%global _empty_manifest_terminate_build 0 Name: python-adversarial-robustness-toolbox Version: 1.14.0 Release: 1 Summary: Toolbox for adversarial machine learning. License: MIT URL: https://github.com/Trusted-AI/adversarial-robustness-toolbox Source0: https://mirrors.nju.edu.cn/pypi/web/packages/32/52/98469e81703162447154cdd9f2270e4f8ecc39ad6159e917c0767fad4937/adversarial-robustness-toolbox-1.14.0.tar.gz BuildArch: noarch Requires: python3-numpy Requires: python3-scipy Requires: python3-scikit-learn Requires: python3-six Requires: python3-setuptools Requires: python3-tqdm Requires: python3-mxnet Requires: python3-catboost Requires: python3-lightgbm Requires: python3-tensorflow Requires: python3-tensorflow-addons Requires: python3-h5py Requires: python3-torch Requires: python3-torchvision Requires: python3-xgboost Requires: python3-pandas Requires: python3-kornia Requires: python3-matplotlib Requires: python3-Pillow Requires: python3-statsmodels Requires: python3-pydub Requires: python3-resampy Requires: python3-ffmpeg-python Requires: python3-cma Requires: python3-librosa Requires: python3-opencv-python Requires: python3-numba Requires: python3-catboost Requires: python3-sphinx Requires: python3-sphinx-rtd-theme Requires: python3-sphinx-autodoc-annotation Requires: python3-sphinx-autodoc-typehints Requires: python3-matplotlib Requires: python3-numpy Requires: python3-scipy Requires: python3-six Requires: python3-scikit-learn Requires: python3-Pillow Requires: python3-GPy Requires: python3-keras Requires: python3-h5py Requires: python3-lightgbm Requires: python3-tensorflow-gpu Requires: python3-lingvo Requires: python3-pydub Requires: python3-resampy Requires: python3-librosa Requires: python3-mxnet Requires: python3-matplotlib Requires: python3-Pillow Requires: python3-statsmodels Requires: python3-pydub Requires: python3-resampy Requires: python3-ffmpeg-python Requires: python3-cma Requires: python3-pandas Requires: python3-librosa Requires: python3-opencv-python Requires: python3-pytest Requires: python3-pytest-flake8 Requires: python3-pytest-mock Requires: python3-pytest-cov Requires: python3-codecov Requires: python3-requests Requires: python3-sortedcontainers Requires: python3-numba Requires: python3-torch Requires: python3-torchvision Requires: python3-torch Requires: python3-torchvision Requires: python3-torchaudio Requires: python3-pydub Requires: python3-resampy Requires: python3-librosa Requires: python3-torch Requires: python3-torchvision Requires: python3-kornia Requires: python3-Pillow Requires: python3-ffmpeg-python Requires: python3-opencv-python Requires: python3-tensorflow Requires: python3-tensorflow-addons Requires: python3-h5py Requires: python3-tensorflow Requires: python3-tensorflow-addons Requires: python3-h5py Requires: python3-pydub Requires: python3-resampy Requires: python3-librosa Requires: python3-tensorflow Requires: python3-tensorflow-addons Requires: python3-h5py Requires: python3-Pillow Requires: python3-ffmpeg-python Requires: python3-opencv-python Requires: python3-xgboost %description # Adversarial Robustness Toolbox (ART) v1.14


![Continuous Integration](https://github.com/Trusted-AI/adversarial-robustness-toolbox/workflows/Continuous%20Integration/badge.svg) ![CodeQL](https://github.com/Trusted-AI/adversarial-robustness-toolbox/workflows/CodeQL/badge.svg) [![Documentation Status](https://readthedocs.org/projects/adversarial-robustness-toolbox/badge/?version=latest)](http://adversarial-robustness-toolbox.readthedocs.io/en/latest/?badge=latest) [![PyPI](https://badge.fury.io/py/adversarial-robustness-toolbox.svg)](https://badge.fury.io/py/adversarial-robustness-toolbox) [![codecov](https://codecov.io/gh/Trusted-AI/adversarial-robustness-toolbox/branch/main/graph/badge.svg)](https://codecov.io/gh/Trusted-AI/adversarial-robustness-toolbox) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/adversarial-robustness-toolbox)](https://pypi.org/project/adversarial-robustness-toolbox/) [![slack-img](https://img.shields.io/badge/chat-on%20slack-yellow.svg)](https://ibm-art.slack.com/) [![Downloads](https://pepy.tech/badge/adversarial-robustness-toolbox)](https://pepy.tech/project/adversarial-robustness-toolbox) [![Downloads](https://pepy.tech/badge/adversarial-robustness-toolbox/month)](https://pepy.tech/project/adversarial-robustness-toolbox) [![CII Best Practices](https://bestpractices.coreinfrastructure.org/projects/5090/badge)](https://bestpractices.coreinfrastructure.org/projects/5090) [中文README请按此处](README-cn.md)

LF AI & Data

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART is hosted by the [Linux Foundation AI & Data Foundation](https://lfaidata.foundation) (LF AI & Data). ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, speech recognition, generation, certification, etc.). ## Adversarial Threats


## ART for Red and Blue Teams (selection)


## Learn more | **[Get Started][get-started]** | **[Documentation][documentation]** | **[Contributing][contributing]** | |-------------------------------------|-------------------------------|-----------------------------------| | - [Installation][installation]
- [Examples](examples/README.md)
- [Notebooks](notebooks/README.md) | - [Attacks][attacks]
- [Defences][defences]
- [Estimators][estimators]
- [Metrics][metrics]
- [Technical Documentation](https://adversarial-robustness-toolbox.readthedocs.io) | - [Slack](https://ibm-art.slack.com), [Invitation](https://join.slack.com/t/ibm-art/shared_invite/enQtMzkyOTkyODE4NzM4LTA4NGQ1OTMxMzFmY2Q1MzE1NWI2MmEzN2FjNGNjOGVlODVkZDE0MjA1NTA4OGVkMjVkNmQ4MTY1NmMyOGM5YTg)
- [Contributing](CONTRIBUTING.md)
- [Roadmap][roadmap]
- [Citing][citing] | [get-started]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Get-Started [attacks]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Attacks [defences]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Defences [estimators]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Estimators [metrics]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Metrics [contributing]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Contributing [documentation]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Documentation [installation]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Get-Started#setup [roadmap]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Roadmap [citing]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Contributing#citing-art The library is under continuous development. Feedback, bug reports and contributions are very welcome! # Acknowledgment This material is partially based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001120C0013. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Defense Advanced Research Projects Agency (DARPA). %package -n python3-adversarial-robustness-toolbox Summary: Toolbox for adversarial machine learning. Provides: python-adversarial-robustness-toolbox BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-adversarial-robustness-toolbox # Adversarial Robustness Toolbox (ART) v1.14


![Continuous Integration](https://github.com/Trusted-AI/adversarial-robustness-toolbox/workflows/Continuous%20Integration/badge.svg) ![CodeQL](https://github.com/Trusted-AI/adversarial-robustness-toolbox/workflows/CodeQL/badge.svg) [![Documentation Status](https://readthedocs.org/projects/adversarial-robustness-toolbox/badge/?version=latest)](http://adversarial-robustness-toolbox.readthedocs.io/en/latest/?badge=latest) [![PyPI](https://badge.fury.io/py/adversarial-robustness-toolbox.svg)](https://badge.fury.io/py/adversarial-robustness-toolbox) [![codecov](https://codecov.io/gh/Trusted-AI/adversarial-robustness-toolbox/branch/main/graph/badge.svg)](https://codecov.io/gh/Trusted-AI/adversarial-robustness-toolbox) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/adversarial-robustness-toolbox)](https://pypi.org/project/adversarial-robustness-toolbox/) [![slack-img](https://img.shields.io/badge/chat-on%20slack-yellow.svg)](https://ibm-art.slack.com/) [![Downloads](https://pepy.tech/badge/adversarial-robustness-toolbox)](https://pepy.tech/project/adversarial-robustness-toolbox) [![Downloads](https://pepy.tech/badge/adversarial-robustness-toolbox/month)](https://pepy.tech/project/adversarial-robustness-toolbox) [![CII Best Practices](https://bestpractices.coreinfrastructure.org/projects/5090/badge)](https://bestpractices.coreinfrastructure.org/projects/5090) [中文README请按此处](README-cn.md)

LF AI & Data

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART is hosted by the [Linux Foundation AI & Data Foundation](https://lfaidata.foundation) (LF AI & Data). ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, speech recognition, generation, certification, etc.). ## Adversarial Threats


## ART for Red and Blue Teams (selection)


## Learn more | **[Get Started][get-started]** | **[Documentation][documentation]** | **[Contributing][contributing]** | |-------------------------------------|-------------------------------|-----------------------------------| | - [Installation][installation]
- [Examples](examples/README.md)
- [Notebooks](notebooks/README.md) | - [Attacks][attacks]
- [Defences][defences]
- [Estimators][estimators]
- [Metrics][metrics]
- [Technical Documentation](https://adversarial-robustness-toolbox.readthedocs.io) | - [Slack](https://ibm-art.slack.com), [Invitation](https://join.slack.com/t/ibm-art/shared_invite/enQtMzkyOTkyODE4NzM4LTA4NGQ1OTMxMzFmY2Q1MzE1NWI2MmEzN2FjNGNjOGVlODVkZDE0MjA1NTA4OGVkMjVkNmQ4MTY1NmMyOGM5YTg)
- [Contributing](CONTRIBUTING.md)
- [Roadmap][roadmap]
- [Citing][citing] | [get-started]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Get-Started [attacks]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Attacks [defences]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Defences [estimators]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Estimators [metrics]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Metrics [contributing]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Contributing [documentation]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Documentation [installation]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Get-Started#setup [roadmap]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Roadmap [citing]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Contributing#citing-art The library is under continuous development. Feedback, bug reports and contributions are very welcome! # Acknowledgment This material is partially based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001120C0013. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Defense Advanced Research Projects Agency (DARPA). %package help Summary: Development documents and examples for adversarial-robustness-toolbox Provides: python3-adversarial-robustness-toolbox-doc %description help # Adversarial Robustness Toolbox (ART) v1.14


![Continuous Integration](https://github.com/Trusted-AI/adversarial-robustness-toolbox/workflows/Continuous%20Integration/badge.svg) ![CodeQL](https://github.com/Trusted-AI/adversarial-robustness-toolbox/workflows/CodeQL/badge.svg) [![Documentation Status](https://readthedocs.org/projects/adversarial-robustness-toolbox/badge/?version=latest)](http://adversarial-robustness-toolbox.readthedocs.io/en/latest/?badge=latest) [![PyPI](https://badge.fury.io/py/adversarial-robustness-toolbox.svg)](https://badge.fury.io/py/adversarial-robustness-toolbox) [![codecov](https://codecov.io/gh/Trusted-AI/adversarial-robustness-toolbox/branch/main/graph/badge.svg)](https://codecov.io/gh/Trusted-AI/adversarial-robustness-toolbox) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/adversarial-robustness-toolbox)](https://pypi.org/project/adversarial-robustness-toolbox/) [![slack-img](https://img.shields.io/badge/chat-on%20slack-yellow.svg)](https://ibm-art.slack.com/) [![Downloads](https://pepy.tech/badge/adversarial-robustness-toolbox)](https://pepy.tech/project/adversarial-robustness-toolbox) [![Downloads](https://pepy.tech/badge/adversarial-robustness-toolbox/month)](https://pepy.tech/project/adversarial-robustness-toolbox) [![CII Best Practices](https://bestpractices.coreinfrastructure.org/projects/5090/badge)](https://bestpractices.coreinfrastructure.org/projects/5090) [中文README请按此处](README-cn.md)

LF AI & Data

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART is hosted by the [Linux Foundation AI & Data Foundation](https://lfaidata.foundation) (LF AI & Data). ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, speech recognition, generation, certification, etc.). ## Adversarial Threats


## ART for Red and Blue Teams (selection)


## Learn more | **[Get Started][get-started]** | **[Documentation][documentation]** | **[Contributing][contributing]** | |-------------------------------------|-------------------------------|-----------------------------------| | - [Installation][installation]
- [Examples](examples/README.md)
- [Notebooks](notebooks/README.md) | - [Attacks][attacks]
- [Defences][defences]
- [Estimators][estimators]
- [Metrics][metrics]
- [Technical Documentation](https://adversarial-robustness-toolbox.readthedocs.io) | - [Slack](https://ibm-art.slack.com), [Invitation](https://join.slack.com/t/ibm-art/shared_invite/enQtMzkyOTkyODE4NzM4LTA4NGQ1OTMxMzFmY2Q1MzE1NWI2MmEzN2FjNGNjOGVlODVkZDE0MjA1NTA4OGVkMjVkNmQ4MTY1NmMyOGM5YTg)
- [Contributing](CONTRIBUTING.md)
- [Roadmap][roadmap]
- [Citing][citing] | [get-started]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Get-Started [attacks]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Attacks [defences]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Defences [estimators]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Estimators [metrics]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/ART-Metrics [contributing]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Contributing [documentation]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Documentation [installation]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Get-Started#setup [roadmap]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Roadmap [citing]: https://github.com/Trusted-AI/adversarial-robustness-toolbox/wiki/Contributing#citing-art The library is under continuous development. Feedback, bug reports and contributions are very welcome! # Acknowledgment This material is partially based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001120C0013. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Defense Advanced Research Projects Agency (DARPA). %prep %autosetup -n adversarial-robustness-toolbox-1.14.0 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-adversarial-robustness-toolbox -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Wed Apr 12 2023 Python_Bot - 1.14.0-1 - Package Spec generated