%global _empty_manifest_terminate_build 0 Name: python-params-flow Version: 0.8.2 Release: 1 Summary: Tensorflow Keras utilities for reducing boilerplate code. License: MIT URL: https://github.com/kpe/params-flow/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a9/95/ff49f5ebd501f142a6f0aaf42bcfd1c192dc54909d1d9eb84ab031d46056/params-flow-0.8.2.tar.gz BuildArch: noarch %description |Build Status| |Coverage Status| |Version Status| |Python Versions| |Downloads| `params-flow`_ provides an alternative style for defining your `Keras`_ model or layer configuration in order to reduce the boilerplate code related to passing and (de)serializing your model/layer configuration arguments. `params-flow`_ encourages this: import params_flow as pf class MyDenseLayer(pf.Layer): # using params_flow Layer/Model instead of Keras ones class Params(pf.Layer.Params): # extend one or more base Params configurations num_outputs = None # declare all configuration arguments activation = "gelu" # provide or override super() defaults # do not define an __init__() def build(self, in_shape): self.kernel = self.add_variable("kernel", [int(in_shape[-1]), self.params.num_outputs]) # access config arguments which would be sufficient to pass the right configuration arguments to the super layer/model, as well as take care of (de)serialization, so you can concentrate on the ``build()`` or ``call()`` implementations, instead of writing boilerplate code like this: from tf.keras.layers import Layer class MyDenseLayer(Layer): def __init__(self, num_outputs, # put all of the layer configuration in the constructor activation = "gelu", # provide defaults **kwargs): # allow base layer configuration to be passed to super self.num_outputs = num_outputs self.activation = activation super().__init__(**kwargs) def build(self, in_shape): self.kernel = self.add_variable("kernel", [int(in_shape[-1]), self.num_outputs]) # access config arguments def get_config(self): # serialize layer configuration, __init__() is the deserializer config = { 'num_outputs': self.num_outputs, 'activation': self.activation } base_config = super().get_config() return dict(list(base_config.items())) + list(config.items()) %package -n python3-params-flow Summary: Tensorflow Keras utilities for reducing boilerplate code. Provides: python-params-flow BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-params-flow |Build Status| |Coverage Status| |Version Status| |Python Versions| |Downloads| `params-flow`_ provides an alternative style for defining your `Keras`_ model or layer configuration in order to reduce the boilerplate code related to passing and (de)serializing your model/layer configuration arguments. `params-flow`_ encourages this: import params_flow as pf class MyDenseLayer(pf.Layer): # using params_flow Layer/Model instead of Keras ones class Params(pf.Layer.Params): # extend one or more base Params configurations num_outputs = None # declare all configuration arguments activation = "gelu" # provide or override super() defaults # do not define an __init__() def build(self, in_shape): self.kernel = self.add_variable("kernel", [int(in_shape[-1]), self.params.num_outputs]) # access config arguments which would be sufficient to pass the right configuration arguments to the super layer/model, as well as take care of (de)serialization, so you can concentrate on the ``build()`` or ``call()`` implementations, instead of writing boilerplate code like this: from tf.keras.layers import Layer class MyDenseLayer(Layer): def __init__(self, num_outputs, # put all of the layer configuration in the constructor activation = "gelu", # provide defaults **kwargs): # allow base layer configuration to be passed to super self.num_outputs = num_outputs self.activation = activation super().__init__(**kwargs) def build(self, in_shape): self.kernel = self.add_variable("kernel", [int(in_shape[-1]), self.num_outputs]) # access config arguments def get_config(self): # serialize layer configuration, __init__() is the deserializer config = { 'num_outputs': self.num_outputs, 'activation': self.activation } base_config = super().get_config() return dict(list(base_config.items())) + list(config.items()) %package help Summary: Development documents and examples for params-flow Provides: python3-params-flow-doc %description help |Build Status| |Coverage Status| |Version Status| |Python Versions| |Downloads| `params-flow`_ provides an alternative style for defining your `Keras`_ model or layer configuration in order to reduce the boilerplate code related to passing and (de)serializing your model/layer configuration arguments. `params-flow`_ encourages this: import params_flow as pf class MyDenseLayer(pf.Layer): # using params_flow Layer/Model instead of Keras ones class Params(pf.Layer.Params): # extend one or more base Params configurations num_outputs = None # declare all configuration arguments activation = "gelu" # provide or override super() defaults # do not define an __init__() def build(self, in_shape): self.kernel = self.add_variable("kernel", [int(in_shape[-1]), self.params.num_outputs]) # access config arguments which would be sufficient to pass the right configuration arguments to the super layer/model, as well as take care of (de)serialization, so you can concentrate on the ``build()`` or ``call()`` implementations, instead of writing boilerplate code like this: from tf.keras.layers import Layer class MyDenseLayer(Layer): def __init__(self, num_outputs, # put all of the layer configuration in the constructor activation = "gelu", # provide defaults **kwargs): # allow base layer configuration to be passed to super self.num_outputs = num_outputs self.activation = activation super().__init__(**kwargs) def build(self, in_shape): self.kernel = self.add_variable("kernel", [int(in_shape[-1]), self.num_outputs]) # access config arguments def get_config(self): # serialize layer configuration, __init__() is the deserializer config = { 'num_outputs': self.num_outputs, 'activation': self.activation } base_config = super().get_config() return dict(list(base_config.items())) + list(config.items()) %prep %autosetup -n params-flow-0.8.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-params-flow -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 11 2023 Python_Bot - 0.8.2-1 - Package Spec generated