%global _empty_manifest_terminate_build 0
Name: python-conbench
Version: 2023.4.10
Release: 1
Summary: Continuous Benchmarking (CB) Framework
License: MIT License
URL: https://github.com/conbench/conbench
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/c6/b7/79d921b8298c48d73743117a9b20836cc96e7375a2681007cffc3acd0d12/conbench-2023.4.10.tar.gz
BuildArch: noarch
Requires: python3-flask-swagger-ui
Requires: python3-click
Requires: python3-numpy
Requires: python3-psutil
Requires: python3-py-cpuinfo
Requires: python3-pytest
Requires: python3-PyYAML
Requires: python3-requests
Requires: python3-alembic
Requires: python3-apispec
Requires: python3-apispec-webframeworks
Requires: python3-bokeh
Requires: python3-click
Requires: python3-dacite
Requires: python3-email-validator
Requires: python3-Flask
Requires: python3-Flask-Bootstrap
Requires: python3-Flask-Login
Requires: python3-Flask-WTF
Requires: python3-gitpython
Requires: python3-gunicorn
Requires: python3-marshmallow
Requires: python3-numpy
Requires: python3-oauthlib
Requires: python3-openapi-spec-validator
Requires: python3-orjson
Requires: python3-pandas
Requires: python3-prometheus-client
Requires: python3-prometheus-flask-exporter
Requires: python3-psutil
Requires: python3-psycopg2
Requires: python3-py-cpuinfo
Requires: python3-pytest
Requires: python3-dotenv
Requires: python3-PyYAML
Requires: python3-requests
Requires: python3-tenacity
Requires: python3-SQLAlchemy
Requires: python3-black
Requires: python3-bs4
Requires: python3-coveralls
Requires: python3-flake8
Requires: python3-isort
Requires: python3-lxml
Requires: python3-pylint
Requires: python3-mypy
Requires: python3-myst-parser
Requires: python3-sphinx
Requires: python3-sphinx-autodoc-typehints
Requires: python3-types-beautifulsoup4
Requires: python3-types-psutil
Requires: python3-types-PyYAML
Requires: python3-types-requests
Requires: python3-types-oauthlib
Requires: python3-types-Flask
Requires: python3-alembic
Requires: python3-apispec
Requires: python3-apispec-webframeworks
Requires: python3-bokeh
Requires: python3-click
Requires: python3-dacite
Requires: python3-email-validator
Requires: python3-Flask
Requires: python3-Flask-Bootstrap
Requires: python3-Flask-Login
Requires: python3-flask-swagger-ui
Requires: python3-Flask-WTF
Requires: python3-gitpython
Requires: python3-gunicorn
Requires: python3-marshmallow
Requires: python3-numpy
Requires: python3-oauthlib
Requires: python3-openapi-spec-validator
Requires: python3-orjson
Requires: python3-pandas
Requires: python3-prometheus-client
Requires: python3-prometheus-flask-exporter
Requires: python3-psutil
Requires: python3-psycopg2
Requires: python3-py-cpuinfo
Requires: python3-pytest
Requires: python3-dotenv
Requires: python3-PyYAML
Requires: python3-requests
Requires: python3-tenacity
Requires: python3-SQLAlchemy
%description
# Conbench
Check out the docs at https://conbench.github.io/conbench.
Conbench allows you to write benchmarks in any language, publish the
results as JSON via an API, and persist them for comparison while
iterating on performance improvements or to guard against regressions.
Conbench includes a runner which can be used as a stand-alone library
for traditional macro benchmark authoring. The runner will time a unit of
work (or measure throughput), collect machine information that may be relevant
for hardware specific optimizations, and return JSON formatted results.
You can optionally host a Conbench server (API & dashboard) to share
benchmark results more widely, explore the changes over time, and
compare results across varying benchmark machines, languages, and cases.
There is also a Conbench command line interface, useful for Continuous
Benchmarking (CB) orchestration alongside your development pipeline.
The [Apache Arrow](https://arrow.apache.org/) project is using Conbench
for Continuous Benchmarking. They have both native Python Conbench
benchmarks, and Conbench benchmarks written in Python that know how to
execute their external C++/R/Java/JavaScript benchmarks and record those results
too. Those benchmarks can be found in the
[ursacomputing/benchmarks](https://github.com/ursacomputing/benchmarks)
repository, and the results are hosted on the
[Arrow Conbench Server](https://conbench.ursa.dev/).
- May 2021: https://ursalabs.org/blog/announcing-conbench/
## Installation
All packages in this repo can be installed from PyPI. Each package uses
[CalVer](https://calver.org/) for versioning. No stability is guaranteed between PyPI
versions, so consider pinning packages to a specific version in your code.
```bash
pip install benchadapt
pip install benchalerts
pip install benchclients
pip install benchconnect
pip install benchrun
pip install conbench # legacy CLI
```
We typically publish to PyPI often, when new features or bugfixes are needed by users,
but not on every merge to `main`. To install the latest development version, install
from git like so:
```bash
pip install 'benchadapt@git+https://github.com/conbench/conbench.git@main#subdirectory=benchadapt/python'
pip install 'benchalerts@git+https://github.com/conbench/conbench.git@main#subdirectory=benchalerts'
pip install 'benchclients@git+https://github.com/conbench/conbench.git@main#subdirectory=benchclients/python'
pip install 'benchconnect@git+https://github.com/conbench/conbench.git@main#subdirectory=benchconnect'
pip install 'benchrun@git+https://github.com/conbench/conbench.git@main#subdirectory=benchrun/python'
pip install 'conbench@git+https://github.com/conbench/conbench.git@main'
```
## Developer environment
### Dependencies
- [`make`](https://www.gnu.org/software/make/), [`docker compose`](https://docs.docker.com/compose/install/): common developer tasks depend on these tools. They need to be set up on your system.
- `GITHUB_API_TOKEN` environment variable: set up a GitHub API token using [GitHub's instructions](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token). It's recommended to only give the token read-only permissions to public repositories (which is the default for fine-grained personal access tokens). Run `export GITHUB_API_TOKEN="{token}"` in your current shell.
### Makefile targets
The following Makefile targets implement common developer tasks. They assume to be run in the root folder of the repository.
* `make run-app`: This command lets you experiment with Conbench locally.
It runs the stack in a containerized fashion.
It rebuilds container images from the current checkout, spawns
multiple containers (including one for the database), and then exposes Conbench's
HTTP server on the host at http://127.0.0.1:5000.
The command will stay in the foreground of your terminal, showing log output of all containers.
Once you see access log lines like `GET /api/ping/ HTTP/1.1" 200` you can point your browser to http://127.0.0.1:5000.
You can use `Ctrl+C` to terminate the containerized stack (this only stops containers, and the next invocation of `make run-app` will use previous database state -- invoke `make teardown-app` to stop and remove containers).
If you wish to clear all database tables during local development you can hit http://127.0.0.1:5000/api/wipe-db with the browser or with e.g. curl.
* `make run-app-dev`: Similar to `make run-app`, but also mounts the repository's root directory into the container.
Code changes are (should be) detected automatically and result in automatic code reload.
* `make tests`: The nobrainer command to run the test suite just like CI does.
For more fine-grained control see further below.
* `make lint`: Performs invasive code linting in your local checkout.
May modify files. Analogue to what CI requires.
It requires for some commands to be available in your current shell.
Dependencies can be installed with `pip install -r requirements-dev.txt`.
* `make alembic-new-migration`: Attempts to generate a new migration Python module in `migrations/versions/`.
Requires setting the environment variable `ALEMBIC_MIGRATION_NAME` before invocation.
Example: `export ALEMBIC_MIGRATION_NAME='repo_url_lenth'`.
After the file was created you may want to change its permissions and re-format it with `black`.
* `make conbench-on-minikube`: requires [minikube](https://minikube.sigs.k8s.io/docs/start/).
Deploys the Conbench API server to a local minikube-powered Kubernetes cluster.
This also deploys a kube-prometheus-based observability stack.
Use this target for local development in this area.
* `make docs-build`: Builds HTML docs locally so you may check that they render
correctly with no linting problems. Dependencies can be installed with
`pip install -r requirements-dev.txt`. Also, if you're working on the docstrings of
any of this repo's python packages, ensure the package is installed locally before
using this command.
In CI, we use `make build-docs SPHINXOPTS='-W --keep-going'` to fail the build if
there are Sphinx warnings. When using this command locally, you can just do
`make build-docs`, but keep an eye on the warnings.
### View API documentation
Point your browser to http://127.0.0.1:5000/api/docs/.
### Python environment on the host
CI and common developer commands use containerized workflows where dependencies are defined and easy to reason about via `Dockerfile`s.
Note that the CPython version that Conbench is tested with in CI and that it is recommended to be deployed with is currently the latest 3.11.x release, as also defined in `Dockerfile` at the root of this repository.
Some developer tasks may involve running Conbench tooling straight on the host.
Here is how to install the Python dependencies for the Conbench web application:
```bash
pip install -r requirements-webapp.txt
```
Dependencies for running code analysis and tests straight on the host can be installed with
```bash
pip install -r requirements-dev.txt
```
Dependencies for the (legacy) `conbench` CLI can be installed with
```bash
pip install -r requirements-cli.txt
```
### Fine-grained test invocation
If `make test` is too coarse-grained, then this is how to take control of the containerized `pytest` test runner:
```bash
docker compose down && docker compose build app && \
docker compose run app \
pytest -vv conbench/tests
```
This command attempts to stop and remove previously spawned test runner containers, and it rebuilds the `app` container image prior to running tests to pick up code changes in the local checkout.
Useful command line arguments for local development (can be combined as desired):
* `... pytest -k test_login`: run only string-matching tests
* `... pytest -x`: exit upon first error
* `... pytest -s`: do not swallow log output during run
* `... run -e CONBENCH_LOG_LEVEL_STDERR=DEBUG app ...`
### Legacy commands
The following commands are not guaranteed to work as documented, but provide valuable inspiration:
#### To autogenerate a migration
(conbench) $ brew services start postgres
(conbench) $ dropdb conbench_prod
(conbench) $ createdb conbench_prod
(conbench) $ git checkout main && git pull
(conbench) $ alembic upgrade head
(conbench) $ git checkout your-branch
(conbench) $ alembic revision --autogenerate -m "new"
#### To populate local conbench with sample runs and benchmarks
1. Start conbench app in Terminal window 1:
(conbench) $ dropdb conbench_prod && createdb conbench_prod && alembic upgrade head && flask run
2. Run `conbench.tests.populate_local_conbench` in Terminal window 2 while conbench app is running:
(conbench) $ python -m conbench.tests.populate_local_conbench
### To upload new version of packages to PyPI
Kick off a new run of the "Build and upload a package to PyPI" workflow on the [Actions
page](https://github.com/conbench/conbench/actions).
### To add new documentation pages
To add a new page to our GitHub Pages-hosted documentation:
1. Add a Markdown file to `docs/pages/`.
2. In the toctree in the `docs/index.rst` file, add `pages/your_new_page`, where
`your_new_page` is your new filename without the `.md` file suffix.
To test that your new pages pass our documentation linter, run the `make docs-build`
command, as described above.
## Configuring the web application
The conbench web application can be configured with various environment variables as
defined in
[config.py](https://github.com/conbench/conbench/blob/main/conbench/config.py).
Instructions are in that file.
## Creating accounts
By default, conbench has open read access, so a user account is not required to
view results or read from the API. An account is required only if the conbench
instance is private or to write data to conbench.
If you do need an account, follow the login screen's "Sign Up" link, and use the
registration key specified in the server configuration above. If you are a user
of conbench, you may need to talk to your user administrator to get the
registration key. SSO can be configured to avoid requiring the registration key.
If you have an account and need to create an additional account (say for a machine
user of the API) either repeat the process if you have the registration key, or if
you don't have the registration key (say if your account uses SSO), when logged in,
go to the gear menu / Users and use the "Add User" button to create a new account
without the registration key.
## Authoring benchmarks
There are three main types of benchmarks: "simple benchmarks" that time the
execution of a unit of work, "external benchmarks" that just record benchmark
results that were obtained from some other benchmarking tool, and "case
benchmarks" which benchmark a unit of work under different scenarios (cases).
Included in this repository are contrived, minimal examples of these different
kinds of benchmarks to be used as templates for benchmark authoring. These
example benchmarks and their tests can be found here:
* [_example_benchmarks.py](https://github.com/conbench/conbench/blob/main/conbench/tests/benchmark/_example_benchmarks.py)
* [test_cli.py](https://github.com/conbench/conbench/blob/main/conbench/tests/benchmark/test_cli.py)
* [test_runner.py](https://github.com/conbench/conbench/blob/main/conbench/tests/benchmark/test_runner.py)
### Example simple benchmarks
A "simple benchmark" runs and records the execution time of a unit of work.
Implementation details: Note that this benchmark extends
`conbench.runner.Benchmark`, implements the minimum required `run()`
method, and registers itself with the `@conbench.runner.register_benchmark`
decorator.
```python
import conbench.runner
@conbench.runner.register_benchmark
class SimpleBenchmark(conbench.runner.Benchmark):
name = "addition"
def run(self, **kwargs):
yield self.conbench.benchmark(
self._get_benchmark_function(), self.name, options=kwargs
)
def _get_benchmark_function(self):
return lambda: 1 + 1
```
Successfully registered benchmarks appear in the `conbench --help` list.
For this benchmark to appear, the file must match the following paterns (documented in the [`utils.py:register_benchmarks` function](https://github.com/conbench/conbench/blob/35fde9954e2b365e36472f16b46fe3067e9dc455/conbench/util.py#L104):
* `benchmark*.py`
* `*benchmark.py`
* `*benchmarks.py`
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench --help
Usage: conbench [OPTIONS] COMMAND [ARGS]...
Conbench: Language-independent Continuous Benchmarking (CB) Framework
Options:
--help Show this message and exit.
Commands:
addition Run addition benchmark.
external Run external benchmark.
external-r Run external-r benchmark.
external-r-options Run external-r-options benchmark.
list List of benchmarks (for orchestration).
matrix Run matrix benchmark(s).
version Display Conbench version.
```
Benchmarks can be run from command line within the directory where the
benchmarks are defined.
Benchmark classes can also be imported and executed via the `run` method which
accepts the same arguments that appear in the command line help.
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench addition --help
Usage: conbench addition [OPTIONS]
Run addition benchmark.
Options:
--iterations INTEGER [default: 1]
--drop-caches BOOLEAN [default: false]
--gc-collect BOOLEAN [default: true]
--gc-disable BOOLEAN [default: true]
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Free-text name of run (commit ABC, pull request 123,
etc).
--run-reason TEXT Low-cardinality reason for run (commit, pull request,
manual, etc).
--help Show this message and exit.
```
Example command line execution:
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench addition
Benchmark result:
{
"batch_id": "c9db942c27db4359923eb08aa553beb7",
"run_id": "f6c7d0b3b3f146f9b1ad297fc6e5776b",
"timestamp": "2021-11-09T22:09:17.790397+00:00",
"context": {
"benchmark_language": "Python"
},
"github": {
"commit": "61dec915b9dd230ca5029f5e586f8bd95c3e0c05",
"repository": "https://github.com/conbench/conbench"
},
"info": {
"benchmark_language_version": "Python 3.9.7"
},
"machine_info": {
"architecture_name": "arm64",
"cpu_core_count": "8",
"cpu_frequency_max_hz": "0",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_model_name": "Apple M1",
"cpu_thread_count": "8",
"gpu_count": "0",
"gpu_product_names": [],
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2"
},
"stats": {
"data": [
"0.000001"
],
"iqr": "0.000000",
"iterations": 1,
"max": "0.000001",
"mean": "0.000001",
"median": "0.000001",
"min": "0.000001",
"q1": "0.000001",
"q3": "0.000001",
"stdev": 0,
"time_unit": "s",
"times": [],
"unit": "s"
},
"tags": {
"name": "addition"
}
}
```
Example Python execution:
```
(conbench) $ python
>>> import json
>>> from conbench.tests.benchmark import _example_benchmarks
>>> benchmark = _example_benchmarks.SimpleBenchmark()
>>> [(result, output)] = benchmark.run(iterations=10)
>>> output
2
>>> print(json.dumps(result, indent=2))
{
"run_id": "dfe3a816ca9e451a9da7d940a974cb95",
"batch_id": "0e869934b391424a8199c485dfbbc066",
"timestamp": "2021-11-09T22:11:25.262330+00:00",
"stats": {
"data": [
"0.000002",
"0.000001",
"0.000000",
"0.000001",
"0.000001",
"0.000001",
"0.000001",
"0.000000",
"0.000001",
"0.000001"
],
"times": [],
"unit": "s",
"time_unit": "s",
"iterations": 10,
"mean": "0.000001",
"median": "0.000001",
"min": "0.000000",
"max": "0.000002",
"stdev": "0.000001",
"q1": "0.000001",
"q3": "0.000001",
"iqr": "0.000000"
},
"machine_info": {
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2",
"architecture_name": "arm64",
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"cpu_model_name": "Apple M1",
"cpu_core_count": "8",
"cpu_thread_count": "8",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_frequency_max_hz": "0",
"gpu_count": "0",
"gpu_product_names": []
},
"context": {
"benchmark_language": "Python"
},
"info": {
"benchmark_language_version": "Python 3.9.7"
},
"tags": {
"name": "addition"
},
"github": {
"commit": "61dec915b9dd230ca5029f5e586f8bd95c3e0c05",
"repository": "https://github.com/conbench/conbench"
}
}
```
By default, Conbench will try to publish your results to a Conbench server. If
you don't have one running or are missing a `.conbench` credentials file, you'll
see error messages like the following when you execute benchmarks.
```
POST http://localhost:5000/api/login/ failed
{
"code": 400,
"description": {
"_errors": [
"Invalid email or password."
]
},
"name": "Bad Request"
}
POST http://localhost:5000/api/benchmarks/ failed
{
"code": 401,
"name": "Unauthorized"
}
```
To publish your results to a Conbench server, place a `.conbench` file in the
same directory as your benchmarks. The `cat` command below shows the contents
of an example `.conbench` config file.
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ cat .conbench
url: http://localhost:5000
email: you@example.com
password: conbench
```
If you don't yet have a Conbench server user account, you'll need to create one
to publish results (registration key defaults to `conbench`).
- http://localhost:5000/register/
### Example external benchmarks
An "external benchmark" records results that were obtained from some other
benchmarking tool (like executing an R benchmark from command line, parsing
the resulting JSON, and recording those results).
Implementation details: Note that the following benchmark sets
`external = True`, and calls `self.conbench.record()` rather than
`self.conbench.benchmark()` as the example above does.
```python
import conbench.runner
@conbench.runner.register_benchmark
class ExternalBenchmark(conbench.runner.Benchmark):
"""Example benchmark that just records external results."""
external = True
name = "external"
def run(self, **kwargs):
# external results from an API call, command line execution, etc
result = {
"data": [100, 200, 300],
"unit": "i/s",
"times": [0.100, 0.200, 0.300],
"time_unit": "s",
}
context = {"benchmark_language": "C++"}
yield self.conbench.record(
result, self.name, context=context, options=kwargs, output=result
)
```
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench external --help
Usage: conbench external [OPTIONS]
Run external benchmark.
Options:
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Free-text name of run (commit ABC, pull request 123,
etc).
--run-reason TEXT Low-cardinality reason for run (commit, pull request,
manual, etc).
--help Show this message and exit.
```
Note that the use of `--iterations=3` results in 3 runs of the benchmark, and
the `mean`, `stdev`, etc calculated.
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench external --iterations=3
Benchmark result:
{
"run_id": "8058dde1491b49e5bd514646797c2a20",
"batch_id": "8058dde1491b49e5bd514646797c2a20",
"timestamp": "2021-06-21T22:16:54.786499+00:00",
"context": {
"benchmark_language": "C++"
},
"github": {
"commit": "58fb35dc593dca82c917cf18c1c65c059b9fb12c",
"repository": "https://github.com/conbench/conbench"
},
"info": {},
"machine_info": {
"architecture_name": "x86_64",
"cpu_core_count": "2",
"cpu_frequency_max_hz": "3500000000",
"cpu_l1d_cache_bytes": "32768",
"cpu_l1i_cache_bytes": "32768",
"cpu_l2_cache_bytes": "262144",
"cpu_l3_cache_bytes": "4194304",
"cpu_model_name": "Intel(R) Core(TM) i7-7567U CPU @ 3.50GHz",
"cpu_thread_count": "4",
"kernel_name": "20.5.0",
"memory_bytes": "17179869184",
"name": "machine-abc",
"os_name": "macOS",
"os_version": "10.16"
},
"stats": {
"data": [
"100.000000",
"200.000000",
"300.000000"
],
"iqr": "100.000000",
"iterations": 3,
"max": "300.000000",
"mean": "200.000000",
"median": "200.000000",
"min": "100.000000",
"q1": "150.000000",
"q3": "250.000000",
"stdev": "100.000000",
"time_unit": "s",
"times": [
"0.100000",
"0.200000",
"0.300000"
],
"unit": "i/s"
},
"tags": {
"name": "external"
}
}
```
### Example simple benchmarks executed on machine cluster instead of one machine
If your benchmark is executed on a machine cluster instead of one machine, you
can capture cluster info in the following manner.
Note that a benchmark will have a continuous history on a specific cluster as long as cluster's `name` and `info` do not change.
There is also an `optional_info` field for information that should not impact the cluster's hash (and thus disrupt the distribution history), but should still be recorded.
```python
import conbench.runner
@conbench.runner.register_benchmark
class SimpleBenchmarkWithClusterInfo(conbench.runner.Benchmark):
name = "product"
def run(self, **kwargs):
cluster_info = {
"name": "cluster 1",
"info": {"gpu": 1},
"optional_info": {"workers": 2},
}
yield self.conbench.benchmark(
self._get_benchmark_function(),
self.name,
cluster_info=cluster_info,
options=kwargs,
)
def _get_benchmark_function(self):
return lambda: 1 * 2
```
### Example case benchmarks
A "case benchmark" is a either a "simple benchmark" or an "external benchmark"
executed under various predefined scenarios (cases).
Implementation details: Note that the following benchmark declares the valid
combinations in `valid_cases`, which reads like a CSV (the first row contains
the cases names).
```python
import conbench.runner
@conbench.runner.register_benchmark
class CasesBenchmark(conbench.runner.Benchmark):
"""Example benchmark with cases."""
name = "matrix"
valid_cases = (
("rows", "columns"),
("10", "10"),
("2", "10"),
("10", "2"),
)
def run(self, case=None, **kwargs):
for case in self.get_cases(case, kwargs):
rows, columns = case
tags = {"rows": rows, "columns": columns}
func = self._get_benchmark_function(rows, columns)
benchmark, output = self.conbench.benchmark(
func,
self.name,
tags=tags,
options=kwargs,
)
yield benchmark, output
def _get_benchmark_function(self, rows, columns):
return lambda: int(rows) * [int(columns) * [0]]
```
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench matrix --help
Usage: conbench matrix [OPTIONS]
Run matrix benchmark(s).
For each benchmark option, the first option value is the default.
Valid benchmark combinations:
--rows=10 --columns=10
--rows=2 --columns=10
--rows=10 --columns=2
To run all combinations:
$ conbench matrix --all=true
Options:
--rows [10|2]
--columns [10|2]
--all BOOLEAN [default: false]
--iterations INTEGER [default: 1]
--drop-caches BOOLEAN [default: false]
--gc-collect BOOLEAN [default: true]
--gc-disable BOOLEAN [default: true]
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Free-text name of run (commit ABC, pull request 123,
etc).
--run-reason TEXT Low-cardinality reason for run (commit, pull request,
manual, etc).
--help Show this message and exit.
"""
```
Note that the use of `--all=true` results in 3 benchmark results, one for each
case (`10 x 10`, `2, x 10`, and `10, x 2`).
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench matrix --all=true
Benchmark result:
{
"batch_id": "13b87cc6d9a84f2188df279d8c513933",
"run_id": "48acd853b8294df9a1f5457f192456f3",
"timestamp": "2021-11-09T22:15:23.501923+00:00",
"context": {
"benchmark_language": "Python"
},
"github": {
"commit": "61dec915b9dd230ca5029f5e586f8bd95c3e0c05",
"repository": "https://github.com/conbench/conbench"
},
"info": {
"benchmark_language_version": "Python 3.9.7"
},
"machine_info": {
"architecture_name": "arm64",
"cpu_core_count": "8",
"cpu_frequency_max_hz": "0",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_model_name": "Apple M1",
"cpu_thread_count": "8",
"gpu_count": "0",
"gpu_product_names": [],
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2"
},
"run_id": "48acd853b8294df9a1f5457f192456f3",
"stats": {
"data": [
"0.000004"
],
"iqr": "0.000000",
"iterations": 1,
"max": "0.000004",
"mean": "0.000004",
"median": "0.000004",
"min": "0.000004",
"q1": "0.000004",
"q3": "0.000004",
"stdev": 0,
"time_unit": "s",
"times": [],
"unit": "s"
},
"tags": {
"columns": "10",
"name": "matrix",
"rows": "10"
},
"timestamp": "2021-11-09T22:15:23.397819+00:00"
}
Benchmark result:
{
"batch_id": "13b87cc6d9a84f2188df279d8c513933",
"context": {
"benchmark_language": "Python"
},
"github": {
"commit": "61dec915b9dd230ca5029f5e586f8bd95c3e0c05",
"repository": "https://github.com/conbench/conbench"
},
"info": {
"benchmark_language_version": "Python 3.9.7"
},
"machine_info": {
"architecture_name": "arm64",
"cpu_core_count": "8",
"cpu_frequency_max_hz": "0",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_model_name": "Apple M1",
"cpu_thread_count": "8",
"gpu_count": "0",
"gpu_product_names": [],
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2"
},
"stats": {
"data": [
"0.000004"
],
"iqr": "0.000000",
"iterations": 1,
"max": "0.000004",
"mean": "0.000004",
"median": "0.000004",
"min": "0.000004",
"q1": "0.000004",
"q3": "0.000004",
"stdev": 0,
"time_unit": "s",
"times": [],
"unit": "s"
},
"tags": {
"columns": "10",
"name": "matrix",
"rows": "2"
}
}
Benchmark result:
{
"batch_id": "13b87cc6d9a84f2188df279d8c513933",
"run_id": "48acd853b8294df9a1f5457f192456f3",
"timestamp": "2021-11-09T22:15:23.509211+00:00",
"context": {
"benchmark_language": "Python"
},
"github": {
"commit": "61dec915b9dd230ca5029f5e586f8bd95c3e0c05",
"repository": "https://github.com/conbench/conbench"
},
"info": {
"benchmark_language_version": "Python 3.9.7"
},
"machine_info": {
"architecture_name": "arm64",
"cpu_core_count": "8",
"cpu_frequency_max_hz": "0",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_model_name": "Apple M1",
"cpu_thread_count": "8",
"gpu_count": "0",
"gpu_product_names": [],
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2"
},
"stats": {
"data": [
"0.000002"
],
"iqr": "0.000000",
"iterations": 1,
"max": "0.000002",
"mean": "0.000002",
"median": "0.000002",
"min": "0.000002",
"q1": "0.000002",
"q3": "0.000002",
"stdev": 0,
"time_unit": "s",
"times": [],
"unit": "s"
},
"tags": {
"columns": "2",
"name": "matrix",
"rows": "10"
}
}
```
### Example R benchmarks
Here are a few examples illustrating how to integrate R benchmarks with
Conbench.
The first one just times `1 + 1` in R, and the second one executes an R
benchmark from a library of R benchmarks (in this case
[arrowbench](https://github.com/ursacomputing/arrowbench)).
If you find yourself wrapping a lot of R benchmarks in Python to integrate them
with Conbench (to get uniform JSON benchmark results which you can persist and
publish on a Conbench server), you'll probably want to extract much of the
boilerplate out into a base class.
```python
import conbench.runner
@conbench.runner.register_benchmark
class ExternalBenchmarkR(conbench.runner.Benchmark):
"""Example benchmark that records an R benchmark result."""
external = True
name = "external-r"
def run(self, **kwargs):
result, output = self._run_r_command()
info, context = self.conbench.get_r_info_and_context()
yield self.conbench.record(
{"data": [result], "unit": "s"},
self.name,
info=info,
context=context,
options=kwargs,
output=output,
)
def _run_r_command(self):
output, _ = self.conbench.execute_r_command(self._get_r_command())
result = float(output.split("\n")[-1].split("[1] ")[1])
return result, output
def _get_r_command(self):
return (
f"addition <- function() { 1 + 1 }; "
"start_time <- Sys.time();"
"addition(); "
"end_time <- Sys.time(); "
"result <- end_time - start_time; "
"as.numeric(result); "
)
```
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench external-r --help
Usage: conbench external-r [OPTIONS]
Run external-r benchmark.
Options:
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Free-text name of run (commit ABC, pull request 123,
etc).
--run-reason TEXT Low-cardinality reason for run (commit, pull request,
manual, etc).
--help Show this message and exit.
```
```python
import json
import conbench.runner
@conbench.runner.register_benchmark
class ExternalBenchmarkOptionsR(conbench.runner.Benchmark):
"""Example benchmark that records an R benchmark result (with options)."""
external = True
name = "external-r-options"
options = {
"iterations": {"default": 1, "type": int},
"drop_caches": {"type": bool, "default": "false"},
}
def run(self, **kwargs):
data, iterations = [], kwargs.get("iterations", 1)
info, context = self.conbench.get_r_info_and_context()
for _ in range(iterations):
if kwargs.get("drop_caches", False):
self.conbench.sync_and_drop_caches()
result, output = self._run_r_command()
data.append(result["result"][0]["real"])
yield self.conbench.record(
{"data": data, "unit": "s"},
self.name,
info=info,
context=context,
options=kwargs,
output=output,
)
def _run_r_command(self):
r_command = self._get_r_command()
self.conbench.execute_r_command(r_command)
with open("placebo.json") as json_file:
data = json.load(json_file)
return data, json.dumps(data, indent=2)
def _get_r_command(self):
return (
"library(arrowbench); "
"out <- run_one(arrowbench:::placebo); "
"cat(jsonlite::toJSON(out), file='placebo.json'); "
)
```
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench external-r --help
Usage: conbench external-r-options [OPTIONS]
Run external-r-options benchmark.
Options:
--iterations INTEGER [default: 1]
--drop-caches BOOLEAN [default: false]
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Free-text name of run (commit ABC, pull request 123,
etc).
--run-reason TEXT Low-cardinality reason for run (commit, pull request,
manual, etc).
--help Show this message and exit.
```
%package -n python3-conbench
Summary: Continuous Benchmarking (CB) Framework
Provides: python-conbench
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-conbench
# Conbench
Check out the docs at https://conbench.github.io/conbench.
Conbench allows you to write benchmarks in any language, publish the
results as JSON via an API, and persist them for comparison while
iterating on performance improvements or to guard against regressions.
Conbench includes a runner which can be used as a stand-alone library
for traditional macro benchmark authoring. The runner will time a unit of
work (or measure throughput), collect machine information that may be relevant
for hardware specific optimizations, and return JSON formatted results.
You can optionally host a Conbench server (API & dashboard) to share
benchmark results more widely, explore the changes over time, and
compare results across varying benchmark machines, languages, and cases.
There is also a Conbench command line interface, useful for Continuous
Benchmarking (CB) orchestration alongside your development pipeline.
The [Apache Arrow](https://arrow.apache.org/) project is using Conbench
for Continuous Benchmarking. They have both native Python Conbench
benchmarks, and Conbench benchmarks written in Python that know how to
execute their external C++/R/Java/JavaScript benchmarks and record those results
too. Those benchmarks can be found in the
[ursacomputing/benchmarks](https://github.com/ursacomputing/benchmarks)
repository, and the results are hosted on the
[Arrow Conbench Server](https://conbench.ursa.dev/).
- May 2021: https://ursalabs.org/blog/announcing-conbench/
## Installation
All packages in this repo can be installed from PyPI. Each package uses
[CalVer](https://calver.org/) for versioning. No stability is guaranteed between PyPI
versions, so consider pinning packages to a specific version in your code.
```bash
pip install benchadapt
pip install benchalerts
pip install benchclients
pip install benchconnect
pip install benchrun
pip install conbench # legacy CLI
```
We typically publish to PyPI often, when new features or bugfixes are needed by users,
but not on every merge to `main`. To install the latest development version, install
from git like so:
```bash
pip install 'benchadapt@git+https://github.com/conbench/conbench.git@main#subdirectory=benchadapt/python'
pip install 'benchalerts@git+https://github.com/conbench/conbench.git@main#subdirectory=benchalerts'
pip install 'benchclients@git+https://github.com/conbench/conbench.git@main#subdirectory=benchclients/python'
pip install 'benchconnect@git+https://github.com/conbench/conbench.git@main#subdirectory=benchconnect'
pip install 'benchrun@git+https://github.com/conbench/conbench.git@main#subdirectory=benchrun/python'
pip install 'conbench@git+https://github.com/conbench/conbench.git@main'
```
## Developer environment
### Dependencies
- [`make`](https://www.gnu.org/software/make/), [`docker compose`](https://docs.docker.com/compose/install/): common developer tasks depend on these tools. They need to be set up on your system.
- `GITHUB_API_TOKEN` environment variable: set up a GitHub API token using [GitHub's instructions](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token). It's recommended to only give the token read-only permissions to public repositories (which is the default for fine-grained personal access tokens). Run `export GITHUB_API_TOKEN="{token}"` in your current shell.
### Makefile targets
The following Makefile targets implement common developer tasks. They assume to be run in the root folder of the repository.
* `make run-app`: This command lets you experiment with Conbench locally.
It runs the stack in a containerized fashion.
It rebuilds container images from the current checkout, spawns
multiple containers (including one for the database), and then exposes Conbench's
HTTP server on the host at http://127.0.0.1:5000.
The command will stay in the foreground of your terminal, showing log output of all containers.
Once you see access log lines like `GET /api/ping/ HTTP/1.1" 200` you can point your browser to http://127.0.0.1:5000.
You can use `Ctrl+C` to terminate the containerized stack (this only stops containers, and the next invocation of `make run-app` will use previous database state -- invoke `make teardown-app` to stop and remove containers).
If you wish to clear all database tables during local development you can hit http://127.0.0.1:5000/api/wipe-db with the browser or with e.g. curl.
* `make run-app-dev`: Similar to `make run-app`, but also mounts the repository's root directory into the container.
Code changes are (should be) detected automatically and result in automatic code reload.
* `make tests`: The nobrainer command to run the test suite just like CI does.
For more fine-grained control see further below.
* `make lint`: Performs invasive code linting in your local checkout.
May modify files. Analogue to what CI requires.
It requires for some commands to be available in your current shell.
Dependencies can be installed with `pip install -r requirements-dev.txt`.
* `make alembic-new-migration`: Attempts to generate a new migration Python module in `migrations/versions/`.
Requires setting the environment variable `ALEMBIC_MIGRATION_NAME` before invocation.
Example: `export ALEMBIC_MIGRATION_NAME='repo_url_lenth'`.
After the file was created you may want to change its permissions and re-format it with `black`.
* `make conbench-on-minikube`: requires [minikube](https://minikube.sigs.k8s.io/docs/start/).
Deploys the Conbench API server to a local minikube-powered Kubernetes cluster.
This also deploys a kube-prometheus-based observability stack.
Use this target for local development in this area.
* `make docs-build`: Builds HTML docs locally so you may check that they render
correctly with no linting problems. Dependencies can be installed with
`pip install -r requirements-dev.txt`. Also, if you're working on the docstrings of
any of this repo's python packages, ensure the package is installed locally before
using this command.
In CI, we use `make build-docs SPHINXOPTS='-W --keep-going'` to fail the build if
there are Sphinx warnings. When using this command locally, you can just do
`make build-docs`, but keep an eye on the warnings.
### View API documentation
Point your browser to http://127.0.0.1:5000/api/docs/.
### Python environment on the host
CI and common developer commands use containerized workflows where dependencies are defined and easy to reason about via `Dockerfile`s.
Note that the CPython version that Conbench is tested with in CI and that it is recommended to be deployed with is currently the latest 3.11.x release, as also defined in `Dockerfile` at the root of this repository.
Some developer tasks may involve running Conbench tooling straight on the host.
Here is how to install the Python dependencies for the Conbench web application:
```bash
pip install -r requirements-webapp.txt
```
Dependencies for running code analysis and tests straight on the host can be installed with
```bash
pip install -r requirements-dev.txt
```
Dependencies for the (legacy) `conbench` CLI can be installed with
```bash
pip install -r requirements-cli.txt
```
### Fine-grained test invocation
If `make test` is too coarse-grained, then this is how to take control of the containerized `pytest` test runner:
```bash
docker compose down && docker compose build app && \
docker compose run app \
pytest -vv conbench/tests
```
This command attempts to stop and remove previously spawned test runner containers, and it rebuilds the `app` container image prior to running tests to pick up code changes in the local checkout.
Useful command line arguments for local development (can be combined as desired):
* `... pytest -k test_login`: run only string-matching tests
* `... pytest -x`: exit upon first error
* `... pytest -s`: do not swallow log output during run
* `... run -e CONBENCH_LOG_LEVEL_STDERR=DEBUG app ...`
### Legacy commands
The following commands are not guaranteed to work as documented, but provide valuable inspiration:
#### To autogenerate a migration
(conbench) $ brew services start postgres
(conbench) $ dropdb conbench_prod
(conbench) $ createdb conbench_prod
(conbench) $ git checkout main && git pull
(conbench) $ alembic upgrade head
(conbench) $ git checkout your-branch
(conbench) $ alembic revision --autogenerate -m "new"
#### To populate local conbench with sample runs and benchmarks
1. Start conbench app in Terminal window 1:
(conbench) $ dropdb conbench_prod && createdb conbench_prod && alembic upgrade head && flask run
2. Run `conbench.tests.populate_local_conbench` in Terminal window 2 while conbench app is running:
(conbench) $ python -m conbench.tests.populate_local_conbench
### To upload new version of packages to PyPI
Kick off a new run of the "Build and upload a package to PyPI" workflow on the [Actions
page](https://github.com/conbench/conbench/actions).
### To add new documentation pages
To add a new page to our GitHub Pages-hosted documentation:
1. Add a Markdown file to `docs/pages/`.
2. In the toctree in the `docs/index.rst` file, add `pages/your_new_page`, where
`your_new_page` is your new filename without the `.md` file suffix.
To test that your new pages pass our documentation linter, run the `make docs-build`
command, as described above.
## Configuring the web application
The conbench web application can be configured with various environment variables as
defined in
[config.py](https://github.com/conbench/conbench/blob/main/conbench/config.py).
Instructions are in that file.
## Creating accounts
By default, conbench has open read access, so a user account is not required to
view results or read from the API. An account is required only if the conbench
instance is private or to write data to conbench.
If you do need an account, follow the login screen's "Sign Up" link, and use the
registration key specified in the server configuration above. If you are a user
of conbench, you may need to talk to your user administrator to get the
registration key. SSO can be configured to avoid requiring the registration key.
If you have an account and need to create an additional account (say for a machine
user of the API) either repeat the process if you have the registration key, or if
you don't have the registration key (say if your account uses SSO), when logged in,
go to the gear menu / Users and use the "Add User" button to create a new account
without the registration key.
## Authoring benchmarks
There are three main types of benchmarks: "simple benchmarks" that time the
execution of a unit of work, "external benchmarks" that just record benchmark
results that were obtained from some other benchmarking tool, and "case
benchmarks" which benchmark a unit of work under different scenarios (cases).
Included in this repository are contrived, minimal examples of these different
kinds of benchmarks to be used as templates for benchmark authoring. These
example benchmarks and their tests can be found here:
* [_example_benchmarks.py](https://github.com/conbench/conbench/blob/main/conbench/tests/benchmark/_example_benchmarks.py)
* [test_cli.py](https://github.com/conbench/conbench/blob/main/conbench/tests/benchmark/test_cli.py)
* [test_runner.py](https://github.com/conbench/conbench/blob/main/conbench/tests/benchmark/test_runner.py)
### Example simple benchmarks
A "simple benchmark" runs and records the execution time of a unit of work.
Implementation details: Note that this benchmark extends
`conbench.runner.Benchmark`, implements the minimum required `run()`
method, and registers itself with the `@conbench.runner.register_benchmark`
decorator.
```python
import conbench.runner
@conbench.runner.register_benchmark
class SimpleBenchmark(conbench.runner.Benchmark):
name = "addition"
def run(self, **kwargs):
yield self.conbench.benchmark(
self._get_benchmark_function(), self.name, options=kwargs
)
def _get_benchmark_function(self):
return lambda: 1 + 1
```
Successfully registered benchmarks appear in the `conbench --help` list.
For this benchmark to appear, the file must match the following paterns (documented in the [`utils.py:register_benchmarks` function](https://github.com/conbench/conbench/blob/35fde9954e2b365e36472f16b46fe3067e9dc455/conbench/util.py#L104):
* `benchmark*.py`
* `*benchmark.py`
* `*benchmarks.py`
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench --help
Usage: conbench [OPTIONS] COMMAND [ARGS]...
Conbench: Language-independent Continuous Benchmarking (CB) Framework
Options:
--help Show this message and exit.
Commands:
addition Run addition benchmark.
external Run external benchmark.
external-r Run external-r benchmark.
external-r-options Run external-r-options benchmark.
list List of benchmarks (for orchestration).
matrix Run matrix benchmark(s).
version Display Conbench version.
```
Benchmarks can be run from command line within the directory where the
benchmarks are defined.
Benchmark classes can also be imported and executed via the `run` method which
accepts the same arguments that appear in the command line help.
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench addition --help
Usage: conbench addition [OPTIONS]
Run addition benchmark.
Options:
--iterations INTEGER [default: 1]
--drop-caches BOOLEAN [default: false]
--gc-collect BOOLEAN [default: true]
--gc-disable BOOLEAN [default: true]
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Free-text name of run (commit ABC, pull request 123,
etc).
--run-reason TEXT Low-cardinality reason for run (commit, pull request,
manual, etc).
--help Show this message and exit.
```
Example command line execution:
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench addition
Benchmark result:
{
"batch_id": "c9db942c27db4359923eb08aa553beb7",
"run_id": "f6c7d0b3b3f146f9b1ad297fc6e5776b",
"timestamp": "2021-11-09T22:09:17.790397+00:00",
"context": {
"benchmark_language": "Python"
},
"github": {
"commit": "61dec915b9dd230ca5029f5e586f8bd95c3e0c05",
"repository": "https://github.com/conbench/conbench"
},
"info": {
"benchmark_language_version": "Python 3.9.7"
},
"machine_info": {
"architecture_name": "arm64",
"cpu_core_count": "8",
"cpu_frequency_max_hz": "0",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_model_name": "Apple M1",
"cpu_thread_count": "8",
"gpu_count": "0",
"gpu_product_names": [],
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2"
},
"stats": {
"data": [
"0.000001"
],
"iqr": "0.000000",
"iterations": 1,
"max": "0.000001",
"mean": "0.000001",
"median": "0.000001",
"min": "0.000001",
"q1": "0.000001",
"q3": "0.000001",
"stdev": 0,
"time_unit": "s",
"times": [],
"unit": "s"
},
"tags": {
"name": "addition"
}
}
```
Example Python execution:
```
(conbench) $ python
>>> import json
>>> from conbench.tests.benchmark import _example_benchmarks
>>> benchmark = _example_benchmarks.SimpleBenchmark()
>>> [(result, output)] = benchmark.run(iterations=10)
>>> output
2
>>> print(json.dumps(result, indent=2))
{
"run_id": "dfe3a816ca9e451a9da7d940a974cb95",
"batch_id": "0e869934b391424a8199c485dfbbc066",
"timestamp": "2021-11-09T22:11:25.262330+00:00",
"stats": {
"data": [
"0.000002",
"0.000001",
"0.000000",
"0.000001",
"0.000001",
"0.000001",
"0.000001",
"0.000000",
"0.000001",
"0.000001"
],
"times": [],
"unit": "s",
"time_unit": "s",
"iterations": 10,
"mean": "0.000001",
"median": "0.000001",
"min": "0.000000",
"max": "0.000002",
"stdev": "0.000001",
"q1": "0.000001",
"q3": "0.000001",
"iqr": "0.000000"
},
"machine_info": {
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2",
"architecture_name": "arm64",
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"cpu_model_name": "Apple M1",
"cpu_core_count": "8",
"cpu_thread_count": "8",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_frequency_max_hz": "0",
"gpu_count": "0",
"gpu_product_names": []
},
"context": {
"benchmark_language": "Python"
},
"info": {
"benchmark_language_version": "Python 3.9.7"
},
"tags": {
"name": "addition"
},
"github": {
"commit": "61dec915b9dd230ca5029f5e586f8bd95c3e0c05",
"repository": "https://github.com/conbench/conbench"
}
}
```
By default, Conbench will try to publish your results to a Conbench server. If
you don't have one running or are missing a `.conbench` credentials file, you'll
see error messages like the following when you execute benchmarks.
```
POST http://localhost:5000/api/login/ failed
{
"code": 400,
"description": {
"_errors": [
"Invalid email or password."
]
},
"name": "Bad Request"
}
POST http://localhost:5000/api/benchmarks/ failed
{
"code": 401,
"name": "Unauthorized"
}
```
To publish your results to a Conbench server, place a `.conbench` file in the
same directory as your benchmarks. The `cat` command below shows the contents
of an example `.conbench` config file.
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ cat .conbench
url: http://localhost:5000
email: you@example.com
password: conbench
```
If you don't yet have a Conbench server user account, you'll need to create one
to publish results (registration key defaults to `conbench`).
- http://localhost:5000/register/
### Example external benchmarks
An "external benchmark" records results that were obtained from some other
benchmarking tool (like executing an R benchmark from command line, parsing
the resulting JSON, and recording those results).
Implementation details: Note that the following benchmark sets
`external = True`, and calls `self.conbench.record()` rather than
`self.conbench.benchmark()` as the example above does.
```python
import conbench.runner
@conbench.runner.register_benchmark
class ExternalBenchmark(conbench.runner.Benchmark):
"""Example benchmark that just records external results."""
external = True
name = "external"
def run(self, **kwargs):
# external results from an API call, command line execution, etc
result = {
"data": [100, 200, 300],
"unit": "i/s",
"times": [0.100, 0.200, 0.300],
"time_unit": "s",
}
context = {"benchmark_language": "C++"}
yield self.conbench.record(
result, self.name, context=context, options=kwargs, output=result
)
```
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench external --help
Usage: conbench external [OPTIONS]
Run external benchmark.
Options:
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Free-text name of run (commit ABC, pull request 123,
etc).
--run-reason TEXT Low-cardinality reason for run (commit, pull request,
manual, etc).
--help Show this message and exit.
```
Note that the use of `--iterations=3` results in 3 runs of the benchmark, and
the `mean`, `stdev`, etc calculated.
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench external --iterations=3
Benchmark result:
{
"run_id": "8058dde1491b49e5bd514646797c2a20",
"batch_id": "8058dde1491b49e5bd514646797c2a20",
"timestamp": "2021-06-21T22:16:54.786499+00:00",
"context": {
"benchmark_language": "C++"
},
"github": {
"commit": "58fb35dc593dca82c917cf18c1c65c059b9fb12c",
"repository": "https://github.com/conbench/conbench"
},
"info": {},
"machine_info": {
"architecture_name": "x86_64",
"cpu_core_count": "2",
"cpu_frequency_max_hz": "3500000000",
"cpu_l1d_cache_bytes": "32768",
"cpu_l1i_cache_bytes": "32768",
"cpu_l2_cache_bytes": "262144",
"cpu_l3_cache_bytes": "4194304",
"cpu_model_name": "Intel(R) Core(TM) i7-7567U CPU @ 3.50GHz",
"cpu_thread_count": "4",
"kernel_name": "20.5.0",
"memory_bytes": "17179869184",
"name": "machine-abc",
"os_name": "macOS",
"os_version": "10.16"
},
"stats": {
"data": [
"100.000000",
"200.000000",
"300.000000"
],
"iqr": "100.000000",
"iterations": 3,
"max": "300.000000",
"mean": "200.000000",
"median": "200.000000",
"min": "100.000000",
"q1": "150.000000",
"q3": "250.000000",
"stdev": "100.000000",
"time_unit": "s",
"times": [
"0.100000",
"0.200000",
"0.300000"
],
"unit": "i/s"
},
"tags": {
"name": "external"
}
}
```
### Example simple benchmarks executed on machine cluster instead of one machine
If your benchmark is executed on a machine cluster instead of one machine, you
can capture cluster info in the following manner.
Note that a benchmark will have a continuous history on a specific cluster as long as cluster's `name` and `info` do not change.
There is also an `optional_info` field for information that should not impact the cluster's hash (and thus disrupt the distribution history), but should still be recorded.
```python
import conbench.runner
@conbench.runner.register_benchmark
class SimpleBenchmarkWithClusterInfo(conbench.runner.Benchmark):
name = "product"
def run(self, **kwargs):
cluster_info = {
"name": "cluster 1",
"info": {"gpu": 1},
"optional_info": {"workers": 2},
}
yield self.conbench.benchmark(
self._get_benchmark_function(),
self.name,
cluster_info=cluster_info,
options=kwargs,
)
def _get_benchmark_function(self):
return lambda: 1 * 2
```
### Example case benchmarks
A "case benchmark" is a either a "simple benchmark" or an "external benchmark"
executed under various predefined scenarios (cases).
Implementation details: Note that the following benchmark declares the valid
combinations in `valid_cases`, which reads like a CSV (the first row contains
the cases names).
```python
import conbench.runner
@conbench.runner.register_benchmark
class CasesBenchmark(conbench.runner.Benchmark):
"""Example benchmark with cases."""
name = "matrix"
valid_cases = (
("rows", "columns"),
("10", "10"),
("2", "10"),
("10", "2"),
)
def run(self, case=None, **kwargs):
for case in self.get_cases(case, kwargs):
rows, columns = case
tags = {"rows": rows, "columns": columns}
func = self._get_benchmark_function(rows, columns)
benchmark, output = self.conbench.benchmark(
func,
self.name,
tags=tags,
options=kwargs,
)
yield benchmark, output
def _get_benchmark_function(self, rows, columns):
return lambda: int(rows) * [int(columns) * [0]]
```
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench matrix --help
Usage: conbench matrix [OPTIONS]
Run matrix benchmark(s).
For each benchmark option, the first option value is the default.
Valid benchmark combinations:
--rows=10 --columns=10
--rows=2 --columns=10
--rows=10 --columns=2
To run all combinations:
$ conbench matrix --all=true
Options:
--rows [10|2]
--columns [10|2]
--all BOOLEAN [default: false]
--iterations INTEGER [default: 1]
--drop-caches BOOLEAN [default: false]
--gc-collect BOOLEAN [default: true]
--gc-disable BOOLEAN [default: true]
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Free-text name of run (commit ABC, pull request 123,
etc).
--run-reason TEXT Low-cardinality reason for run (commit, pull request,
manual, etc).
--help Show this message and exit.
"""
```
Note that the use of `--all=true` results in 3 benchmark results, one for each
case (`10 x 10`, `2, x 10`, and `10, x 2`).
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench matrix --all=true
Benchmark result:
{
"batch_id": "13b87cc6d9a84f2188df279d8c513933",
"run_id": "48acd853b8294df9a1f5457f192456f3",
"timestamp": "2021-11-09T22:15:23.501923+00:00",
"context": {
"benchmark_language": "Python"
},
"github": {
"commit": "61dec915b9dd230ca5029f5e586f8bd95c3e0c05",
"repository": "https://github.com/conbench/conbench"
},
"info": {
"benchmark_language_version": "Python 3.9.7"
},
"machine_info": {
"architecture_name": "arm64",
"cpu_core_count": "8",
"cpu_frequency_max_hz": "0",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_model_name": "Apple M1",
"cpu_thread_count": "8",
"gpu_count": "0",
"gpu_product_names": [],
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2"
},
"run_id": "48acd853b8294df9a1f5457f192456f3",
"stats": {
"data": [
"0.000004"
],
"iqr": "0.000000",
"iterations": 1,
"max": "0.000004",
"mean": "0.000004",
"median": "0.000004",
"min": "0.000004",
"q1": "0.000004",
"q3": "0.000004",
"stdev": 0,
"time_unit": "s",
"times": [],
"unit": "s"
},
"tags": {
"columns": "10",
"name": "matrix",
"rows": "10"
},
"timestamp": "2021-11-09T22:15:23.397819+00:00"
}
Benchmark result:
{
"batch_id": "13b87cc6d9a84f2188df279d8c513933",
"context": {
"benchmark_language": "Python"
},
"github": {
"commit": "61dec915b9dd230ca5029f5e586f8bd95c3e0c05",
"repository": "https://github.com/conbench/conbench"
},
"info": {
"benchmark_language_version": "Python 3.9.7"
},
"machine_info": {
"architecture_name": "arm64",
"cpu_core_count": "8",
"cpu_frequency_max_hz": "0",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_model_name": "Apple M1",
"cpu_thread_count": "8",
"gpu_count": "0",
"gpu_product_names": [],
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2"
},
"stats": {
"data": [
"0.000004"
],
"iqr": "0.000000",
"iterations": 1,
"max": "0.000004",
"mean": "0.000004",
"median": "0.000004",
"min": "0.000004",
"q1": "0.000004",
"q3": "0.000004",
"stdev": 0,
"time_unit": "s",
"times": [],
"unit": "s"
},
"tags": {
"columns": "10",
"name": "matrix",
"rows": "2"
}
}
Benchmark result:
{
"batch_id": "13b87cc6d9a84f2188df279d8c513933",
"run_id": "48acd853b8294df9a1f5457f192456f3",
"timestamp": "2021-11-09T22:15:23.509211+00:00",
"context": {
"benchmark_language": "Python"
},
"github": {
"commit": "61dec915b9dd230ca5029f5e586f8bd95c3e0c05",
"repository": "https://github.com/conbench/conbench"
},
"info": {
"benchmark_language_version": "Python 3.9.7"
},
"machine_info": {
"architecture_name": "arm64",
"cpu_core_count": "8",
"cpu_frequency_max_hz": "0",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_model_name": "Apple M1",
"cpu_thread_count": "8",
"gpu_count": "0",
"gpu_product_names": [],
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2"
},
"stats": {
"data": [
"0.000002"
],
"iqr": "0.000000",
"iterations": 1,
"max": "0.000002",
"mean": "0.000002",
"median": "0.000002",
"min": "0.000002",
"q1": "0.000002",
"q3": "0.000002",
"stdev": 0,
"time_unit": "s",
"times": [],
"unit": "s"
},
"tags": {
"columns": "2",
"name": "matrix",
"rows": "10"
}
}
```
### Example R benchmarks
Here are a few examples illustrating how to integrate R benchmarks with
Conbench.
The first one just times `1 + 1` in R, and the second one executes an R
benchmark from a library of R benchmarks (in this case
[arrowbench](https://github.com/ursacomputing/arrowbench)).
If you find yourself wrapping a lot of R benchmarks in Python to integrate them
with Conbench (to get uniform JSON benchmark results which you can persist and
publish on a Conbench server), you'll probably want to extract much of the
boilerplate out into a base class.
```python
import conbench.runner
@conbench.runner.register_benchmark
class ExternalBenchmarkR(conbench.runner.Benchmark):
"""Example benchmark that records an R benchmark result."""
external = True
name = "external-r"
def run(self, **kwargs):
result, output = self._run_r_command()
info, context = self.conbench.get_r_info_and_context()
yield self.conbench.record(
{"data": [result], "unit": "s"},
self.name,
info=info,
context=context,
options=kwargs,
output=output,
)
def _run_r_command(self):
output, _ = self.conbench.execute_r_command(self._get_r_command())
result = float(output.split("\n")[-1].split("[1] ")[1])
return result, output
def _get_r_command(self):
return (
f"addition <- function() { 1 + 1 }; "
"start_time <- Sys.time();"
"addition(); "
"end_time <- Sys.time(); "
"result <- end_time - start_time; "
"as.numeric(result); "
)
```
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench external-r --help
Usage: conbench external-r [OPTIONS]
Run external-r benchmark.
Options:
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Free-text name of run (commit ABC, pull request 123,
etc).
--run-reason TEXT Low-cardinality reason for run (commit, pull request,
manual, etc).
--help Show this message and exit.
```
```python
import json
import conbench.runner
@conbench.runner.register_benchmark
class ExternalBenchmarkOptionsR(conbench.runner.Benchmark):
"""Example benchmark that records an R benchmark result (with options)."""
external = True
name = "external-r-options"
options = {
"iterations": {"default": 1, "type": int},
"drop_caches": {"type": bool, "default": "false"},
}
def run(self, **kwargs):
data, iterations = [], kwargs.get("iterations", 1)
info, context = self.conbench.get_r_info_and_context()
for _ in range(iterations):
if kwargs.get("drop_caches", False):
self.conbench.sync_and_drop_caches()
result, output = self._run_r_command()
data.append(result["result"][0]["real"])
yield self.conbench.record(
{"data": data, "unit": "s"},
self.name,
info=info,
context=context,
options=kwargs,
output=output,
)
def _run_r_command(self):
r_command = self._get_r_command()
self.conbench.execute_r_command(r_command)
with open("placebo.json") as json_file:
data = json.load(json_file)
return data, json.dumps(data, indent=2)
def _get_r_command(self):
return (
"library(arrowbench); "
"out <- run_one(arrowbench:::placebo); "
"cat(jsonlite::toJSON(out), file='placebo.json'); "
)
```
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench external-r --help
Usage: conbench external-r-options [OPTIONS]
Run external-r-options benchmark.
Options:
--iterations INTEGER [default: 1]
--drop-caches BOOLEAN [default: false]
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Free-text name of run (commit ABC, pull request 123,
etc).
--run-reason TEXT Low-cardinality reason for run (commit, pull request,
manual, etc).
--help Show this message and exit.
```
%package help
Summary: Development documents and examples for conbench
Provides: python3-conbench-doc
%description help
# Conbench
Check out the docs at https://conbench.github.io/conbench.
Conbench allows you to write benchmarks in any language, publish the
results as JSON via an API, and persist them for comparison while
iterating on performance improvements or to guard against regressions.
Conbench includes a runner which can be used as a stand-alone library
for traditional macro benchmark authoring. The runner will time a unit of
work (or measure throughput), collect machine information that may be relevant
for hardware specific optimizations, and return JSON formatted results.
You can optionally host a Conbench server (API & dashboard) to share
benchmark results more widely, explore the changes over time, and
compare results across varying benchmark machines, languages, and cases.
There is also a Conbench command line interface, useful for Continuous
Benchmarking (CB) orchestration alongside your development pipeline.
The [Apache Arrow](https://arrow.apache.org/) project is using Conbench
for Continuous Benchmarking. They have both native Python Conbench
benchmarks, and Conbench benchmarks written in Python that know how to
execute their external C++/R/Java/JavaScript benchmarks and record those results
too. Those benchmarks can be found in the
[ursacomputing/benchmarks](https://github.com/ursacomputing/benchmarks)
repository, and the results are hosted on the
[Arrow Conbench Server](https://conbench.ursa.dev/).
- May 2021: https://ursalabs.org/blog/announcing-conbench/
## Installation
All packages in this repo can be installed from PyPI. Each package uses
[CalVer](https://calver.org/) for versioning. No stability is guaranteed between PyPI
versions, so consider pinning packages to a specific version in your code.
```bash
pip install benchadapt
pip install benchalerts
pip install benchclients
pip install benchconnect
pip install benchrun
pip install conbench # legacy CLI
```
We typically publish to PyPI often, when new features or bugfixes are needed by users,
but not on every merge to `main`. To install the latest development version, install
from git like so:
```bash
pip install 'benchadapt@git+https://github.com/conbench/conbench.git@main#subdirectory=benchadapt/python'
pip install 'benchalerts@git+https://github.com/conbench/conbench.git@main#subdirectory=benchalerts'
pip install 'benchclients@git+https://github.com/conbench/conbench.git@main#subdirectory=benchclients/python'
pip install 'benchconnect@git+https://github.com/conbench/conbench.git@main#subdirectory=benchconnect'
pip install 'benchrun@git+https://github.com/conbench/conbench.git@main#subdirectory=benchrun/python'
pip install 'conbench@git+https://github.com/conbench/conbench.git@main'
```
## Developer environment
### Dependencies
- [`make`](https://www.gnu.org/software/make/), [`docker compose`](https://docs.docker.com/compose/install/): common developer tasks depend on these tools. They need to be set up on your system.
- `GITHUB_API_TOKEN` environment variable: set up a GitHub API token using [GitHub's instructions](https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token). It's recommended to only give the token read-only permissions to public repositories (which is the default for fine-grained personal access tokens). Run `export GITHUB_API_TOKEN="{token}"` in your current shell.
### Makefile targets
The following Makefile targets implement common developer tasks. They assume to be run in the root folder of the repository.
* `make run-app`: This command lets you experiment with Conbench locally.
It runs the stack in a containerized fashion.
It rebuilds container images from the current checkout, spawns
multiple containers (including one for the database), and then exposes Conbench's
HTTP server on the host at http://127.0.0.1:5000.
The command will stay in the foreground of your terminal, showing log output of all containers.
Once you see access log lines like `GET /api/ping/ HTTP/1.1" 200` you can point your browser to http://127.0.0.1:5000.
You can use `Ctrl+C` to terminate the containerized stack (this only stops containers, and the next invocation of `make run-app` will use previous database state -- invoke `make teardown-app` to stop and remove containers).
If you wish to clear all database tables during local development you can hit http://127.0.0.1:5000/api/wipe-db with the browser or with e.g. curl.
* `make run-app-dev`: Similar to `make run-app`, but also mounts the repository's root directory into the container.
Code changes are (should be) detected automatically and result in automatic code reload.
* `make tests`: The nobrainer command to run the test suite just like CI does.
For more fine-grained control see further below.
* `make lint`: Performs invasive code linting in your local checkout.
May modify files. Analogue to what CI requires.
It requires for some commands to be available in your current shell.
Dependencies can be installed with `pip install -r requirements-dev.txt`.
* `make alembic-new-migration`: Attempts to generate a new migration Python module in `migrations/versions/`.
Requires setting the environment variable `ALEMBIC_MIGRATION_NAME` before invocation.
Example: `export ALEMBIC_MIGRATION_NAME='repo_url_lenth'`.
After the file was created you may want to change its permissions and re-format it with `black`.
* `make conbench-on-minikube`: requires [minikube](https://minikube.sigs.k8s.io/docs/start/).
Deploys the Conbench API server to a local minikube-powered Kubernetes cluster.
This also deploys a kube-prometheus-based observability stack.
Use this target for local development in this area.
* `make docs-build`: Builds HTML docs locally so you may check that they render
correctly with no linting problems. Dependencies can be installed with
`pip install -r requirements-dev.txt`. Also, if you're working on the docstrings of
any of this repo's python packages, ensure the package is installed locally before
using this command.
In CI, we use `make build-docs SPHINXOPTS='-W --keep-going'` to fail the build if
there are Sphinx warnings. When using this command locally, you can just do
`make build-docs`, but keep an eye on the warnings.
### View API documentation
Point your browser to http://127.0.0.1:5000/api/docs/.
### Python environment on the host
CI and common developer commands use containerized workflows where dependencies are defined and easy to reason about via `Dockerfile`s.
Note that the CPython version that Conbench is tested with in CI and that it is recommended to be deployed with is currently the latest 3.11.x release, as also defined in `Dockerfile` at the root of this repository.
Some developer tasks may involve running Conbench tooling straight on the host.
Here is how to install the Python dependencies for the Conbench web application:
```bash
pip install -r requirements-webapp.txt
```
Dependencies for running code analysis and tests straight on the host can be installed with
```bash
pip install -r requirements-dev.txt
```
Dependencies for the (legacy) `conbench` CLI can be installed with
```bash
pip install -r requirements-cli.txt
```
### Fine-grained test invocation
If `make test` is too coarse-grained, then this is how to take control of the containerized `pytest` test runner:
```bash
docker compose down && docker compose build app && \
docker compose run app \
pytest -vv conbench/tests
```
This command attempts to stop and remove previously spawned test runner containers, and it rebuilds the `app` container image prior to running tests to pick up code changes in the local checkout.
Useful command line arguments for local development (can be combined as desired):
* `... pytest -k test_login`: run only string-matching tests
* `... pytest -x`: exit upon first error
* `... pytest -s`: do not swallow log output during run
* `... run -e CONBENCH_LOG_LEVEL_STDERR=DEBUG app ...`
### Legacy commands
The following commands are not guaranteed to work as documented, but provide valuable inspiration:
#### To autogenerate a migration
(conbench) $ brew services start postgres
(conbench) $ dropdb conbench_prod
(conbench) $ createdb conbench_prod
(conbench) $ git checkout main && git pull
(conbench) $ alembic upgrade head
(conbench) $ git checkout your-branch
(conbench) $ alembic revision --autogenerate -m "new"
#### To populate local conbench with sample runs and benchmarks
1. Start conbench app in Terminal window 1:
(conbench) $ dropdb conbench_prod && createdb conbench_prod && alembic upgrade head && flask run
2. Run `conbench.tests.populate_local_conbench` in Terminal window 2 while conbench app is running:
(conbench) $ python -m conbench.tests.populate_local_conbench
### To upload new version of packages to PyPI
Kick off a new run of the "Build and upload a package to PyPI" workflow on the [Actions
page](https://github.com/conbench/conbench/actions).
### To add new documentation pages
To add a new page to our GitHub Pages-hosted documentation:
1. Add a Markdown file to `docs/pages/`.
2. In the toctree in the `docs/index.rst` file, add `pages/your_new_page`, where
`your_new_page` is your new filename without the `.md` file suffix.
To test that your new pages pass our documentation linter, run the `make docs-build`
command, as described above.
## Configuring the web application
The conbench web application can be configured with various environment variables as
defined in
[config.py](https://github.com/conbench/conbench/blob/main/conbench/config.py).
Instructions are in that file.
## Creating accounts
By default, conbench has open read access, so a user account is not required to
view results or read from the API. An account is required only if the conbench
instance is private or to write data to conbench.
If you do need an account, follow the login screen's "Sign Up" link, and use the
registration key specified in the server configuration above. If you are a user
of conbench, you may need to talk to your user administrator to get the
registration key. SSO can be configured to avoid requiring the registration key.
If you have an account and need to create an additional account (say for a machine
user of the API) either repeat the process if you have the registration key, or if
you don't have the registration key (say if your account uses SSO), when logged in,
go to the gear menu / Users and use the "Add User" button to create a new account
without the registration key.
## Authoring benchmarks
There are three main types of benchmarks: "simple benchmarks" that time the
execution of a unit of work, "external benchmarks" that just record benchmark
results that were obtained from some other benchmarking tool, and "case
benchmarks" which benchmark a unit of work under different scenarios (cases).
Included in this repository are contrived, minimal examples of these different
kinds of benchmarks to be used as templates for benchmark authoring. These
example benchmarks and their tests can be found here:
* [_example_benchmarks.py](https://github.com/conbench/conbench/blob/main/conbench/tests/benchmark/_example_benchmarks.py)
* [test_cli.py](https://github.com/conbench/conbench/blob/main/conbench/tests/benchmark/test_cli.py)
* [test_runner.py](https://github.com/conbench/conbench/blob/main/conbench/tests/benchmark/test_runner.py)
### Example simple benchmarks
A "simple benchmark" runs and records the execution time of a unit of work.
Implementation details: Note that this benchmark extends
`conbench.runner.Benchmark`, implements the minimum required `run()`
method, and registers itself with the `@conbench.runner.register_benchmark`
decorator.
```python
import conbench.runner
@conbench.runner.register_benchmark
class SimpleBenchmark(conbench.runner.Benchmark):
name = "addition"
def run(self, **kwargs):
yield self.conbench.benchmark(
self._get_benchmark_function(), self.name, options=kwargs
)
def _get_benchmark_function(self):
return lambda: 1 + 1
```
Successfully registered benchmarks appear in the `conbench --help` list.
For this benchmark to appear, the file must match the following paterns (documented in the [`utils.py:register_benchmarks` function](https://github.com/conbench/conbench/blob/35fde9954e2b365e36472f16b46fe3067e9dc455/conbench/util.py#L104):
* `benchmark*.py`
* `*benchmark.py`
* `*benchmarks.py`
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench --help
Usage: conbench [OPTIONS] COMMAND [ARGS]...
Conbench: Language-independent Continuous Benchmarking (CB) Framework
Options:
--help Show this message and exit.
Commands:
addition Run addition benchmark.
external Run external benchmark.
external-r Run external-r benchmark.
external-r-options Run external-r-options benchmark.
list List of benchmarks (for orchestration).
matrix Run matrix benchmark(s).
version Display Conbench version.
```
Benchmarks can be run from command line within the directory where the
benchmarks are defined.
Benchmark classes can also be imported and executed via the `run` method which
accepts the same arguments that appear in the command line help.
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench addition --help
Usage: conbench addition [OPTIONS]
Run addition benchmark.
Options:
--iterations INTEGER [default: 1]
--drop-caches BOOLEAN [default: false]
--gc-collect BOOLEAN [default: true]
--gc-disable BOOLEAN [default: true]
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Free-text name of run (commit ABC, pull request 123,
etc).
--run-reason TEXT Low-cardinality reason for run (commit, pull request,
manual, etc).
--help Show this message and exit.
```
Example command line execution:
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench addition
Benchmark result:
{
"batch_id": "c9db942c27db4359923eb08aa553beb7",
"run_id": "f6c7d0b3b3f146f9b1ad297fc6e5776b",
"timestamp": "2021-11-09T22:09:17.790397+00:00",
"context": {
"benchmark_language": "Python"
},
"github": {
"commit": "61dec915b9dd230ca5029f5e586f8bd95c3e0c05",
"repository": "https://github.com/conbench/conbench"
},
"info": {
"benchmark_language_version": "Python 3.9.7"
},
"machine_info": {
"architecture_name": "arm64",
"cpu_core_count": "8",
"cpu_frequency_max_hz": "0",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_model_name": "Apple M1",
"cpu_thread_count": "8",
"gpu_count": "0",
"gpu_product_names": [],
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2"
},
"stats": {
"data": [
"0.000001"
],
"iqr": "0.000000",
"iterations": 1,
"max": "0.000001",
"mean": "0.000001",
"median": "0.000001",
"min": "0.000001",
"q1": "0.000001",
"q3": "0.000001",
"stdev": 0,
"time_unit": "s",
"times": [],
"unit": "s"
},
"tags": {
"name": "addition"
}
}
```
Example Python execution:
```
(conbench) $ python
>>> import json
>>> from conbench.tests.benchmark import _example_benchmarks
>>> benchmark = _example_benchmarks.SimpleBenchmark()
>>> [(result, output)] = benchmark.run(iterations=10)
>>> output
2
>>> print(json.dumps(result, indent=2))
{
"run_id": "dfe3a816ca9e451a9da7d940a974cb95",
"batch_id": "0e869934b391424a8199c485dfbbc066",
"timestamp": "2021-11-09T22:11:25.262330+00:00",
"stats": {
"data": [
"0.000002",
"0.000001",
"0.000000",
"0.000001",
"0.000001",
"0.000001",
"0.000001",
"0.000000",
"0.000001",
"0.000001"
],
"times": [],
"unit": "s",
"time_unit": "s",
"iterations": 10,
"mean": "0.000001",
"median": "0.000001",
"min": "0.000000",
"max": "0.000002",
"stdev": "0.000001",
"q1": "0.000001",
"q3": "0.000001",
"iqr": "0.000000"
},
"machine_info": {
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2",
"architecture_name": "arm64",
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"cpu_model_name": "Apple M1",
"cpu_core_count": "8",
"cpu_thread_count": "8",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_frequency_max_hz": "0",
"gpu_count": "0",
"gpu_product_names": []
},
"context": {
"benchmark_language": "Python"
},
"info": {
"benchmark_language_version": "Python 3.9.7"
},
"tags": {
"name": "addition"
},
"github": {
"commit": "61dec915b9dd230ca5029f5e586f8bd95c3e0c05",
"repository": "https://github.com/conbench/conbench"
}
}
```
By default, Conbench will try to publish your results to a Conbench server. If
you don't have one running or are missing a `.conbench` credentials file, you'll
see error messages like the following when you execute benchmarks.
```
POST http://localhost:5000/api/login/ failed
{
"code": 400,
"description": {
"_errors": [
"Invalid email or password."
]
},
"name": "Bad Request"
}
POST http://localhost:5000/api/benchmarks/ failed
{
"code": 401,
"name": "Unauthorized"
}
```
To publish your results to a Conbench server, place a `.conbench` file in the
same directory as your benchmarks. The `cat` command below shows the contents
of an example `.conbench` config file.
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ cat .conbench
url: http://localhost:5000
email: you@example.com
password: conbench
```
If you don't yet have a Conbench server user account, you'll need to create one
to publish results (registration key defaults to `conbench`).
- http://localhost:5000/register/
### Example external benchmarks
An "external benchmark" records results that were obtained from some other
benchmarking tool (like executing an R benchmark from command line, parsing
the resulting JSON, and recording those results).
Implementation details: Note that the following benchmark sets
`external = True`, and calls `self.conbench.record()` rather than
`self.conbench.benchmark()` as the example above does.
```python
import conbench.runner
@conbench.runner.register_benchmark
class ExternalBenchmark(conbench.runner.Benchmark):
"""Example benchmark that just records external results."""
external = True
name = "external"
def run(self, **kwargs):
# external results from an API call, command line execution, etc
result = {
"data": [100, 200, 300],
"unit": "i/s",
"times": [0.100, 0.200, 0.300],
"time_unit": "s",
}
context = {"benchmark_language": "C++"}
yield self.conbench.record(
result, self.name, context=context, options=kwargs, output=result
)
```
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench external --help
Usage: conbench external [OPTIONS]
Run external benchmark.
Options:
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Free-text name of run (commit ABC, pull request 123,
etc).
--run-reason TEXT Low-cardinality reason for run (commit, pull request,
manual, etc).
--help Show this message and exit.
```
Note that the use of `--iterations=3` results in 3 runs of the benchmark, and
the `mean`, `stdev`, etc calculated.
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench external --iterations=3
Benchmark result:
{
"run_id": "8058dde1491b49e5bd514646797c2a20",
"batch_id": "8058dde1491b49e5bd514646797c2a20",
"timestamp": "2021-06-21T22:16:54.786499+00:00",
"context": {
"benchmark_language": "C++"
},
"github": {
"commit": "58fb35dc593dca82c917cf18c1c65c059b9fb12c",
"repository": "https://github.com/conbench/conbench"
},
"info": {},
"machine_info": {
"architecture_name": "x86_64",
"cpu_core_count": "2",
"cpu_frequency_max_hz": "3500000000",
"cpu_l1d_cache_bytes": "32768",
"cpu_l1i_cache_bytes": "32768",
"cpu_l2_cache_bytes": "262144",
"cpu_l3_cache_bytes": "4194304",
"cpu_model_name": "Intel(R) Core(TM) i7-7567U CPU @ 3.50GHz",
"cpu_thread_count": "4",
"kernel_name": "20.5.0",
"memory_bytes": "17179869184",
"name": "machine-abc",
"os_name": "macOS",
"os_version": "10.16"
},
"stats": {
"data": [
"100.000000",
"200.000000",
"300.000000"
],
"iqr": "100.000000",
"iterations": 3,
"max": "300.000000",
"mean": "200.000000",
"median": "200.000000",
"min": "100.000000",
"q1": "150.000000",
"q3": "250.000000",
"stdev": "100.000000",
"time_unit": "s",
"times": [
"0.100000",
"0.200000",
"0.300000"
],
"unit": "i/s"
},
"tags": {
"name": "external"
}
}
```
### Example simple benchmarks executed on machine cluster instead of one machine
If your benchmark is executed on a machine cluster instead of one machine, you
can capture cluster info in the following manner.
Note that a benchmark will have a continuous history on a specific cluster as long as cluster's `name` and `info` do not change.
There is also an `optional_info` field for information that should not impact the cluster's hash (and thus disrupt the distribution history), but should still be recorded.
```python
import conbench.runner
@conbench.runner.register_benchmark
class SimpleBenchmarkWithClusterInfo(conbench.runner.Benchmark):
name = "product"
def run(self, **kwargs):
cluster_info = {
"name": "cluster 1",
"info": {"gpu": 1},
"optional_info": {"workers": 2},
}
yield self.conbench.benchmark(
self._get_benchmark_function(),
self.name,
cluster_info=cluster_info,
options=kwargs,
)
def _get_benchmark_function(self):
return lambda: 1 * 2
```
### Example case benchmarks
A "case benchmark" is a either a "simple benchmark" or an "external benchmark"
executed under various predefined scenarios (cases).
Implementation details: Note that the following benchmark declares the valid
combinations in `valid_cases`, which reads like a CSV (the first row contains
the cases names).
```python
import conbench.runner
@conbench.runner.register_benchmark
class CasesBenchmark(conbench.runner.Benchmark):
"""Example benchmark with cases."""
name = "matrix"
valid_cases = (
("rows", "columns"),
("10", "10"),
("2", "10"),
("10", "2"),
)
def run(self, case=None, **kwargs):
for case in self.get_cases(case, kwargs):
rows, columns = case
tags = {"rows": rows, "columns": columns}
func = self._get_benchmark_function(rows, columns)
benchmark, output = self.conbench.benchmark(
func,
self.name,
tags=tags,
options=kwargs,
)
yield benchmark, output
def _get_benchmark_function(self, rows, columns):
return lambda: int(rows) * [int(columns) * [0]]
```
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench matrix --help
Usage: conbench matrix [OPTIONS]
Run matrix benchmark(s).
For each benchmark option, the first option value is the default.
Valid benchmark combinations:
--rows=10 --columns=10
--rows=2 --columns=10
--rows=10 --columns=2
To run all combinations:
$ conbench matrix --all=true
Options:
--rows [10|2]
--columns [10|2]
--all BOOLEAN [default: false]
--iterations INTEGER [default: 1]
--drop-caches BOOLEAN [default: false]
--gc-collect BOOLEAN [default: true]
--gc-disable BOOLEAN [default: true]
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Free-text name of run (commit ABC, pull request 123,
etc).
--run-reason TEXT Low-cardinality reason for run (commit, pull request,
manual, etc).
--help Show this message and exit.
"""
```
Note that the use of `--all=true` results in 3 benchmark results, one for each
case (`10 x 10`, `2, x 10`, and `10, x 2`).
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench matrix --all=true
Benchmark result:
{
"batch_id": "13b87cc6d9a84f2188df279d8c513933",
"run_id": "48acd853b8294df9a1f5457f192456f3",
"timestamp": "2021-11-09T22:15:23.501923+00:00",
"context": {
"benchmark_language": "Python"
},
"github": {
"commit": "61dec915b9dd230ca5029f5e586f8bd95c3e0c05",
"repository": "https://github.com/conbench/conbench"
},
"info": {
"benchmark_language_version": "Python 3.9.7"
},
"machine_info": {
"architecture_name": "arm64",
"cpu_core_count": "8",
"cpu_frequency_max_hz": "0",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_model_name": "Apple M1",
"cpu_thread_count": "8",
"gpu_count": "0",
"gpu_product_names": [],
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2"
},
"run_id": "48acd853b8294df9a1f5457f192456f3",
"stats": {
"data": [
"0.000004"
],
"iqr": "0.000000",
"iterations": 1,
"max": "0.000004",
"mean": "0.000004",
"median": "0.000004",
"min": "0.000004",
"q1": "0.000004",
"q3": "0.000004",
"stdev": 0,
"time_unit": "s",
"times": [],
"unit": "s"
},
"tags": {
"columns": "10",
"name": "matrix",
"rows": "10"
},
"timestamp": "2021-11-09T22:15:23.397819+00:00"
}
Benchmark result:
{
"batch_id": "13b87cc6d9a84f2188df279d8c513933",
"context": {
"benchmark_language": "Python"
},
"github": {
"commit": "61dec915b9dd230ca5029f5e586f8bd95c3e0c05",
"repository": "https://github.com/conbench/conbench"
},
"info": {
"benchmark_language_version": "Python 3.9.7"
},
"machine_info": {
"architecture_name": "arm64",
"cpu_core_count": "8",
"cpu_frequency_max_hz": "0",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_model_name": "Apple M1",
"cpu_thread_count": "8",
"gpu_count": "0",
"gpu_product_names": [],
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2"
},
"stats": {
"data": [
"0.000004"
],
"iqr": "0.000000",
"iterations": 1,
"max": "0.000004",
"mean": "0.000004",
"median": "0.000004",
"min": "0.000004",
"q1": "0.000004",
"q3": "0.000004",
"stdev": 0,
"time_unit": "s",
"times": [],
"unit": "s"
},
"tags": {
"columns": "10",
"name": "matrix",
"rows": "2"
}
}
Benchmark result:
{
"batch_id": "13b87cc6d9a84f2188df279d8c513933",
"run_id": "48acd853b8294df9a1f5457f192456f3",
"timestamp": "2021-11-09T22:15:23.509211+00:00",
"context": {
"benchmark_language": "Python"
},
"github": {
"commit": "61dec915b9dd230ca5029f5e586f8bd95c3e0c05",
"repository": "https://github.com/conbench/conbench"
},
"info": {
"benchmark_language_version": "Python 3.9.7"
},
"machine_info": {
"architecture_name": "arm64",
"cpu_core_count": "8",
"cpu_frequency_max_hz": "0",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_model_name": "Apple M1",
"cpu_thread_count": "8",
"gpu_count": "0",
"gpu_product_names": [],
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2"
},
"stats": {
"data": [
"0.000002"
],
"iqr": "0.000000",
"iterations": 1,
"max": "0.000002",
"mean": "0.000002",
"median": "0.000002",
"min": "0.000002",
"q1": "0.000002",
"q3": "0.000002",
"stdev": 0,
"time_unit": "s",
"times": [],
"unit": "s"
},
"tags": {
"columns": "2",
"name": "matrix",
"rows": "10"
}
}
```
### Example R benchmarks
Here are a few examples illustrating how to integrate R benchmarks with
Conbench.
The first one just times `1 + 1` in R, and the second one executes an R
benchmark from a library of R benchmarks (in this case
[arrowbench](https://github.com/ursacomputing/arrowbench)).
If you find yourself wrapping a lot of R benchmarks in Python to integrate them
with Conbench (to get uniform JSON benchmark results which you can persist and
publish on a Conbench server), you'll probably want to extract much of the
boilerplate out into a base class.
```python
import conbench.runner
@conbench.runner.register_benchmark
class ExternalBenchmarkR(conbench.runner.Benchmark):
"""Example benchmark that records an R benchmark result."""
external = True
name = "external-r"
def run(self, **kwargs):
result, output = self._run_r_command()
info, context = self.conbench.get_r_info_and_context()
yield self.conbench.record(
{"data": [result], "unit": "s"},
self.name,
info=info,
context=context,
options=kwargs,
output=output,
)
def _run_r_command(self):
output, _ = self.conbench.execute_r_command(self._get_r_command())
result = float(output.split("\n")[-1].split("[1] ")[1])
return result, output
def _get_r_command(self):
return (
f"addition <- function() { 1 + 1 }; "
"start_time <- Sys.time();"
"addition(); "
"end_time <- Sys.time(); "
"result <- end_time - start_time; "
"as.numeric(result); "
)
```
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench external-r --help
Usage: conbench external-r [OPTIONS]
Run external-r benchmark.
Options:
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Free-text name of run (commit ABC, pull request 123,
etc).
--run-reason TEXT Low-cardinality reason for run (commit, pull request,
manual, etc).
--help Show this message and exit.
```
```python
import json
import conbench.runner
@conbench.runner.register_benchmark
class ExternalBenchmarkOptionsR(conbench.runner.Benchmark):
"""Example benchmark that records an R benchmark result (with options)."""
external = True
name = "external-r-options"
options = {
"iterations": {"default": 1, "type": int},
"drop_caches": {"type": bool, "default": "false"},
}
def run(self, **kwargs):
data, iterations = [], kwargs.get("iterations", 1)
info, context = self.conbench.get_r_info_and_context()
for _ in range(iterations):
if kwargs.get("drop_caches", False):
self.conbench.sync_and_drop_caches()
result, output = self._run_r_command()
data.append(result["result"][0]["real"])
yield self.conbench.record(
{"data": data, "unit": "s"},
self.name,
info=info,
context=context,
options=kwargs,
output=output,
)
def _run_r_command(self):
r_command = self._get_r_command()
self.conbench.execute_r_command(r_command)
with open("placebo.json") as json_file:
data = json.load(json_file)
return data, json.dumps(data, indent=2)
def _get_r_command(self):
return (
"library(arrowbench); "
"out <- run_one(arrowbench:::placebo); "
"cat(jsonlite::toJSON(out), file='placebo.json'); "
)
```
```
(conbench) $ cd ~/workspace/conbench/conbench/tests/benchmark/
(conbench) $ conbench external-r --help
Usage: conbench external-r-options [OPTIONS]
Run external-r-options benchmark.
Options:
--iterations INTEGER [default: 1]
--drop-caches BOOLEAN [default: false]
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Free-text name of run (commit ABC, pull request 123,
etc).
--run-reason TEXT Low-cardinality reason for run (commit, pull request,
manual, etc).
--help Show this message and exit.
```
%prep
%autosetup -n conbench-2023.4.10
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-conbench -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed Apr 12 2023 Python_Bot - 2023.4.10-1
- Package Spec generated