dataset - `sklego.datasets.load_arrests` loads in a dataset with fairness concerns - `sklego.datasets.load_chicken` loads in the joyful chickweight dataset - `sklego.datasets.load_heroes` loads a heroes of the storm dataset - `sklego.datasets.load_hearts` loads a dataset about hearts - `sklego.datasets.load_penguins` loads a lovely dataset about penguins - `sklego.datasets.fetch_creditcard` fetch a fraud dataset from openml - `sklego.datasets.make_simpleseries` make a simulated timeseries - `sklego.pandas_utils.add_lags` adds lag values in a pandas dataframe - `sklego.pandas_utils.log_step` a useful decorator to log your pipeline steps - `sklego.dummy.RandomRegressor` dummy benchmark that predicts random values - `sklego.linear_model.DeadZoneRegressor` experimental feature that has a deadzone in the cost function - `sklego.linear_model.DemographicParityClassifier` logistic classifier constrained on demographic parity - `sklego.linear_model.EqualOpportunityClassifier` logistic classifier constrained on equal opportunity - `sklego.linear_model.ProbWeightRegression` linear model that treats coefficients as probabilistic weights - `sklego.linear_model.LowessRegression` locally weighted linear regression - `sklego.linear_model.LADRegression` least absolute deviation regression - `sklego.linear_model.QuantileRegression` linear quantile regression, generalizes LADRegression - `sklego.linear_model.ImbalancedLinearRegression` punish over/under-estimation of a model directly - `sklego.naive_bayes.GaussianMixtureNB` classifies by training a 1D GMM per column per class - `sklego.naive_bayes.BayesianGaussianMixtureNB` classifies by training a bayesian 1D GMM per class - `sklego.mixture.BayesianGMMClassifier` classifies by training a bayesian GMM per class - `sklego.mixture.BayesianGMMOutlierDetector` detects outliers based on a trained bayesian GMM - `sklego.mixture.GMMClassifier` classifies by training a GMM per class - `sklego.mixture.GMMOutlierDetector` detects outliers based on a trained GMM - `sklego.meta.ConfusionBalancer` experimental feature that allows you to balance the confusion matrix - `sklego.meta.DecayEstimator` adds decay to the sample_weight that the model accepts - `sklego.meta.EstimatorTransformer` adds a model output as a feature - `sklego.meta.OutlierClassifier` turns outlier models into classifiers for gridsearch - `sklego.meta.GroupedPredictor` can split the data into runs and run a model on each - `sklego.meta.GroupedTransformer` can split the data into runs and run a transformer on each - `sklego.meta.SubjectiveClassifier` experimental feature to add a prior to your classifier - `sklego.meta.Thresholder` meta model that allows you to gridsearch over the threshold - `sklego.meta.RegressionOutlierDetector` meta model that finds outliers by adding a threshold to regression - `sklego.meta.ZeroInflatedRegressor` predicts zero or applies a regression based on a classifier - `sklego.preprocessing.ColumnCapper` limits extreme values of the model features - `sklego.preprocessing.ColumnDropper` drops a column from pandas - `sklego.preprocessing.ColumnSelector` selects columns based on column name - `sklego.preprocessing.InformationFilter` transformer that can de-correlate features - `sklego.preprocessing.IdentityTransformer` returns the same data, allows for concatenating pipelines - `sklego.preprocessing.OrthogonalTransformer` makes all features linearly independent - `sklego.preprocessing.PandasTypeSelector` selects columns based on pandas type - `sklego.preprocessing.PatsyTransformer` applies a [patsy](https://patsy.readthedocs.io/en/latest/formulas.html) formula - `sklego.preprocessing.RandomAdder` adds randomness in training - `sklego.preprocessing.RepeatingBasisFunction` repeating feature engineering, useful for timeseries - `sklego.preprocessing.DictMapper` assign numeric values on categorical columns - `sklego.preprocessing.OutlierRemover` experimental method to remove outliers during training - `sklego.model_selection.GroupTimeSeriesSplit` timeseries Kfold for groups with different amount of observations per group - `sklego.model_selection.KlusterFoldValidation` experimental feature that does K folds based on clustering - `sklego.model_selection.TimeGapSplit` timeseries Kfold with a gap between train/test - `sklego.pipeline.DebugPipeline` adds debug information to make debugging easier - `sklego.pipeline.make_debug_pipeline` shorthand function to create a debugable pipeline - `sklego.metrics.correlation_score` calculates correlation between model output and feature - `sklego.metrics.equal_opportunity_score` calculates equal opportunity metric - `sklego.metrics.p_percent_score` proxy for model fairness with regards to sensitive attribute - `sklego.metrics.subset_score` calculate a score on a subset of your data (meant for fairness tracking) ## New Features We want to be rather open here in what we accept but we do demand three things before they become added to the project: 1. any new feature contributes towards a demonstratable real-world usecase 2. any new feature passes standard unit tests (we use the ones from scikit-learn) 3. the feature has been discussed in the issue list beforehand We automate all of our testing and use pre-commit hooks to keep the code working. %prep %autosetup -n scikit-lego-0.6.14 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-scikit-lego -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 11 2023 Python_Bot - 0.6.14-1 - Package Spec generated