%global _empty_manifest_terminate_build 0 Name: python-mmtrack Version: 0.14.0 Release: 1 Summary: OpenMMLab Unified Video Perception Platform License: Apache License 2.0 URL: https://github.com/open-mmlab/mmtracking Source0: https://mirrors.nju.edu.cn/pypi/web/packages/54/ab/4f702809260dfe754bd6cb9f62c440fa32ba41b327aa896a62d21912678d/mmtrack-0.14.0.tar.gz BuildArch: noarch Requires: python3-attributee Requires: python3-dotty-dict Requires: python3-lap Requires: python3-matplotlib Requires: python3-mmcls Requires: python3-motmetrics Requires: python3-packaging Requires: python3-pandas Requires: python3-pycocotools Requires: python3-scipy Requires: python3-seaborn Requires: python3-terminaltables Requires: python3-tqdm Requires: python3-cython Requires: python3-numpy Requires: python3-attributee Requires: python3-dotty-dict Requires: python3-lap Requires: python3-matplotlib Requires: python3-mmcls Requires: python3-motmetrics Requires: python3-packaging Requires: python3-pandas Requires: python3-pycocotools Requires: python3-scipy Requires: python3-seaborn Requires: python3-terminaltables Requires: python3-tqdm Requires: python3-asynctest Requires: python3-codecov Requires: python3-flake8 Requires: python3-interrogate Requires: python3-isort Requires: python3-kwarray Requires: python3-pytest Requires: python3-ubelt Requires: python3-xdoctest Requires: python3-yapf Requires: python3-cython Requires: python3-numpy Requires: python3-mmcls Requires: python3-mmcv-full Requires: python3-mmdet Requires: python3-asynctest Requires: python3-codecov Requires: python3-flake8 Requires: python3-interrogate Requires: python3-isort Requires: python3-kwarray Requires: python3-pytest Requires: python3-ubelt Requires: python3-xdoctest Requires: python3-yapf %description
 
OpenMMLab website HOT      OpenMMLab platform TRY IT OUT
 
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmtrack)](https://pypi.org/project/mmtrack/) [![PyPI](https://img.shields.io/pypi/v/mmtrack)](https://pypi.org/project/mmtrack) [![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmtracking.readthedocs.io/en/latest/) [![badge](https://github.com/open-mmlab/mmtracking/workflows/build/badge.svg)](https://github.com/open-mmlab/mmtracking/actions) [![codecov](https://codecov.io/gh/open-mmlab/mmtracking/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmtracking) [![license](https://img.shields.io/github/license/open-mmlab/mmtracking.svg)](https://github.com/open-mmlab/mmtracking/blob/master/LICENSE) [📘Documentation](https://mmtracking.readthedocs.io/) | [🛠️Installation](https://mmtracking.readthedocs.io/en/latest/install.html) | [👀Model Zoo](https://mmtracking.readthedocs.io/en/latest/model_zoo.html) | [🆕Update News](https://mmtracking.readthedocs.io/en/latest/changelog.html) | [🤔Reporting Issues](https://github.com/open-mmlab/mmtracking/issues/new/choose)
English | [简体中文](README_zh-CN.md)
## Introduction MMTracking is an open source video perception toolbox by PyTorch. It is a part of [OpenMMLab](https://openmmlab.com) project. The master branch works with **PyTorch1.5+**.
### Major features - **The First Unified Video Perception Platform** We are the first open source toolbox that unifies versatile video perception tasks include video object detection, multiple object tracking, single object tracking and video instance segmentation. - **Modular Design** We decompose the video perception framework into different components and one can easily construct a customized method by combining different modules. - **Simple, Fast and Strong** **Simple**: MMTracking interacts with other OpenMMLab projects. It is built upon [MMDetection](https://github.com/open-mmlab/mmdetection) that we can capitalize any detector only through modifying the configs. **Fast**: All operations run on GPUs. The training and inference speeds are faster than or comparable to other implementations. **Strong**: We reproduce state-of-the-art models and some of them even outperform the official implementations. ## What's New We release MMTracking 1.0.0rc0, the first version of MMTracking 1.x. Built upon the new [training engine](https://github.com/open-mmlab/mmengine), MMTracking 1.x unifies the interfaces of datasets, models, evaluation, and visualization. We also support more methods in MMTracking 1.x, such as [StrongSORT](https://github.com/open-mmlab/mmtracking/tree/dev-1.x/configs/mot/strongsort) for MOT, [Mask2Former](https://github.com/open-mmlab/mmtracking/tree/dev-1.x/configs/vis/mask2former) for VIS, [PrDiMP](https://github.com/open-mmlab/mmtracking/tree/dev-1.x/configs/sot/prdimp) for SOT. Please refer to [dev-1.x](https://github.com/open-mmlab/mmtracking/tree/dev-1.x) branch for the using of MMTracking 1.x. ## Installation Please refer to [install.md](docs/en/install.md) for install instructions. ## Getting Started Please see [dataset.md](docs/en/dataset.md) and [quick_run.md](docs/en/quick_run.md) for the basic usage of MMTracking. A Colab tutorial is provided. You may preview the notebook [here](./demo/MMTracking_Tutorial.ipynb) or directly run it on [Colab](https://colab.research.google.com/github/open-mmlab/mmtracking/blob/master/demo/MMTracking_Tutorial.ipynb). There are also usage [tutorials](docs/en/tutorials/), such as [learning about configs](docs/en/tutorials/config.md), [an example about detailed description of vid config](docs/en/tutorials/config_vid.md), [an example about detailed description of mot config](docs/en/tutorials/config_mot.md), [an example about detailed description of sot config](docs/en/tutorials/config_sot.md), [customizing dataset](docs/en/tutorials/customize_dataset.md), [customizing data pipeline](docs/en/tutorials/customize_data_pipeline.md), [customizing vid model](docs/en/tutorials/customize_vid_model.md), [customizing mot model](docs/en/tutorials/customize_mot_model.md), [customizing sot model](docs/en/tutorials/customize_sot_model.md), [customizing runtime settings](docs/en/tutorials/customize_runtime.md) and [useful tools](docs/en/useful_tools_scripts.md). ## Benchmark and model zoo Results and models are available in the [model zoo](docs/en/model_zoo.md). ### Video Object Detection Supported Methods - [x] [DFF](configs/vid/dff) (CVPR 2017) - [x] [FGFA](configs/vid/fgfa) (ICCV 2017) - [x] [SELSA](configs/vid/selsa) (ICCV 2019) - [x] [Temporal RoI Align](configs/vid/temporal_roi_align) (AAAI 2021) Supported Datasets - [x] [ILSVRC](http://image-net.org/challenges/LSVRC/2017/) ### Single Object Tracking Supported Methods - [x] [SiameseRPN++](configs/sot/siamese_rpn) (CVPR 2019) - [x] [STARK](configs/sot/stark) (ICCV 2021) - [ ] [PrDiMP](https://arxiv.org/abs/2003.12565) (CVPR2020) (WIP) Supported Datasets - [x] [LaSOT](http://vision.cs.stonybrook.edu/~lasot/) - [x] [UAV123](https://cemse.kaust.edu.sa/ivul/uav123/) - [x] [TrackingNet](https://tracking-net.org/) - [x] [OTB100](http://www.visual-tracking.net/) - [x] [GOT10k](http://got-10k.aitestunion.com/) - [x] [VOT2018](https://www.votchallenge.net/vot2018/) ### Multi-Object Tracking Supported Methods - [x] [SORT/DeepSORT](configs/mot/deepsort) (ICIP 2016/2017) - [x] [Tracktor](configs/mot/tracktor) (ICCV 2019) - [x] [QDTrack](configs/mot/qdtrack) (CVPR 2021) - [x] [ByteTrack](configs/mot/bytetrack) (ECCV 2022) - [x] [OC-SORT](configs/mot/ocsort) (arXiv 2022) Supported Datasets - [x] [MOT Challenge](https://motchallenge.net/) - [x] [CrowdHuman](https://www.crowdhuman.org/) - [x] [LVIS](https://www.lvisdataset.org/) - [x] [TAO](https://taodataset.org/) - [x] [DanceTrack](https://arxiv.org/abs/2111.14690) ### Video Instance Segmentation Supported Methods - [x] [MaskTrack R-CNN](configs/vis/masktrack_rcnn) (ICCV 2019) Supported Datasets - [x] [YouTube-VIS](https://youtube-vos.org/dataset/vis/) ## Contributing We appreciate all contributions to improve MMTracking. Please refer to [CONTRIBUTING.md](https://github.com/open-mmlab/mmcv/blob/master/CONTRIBUTING.md) for the contributing guideline and [this discussion](https://github.com/open-mmlab/mmtracking/issues/73) for development roadmap. ## Acknowledgement MMTracking is an open source project that welcome any contribution and feedback. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible as well as standardized toolkit to reimplement existing methods and develop their own new video perception methods. ## Citation If you find this project useful in your research, please consider cite: ```latex @misc{mmtrack2020, title={{MMTracking: OpenMMLab} video perception toolbox and benchmark}, author={MMTracking Contributors}, howpublished = {\url{https://github.com/open-mmlab/mmtracking}}, year={2020} } ``` ## License This project is released under the [Apache 2.0 license](LICENSE). ## Projects in OpenMMLab - [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision. - [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages. - [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark. - [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark. - [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection. - [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark. - [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark. - [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition and understanding toolbox. - [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark. - [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark. - [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning Toolbox and Benchmark. - [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab Model Compression Toolbox and Benchmark. - [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab FewShot Learning Toolbox and Benchmark. - [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark. - [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark. - [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark. - [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox. - [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab Generative Model toolbox and benchmark. - [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMlab deep learning model deployment toolset. %package -n python3-mmtrack Summary: OpenMMLab Unified Video Perception Platform Provides: python-mmtrack BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-mmtrack
 
OpenMMLab website HOT      OpenMMLab platform TRY IT OUT
 
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmtrack)](https://pypi.org/project/mmtrack/) [![PyPI](https://img.shields.io/pypi/v/mmtrack)](https://pypi.org/project/mmtrack) [![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmtracking.readthedocs.io/en/latest/) [![badge](https://github.com/open-mmlab/mmtracking/workflows/build/badge.svg)](https://github.com/open-mmlab/mmtracking/actions) [![codecov](https://codecov.io/gh/open-mmlab/mmtracking/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmtracking) [![license](https://img.shields.io/github/license/open-mmlab/mmtracking.svg)](https://github.com/open-mmlab/mmtracking/blob/master/LICENSE) [📘Documentation](https://mmtracking.readthedocs.io/) | [🛠️Installation](https://mmtracking.readthedocs.io/en/latest/install.html) | [👀Model Zoo](https://mmtracking.readthedocs.io/en/latest/model_zoo.html) | [🆕Update News](https://mmtracking.readthedocs.io/en/latest/changelog.html) | [🤔Reporting Issues](https://github.com/open-mmlab/mmtracking/issues/new/choose)
English | [简体中文](README_zh-CN.md)
## Introduction MMTracking is an open source video perception toolbox by PyTorch. It is a part of [OpenMMLab](https://openmmlab.com) project. The master branch works with **PyTorch1.5+**.
### Major features - **The First Unified Video Perception Platform** We are the first open source toolbox that unifies versatile video perception tasks include video object detection, multiple object tracking, single object tracking and video instance segmentation. - **Modular Design** We decompose the video perception framework into different components and one can easily construct a customized method by combining different modules. - **Simple, Fast and Strong** **Simple**: MMTracking interacts with other OpenMMLab projects. It is built upon [MMDetection](https://github.com/open-mmlab/mmdetection) that we can capitalize any detector only through modifying the configs. **Fast**: All operations run on GPUs. The training and inference speeds are faster than or comparable to other implementations. **Strong**: We reproduce state-of-the-art models and some of them even outperform the official implementations. ## What's New We release MMTracking 1.0.0rc0, the first version of MMTracking 1.x. Built upon the new [training engine](https://github.com/open-mmlab/mmengine), MMTracking 1.x unifies the interfaces of datasets, models, evaluation, and visualization. We also support more methods in MMTracking 1.x, such as [StrongSORT](https://github.com/open-mmlab/mmtracking/tree/dev-1.x/configs/mot/strongsort) for MOT, [Mask2Former](https://github.com/open-mmlab/mmtracking/tree/dev-1.x/configs/vis/mask2former) for VIS, [PrDiMP](https://github.com/open-mmlab/mmtracking/tree/dev-1.x/configs/sot/prdimp) for SOT. Please refer to [dev-1.x](https://github.com/open-mmlab/mmtracking/tree/dev-1.x) branch for the using of MMTracking 1.x. ## Installation Please refer to [install.md](docs/en/install.md) for install instructions. ## Getting Started Please see [dataset.md](docs/en/dataset.md) and [quick_run.md](docs/en/quick_run.md) for the basic usage of MMTracking. A Colab tutorial is provided. You may preview the notebook [here](./demo/MMTracking_Tutorial.ipynb) or directly run it on [Colab](https://colab.research.google.com/github/open-mmlab/mmtracking/blob/master/demo/MMTracking_Tutorial.ipynb). There are also usage [tutorials](docs/en/tutorials/), such as [learning about configs](docs/en/tutorials/config.md), [an example about detailed description of vid config](docs/en/tutorials/config_vid.md), [an example about detailed description of mot config](docs/en/tutorials/config_mot.md), [an example about detailed description of sot config](docs/en/tutorials/config_sot.md), [customizing dataset](docs/en/tutorials/customize_dataset.md), [customizing data pipeline](docs/en/tutorials/customize_data_pipeline.md), [customizing vid model](docs/en/tutorials/customize_vid_model.md), [customizing mot model](docs/en/tutorials/customize_mot_model.md), [customizing sot model](docs/en/tutorials/customize_sot_model.md), [customizing runtime settings](docs/en/tutorials/customize_runtime.md) and [useful tools](docs/en/useful_tools_scripts.md). ## Benchmark and model zoo Results and models are available in the [model zoo](docs/en/model_zoo.md). ### Video Object Detection Supported Methods - [x] [DFF](configs/vid/dff) (CVPR 2017) - [x] [FGFA](configs/vid/fgfa) (ICCV 2017) - [x] [SELSA](configs/vid/selsa) (ICCV 2019) - [x] [Temporal RoI Align](configs/vid/temporal_roi_align) (AAAI 2021) Supported Datasets - [x] [ILSVRC](http://image-net.org/challenges/LSVRC/2017/) ### Single Object Tracking Supported Methods - [x] [SiameseRPN++](configs/sot/siamese_rpn) (CVPR 2019) - [x] [STARK](configs/sot/stark) (ICCV 2021) - [ ] [PrDiMP](https://arxiv.org/abs/2003.12565) (CVPR2020) (WIP) Supported Datasets - [x] [LaSOT](http://vision.cs.stonybrook.edu/~lasot/) - [x] [UAV123](https://cemse.kaust.edu.sa/ivul/uav123/) - [x] [TrackingNet](https://tracking-net.org/) - [x] [OTB100](http://www.visual-tracking.net/) - [x] [GOT10k](http://got-10k.aitestunion.com/) - [x] [VOT2018](https://www.votchallenge.net/vot2018/) ### Multi-Object Tracking Supported Methods - [x] [SORT/DeepSORT](configs/mot/deepsort) (ICIP 2016/2017) - [x] [Tracktor](configs/mot/tracktor) (ICCV 2019) - [x] [QDTrack](configs/mot/qdtrack) (CVPR 2021) - [x] [ByteTrack](configs/mot/bytetrack) (ECCV 2022) - [x] [OC-SORT](configs/mot/ocsort) (arXiv 2022) Supported Datasets - [x] [MOT Challenge](https://motchallenge.net/) - [x] [CrowdHuman](https://www.crowdhuman.org/) - [x] [LVIS](https://www.lvisdataset.org/) - [x] [TAO](https://taodataset.org/) - [x] [DanceTrack](https://arxiv.org/abs/2111.14690) ### Video Instance Segmentation Supported Methods - [x] [MaskTrack R-CNN](configs/vis/masktrack_rcnn) (ICCV 2019) Supported Datasets - [x] [YouTube-VIS](https://youtube-vos.org/dataset/vis/) ## Contributing We appreciate all contributions to improve MMTracking. Please refer to [CONTRIBUTING.md](https://github.com/open-mmlab/mmcv/blob/master/CONTRIBUTING.md) for the contributing guideline and [this discussion](https://github.com/open-mmlab/mmtracking/issues/73) for development roadmap. ## Acknowledgement MMTracking is an open source project that welcome any contribution and feedback. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible as well as standardized toolkit to reimplement existing methods and develop their own new video perception methods. ## Citation If you find this project useful in your research, please consider cite: ```latex @misc{mmtrack2020, title={{MMTracking: OpenMMLab} video perception toolbox and benchmark}, author={MMTracking Contributors}, howpublished = {\url{https://github.com/open-mmlab/mmtracking}}, year={2020} } ``` ## License This project is released under the [Apache 2.0 license](LICENSE). ## Projects in OpenMMLab - [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision. - [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages. - [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark. - [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark. - [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection. - [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark. - [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark. - [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition and understanding toolbox. - [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark. - [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark. - [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning Toolbox and Benchmark. - [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab Model Compression Toolbox and Benchmark. - [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab FewShot Learning Toolbox and Benchmark. - [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark. - [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark. - [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark. - [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox. - [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab Generative Model toolbox and benchmark. - [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMlab deep learning model deployment toolset. %package help Summary: Development documents and examples for mmtrack Provides: python3-mmtrack-doc %description help
 
OpenMMLab website HOT      OpenMMLab platform TRY IT OUT
 
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmtrack)](https://pypi.org/project/mmtrack/) [![PyPI](https://img.shields.io/pypi/v/mmtrack)](https://pypi.org/project/mmtrack) [![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmtracking.readthedocs.io/en/latest/) [![badge](https://github.com/open-mmlab/mmtracking/workflows/build/badge.svg)](https://github.com/open-mmlab/mmtracking/actions) [![codecov](https://codecov.io/gh/open-mmlab/mmtracking/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmtracking) [![license](https://img.shields.io/github/license/open-mmlab/mmtracking.svg)](https://github.com/open-mmlab/mmtracking/blob/master/LICENSE) [📘Documentation](https://mmtracking.readthedocs.io/) | [🛠️Installation](https://mmtracking.readthedocs.io/en/latest/install.html) | [👀Model Zoo](https://mmtracking.readthedocs.io/en/latest/model_zoo.html) | [🆕Update News](https://mmtracking.readthedocs.io/en/latest/changelog.html) | [🤔Reporting Issues](https://github.com/open-mmlab/mmtracking/issues/new/choose)
English | [简体中文](README_zh-CN.md)
## Introduction MMTracking is an open source video perception toolbox by PyTorch. It is a part of [OpenMMLab](https://openmmlab.com) project. The master branch works with **PyTorch1.5+**.
### Major features - **The First Unified Video Perception Platform** We are the first open source toolbox that unifies versatile video perception tasks include video object detection, multiple object tracking, single object tracking and video instance segmentation. - **Modular Design** We decompose the video perception framework into different components and one can easily construct a customized method by combining different modules. - **Simple, Fast and Strong** **Simple**: MMTracking interacts with other OpenMMLab projects. It is built upon [MMDetection](https://github.com/open-mmlab/mmdetection) that we can capitalize any detector only through modifying the configs. **Fast**: All operations run on GPUs. The training and inference speeds are faster than or comparable to other implementations. **Strong**: We reproduce state-of-the-art models and some of them even outperform the official implementations. ## What's New We release MMTracking 1.0.0rc0, the first version of MMTracking 1.x. Built upon the new [training engine](https://github.com/open-mmlab/mmengine), MMTracking 1.x unifies the interfaces of datasets, models, evaluation, and visualization. We also support more methods in MMTracking 1.x, such as [StrongSORT](https://github.com/open-mmlab/mmtracking/tree/dev-1.x/configs/mot/strongsort) for MOT, [Mask2Former](https://github.com/open-mmlab/mmtracking/tree/dev-1.x/configs/vis/mask2former) for VIS, [PrDiMP](https://github.com/open-mmlab/mmtracking/tree/dev-1.x/configs/sot/prdimp) for SOT. Please refer to [dev-1.x](https://github.com/open-mmlab/mmtracking/tree/dev-1.x) branch for the using of MMTracking 1.x. ## Installation Please refer to [install.md](docs/en/install.md) for install instructions. ## Getting Started Please see [dataset.md](docs/en/dataset.md) and [quick_run.md](docs/en/quick_run.md) for the basic usage of MMTracking. A Colab tutorial is provided. You may preview the notebook [here](./demo/MMTracking_Tutorial.ipynb) or directly run it on [Colab](https://colab.research.google.com/github/open-mmlab/mmtracking/blob/master/demo/MMTracking_Tutorial.ipynb). There are also usage [tutorials](docs/en/tutorials/), such as [learning about configs](docs/en/tutorials/config.md), [an example about detailed description of vid config](docs/en/tutorials/config_vid.md), [an example about detailed description of mot config](docs/en/tutorials/config_mot.md), [an example about detailed description of sot config](docs/en/tutorials/config_sot.md), [customizing dataset](docs/en/tutorials/customize_dataset.md), [customizing data pipeline](docs/en/tutorials/customize_data_pipeline.md), [customizing vid model](docs/en/tutorials/customize_vid_model.md), [customizing mot model](docs/en/tutorials/customize_mot_model.md), [customizing sot model](docs/en/tutorials/customize_sot_model.md), [customizing runtime settings](docs/en/tutorials/customize_runtime.md) and [useful tools](docs/en/useful_tools_scripts.md). ## Benchmark and model zoo Results and models are available in the [model zoo](docs/en/model_zoo.md). ### Video Object Detection Supported Methods - [x] [DFF](configs/vid/dff) (CVPR 2017) - [x] [FGFA](configs/vid/fgfa) (ICCV 2017) - [x] [SELSA](configs/vid/selsa) (ICCV 2019) - [x] [Temporal RoI Align](configs/vid/temporal_roi_align) (AAAI 2021) Supported Datasets - [x] [ILSVRC](http://image-net.org/challenges/LSVRC/2017/) ### Single Object Tracking Supported Methods - [x] [SiameseRPN++](configs/sot/siamese_rpn) (CVPR 2019) - [x] [STARK](configs/sot/stark) (ICCV 2021) - [ ] [PrDiMP](https://arxiv.org/abs/2003.12565) (CVPR2020) (WIP) Supported Datasets - [x] [LaSOT](http://vision.cs.stonybrook.edu/~lasot/) - [x] [UAV123](https://cemse.kaust.edu.sa/ivul/uav123/) - [x] [TrackingNet](https://tracking-net.org/) - [x] [OTB100](http://www.visual-tracking.net/) - [x] [GOT10k](http://got-10k.aitestunion.com/) - [x] [VOT2018](https://www.votchallenge.net/vot2018/) ### Multi-Object Tracking Supported Methods - [x] [SORT/DeepSORT](configs/mot/deepsort) (ICIP 2016/2017) - [x] [Tracktor](configs/mot/tracktor) (ICCV 2019) - [x] [QDTrack](configs/mot/qdtrack) (CVPR 2021) - [x] [ByteTrack](configs/mot/bytetrack) (ECCV 2022) - [x] [OC-SORT](configs/mot/ocsort) (arXiv 2022) Supported Datasets - [x] [MOT Challenge](https://motchallenge.net/) - [x] [CrowdHuman](https://www.crowdhuman.org/) - [x] [LVIS](https://www.lvisdataset.org/) - [x] [TAO](https://taodataset.org/) - [x] [DanceTrack](https://arxiv.org/abs/2111.14690) ### Video Instance Segmentation Supported Methods - [x] [MaskTrack R-CNN](configs/vis/masktrack_rcnn) (ICCV 2019) Supported Datasets - [x] [YouTube-VIS](https://youtube-vos.org/dataset/vis/) ## Contributing We appreciate all contributions to improve MMTracking. Please refer to [CONTRIBUTING.md](https://github.com/open-mmlab/mmcv/blob/master/CONTRIBUTING.md) for the contributing guideline and [this discussion](https://github.com/open-mmlab/mmtracking/issues/73) for development roadmap. ## Acknowledgement MMTracking is an open source project that welcome any contribution and feedback. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible as well as standardized toolkit to reimplement existing methods and develop their own new video perception methods. ## Citation If you find this project useful in your research, please consider cite: ```latex @misc{mmtrack2020, title={{MMTracking: OpenMMLab} video perception toolbox and benchmark}, author={MMTracking Contributors}, howpublished = {\url{https://github.com/open-mmlab/mmtracking}}, year={2020} } ``` ## License This project is released under the [Apache 2.0 license](LICENSE). ## Projects in OpenMMLab - [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision. - [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages. - [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark. - [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark. - [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection. - [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark. - [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark. - [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition and understanding toolbox. - [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark. - [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark. - [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning Toolbox and Benchmark. - [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab Model Compression Toolbox and Benchmark. - [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab FewShot Learning Toolbox and Benchmark. - [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark. - [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark. - [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark. - [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox. - [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab Generative Model toolbox and benchmark. - [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMlab deep learning model deployment toolset. %prep %autosetup -n mmtrack-0.14.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-mmtrack -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Wed Apr 12 2023 Python_Bot - 0.14.0-1 - Package Spec generated