%global _empty_manifest_terminate_build 0 Name: python-Unidecode Version: 1.3.6 Release: 1 Summary: ASCII transliterations of Unicode text License: GPL URL: https://pypi.org/project/Unidecode/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/0b/25/37c77fc07821cd06592df3f18281f5e716bc891abd6822ddb9ff941f821e/Unidecode-1.3.6.tar.gz BuildArch: noarch %description It often happens that you have text data in Unicode, but you need to represent it in ASCII. For example when integrating with legacy code that doesn't support Unicode, or for ease of entry of non-Roman names on a US keyboard, or when constructing ASCII machine identifiers from human-readable Unicode strings that should still be somewhat intelligible. A popular example of this is when making an URL slug from an article title. **Unidecode is not a replacement for fully supporting Unicode for strings in your program. There are a number of caveats that come with its use, especially when its output is directly visible to users. Please read the rest of this README before using Unidecode in your project.** In most of examples listed above you could represent Unicode characters as ``???`` or ``\\15BA\\15A0\\1610``, to mention two extreme cases. But that's nearly useless to someone who actually wants to read what the text says. What Unidecode provides is a middle road: the function ``unidecode()`` takes Unicode data and tries to represent it in ASCII characters (i.e., the universally displayable characters between 0x00 and 0x7F), where the compromises taken when mapping between two character sets are chosen to be near what a human with a US keyboard would choose. The quality of resulting ASCII representation varies. For languages of western origin it should be between perfect and good. On the other hand transliteration (i.e., conveying, in Roman letters, the pronunciation expressed by the text in some other writing system) of languages like Chinese, Japanese or Korean is a very complex issue and this library does not even attempt to address it. It draws the line at context-free character-by-character mapping. So a good rule of thumb is that the further the script you are transliterating is from Latin alphabet, the worse the transliteration will be. Generally Unidecode produces better results than simply stripping accents from characters (which can be done in Python with built-in functions). It is based on hand-tuned character mappings that for example also contain ASCII approximations for symbols and non-Latin alphabets. **Note that some people might find certain transliterations offending.** Most common examples include characters that are used in multiple languages. A user expects a character to be transliterated in their language but Unidecode uses a transliteration for a different language. It's best to not use Unidecode for strings that are directly visible to users of your application. See also the *Frequently Asked Questions* section for more info on common problems. This is a Python port of ``Text::Unidecode`` Perl module by Sean M. Burke . %package -n python3-Unidecode Summary: ASCII transliterations of Unicode text Provides: python-Unidecode BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-Unidecode It often happens that you have text data in Unicode, but you need to represent it in ASCII. For example when integrating with legacy code that doesn't support Unicode, or for ease of entry of non-Roman names on a US keyboard, or when constructing ASCII machine identifiers from human-readable Unicode strings that should still be somewhat intelligible. A popular example of this is when making an URL slug from an article title. **Unidecode is not a replacement for fully supporting Unicode for strings in your program. There are a number of caveats that come with its use, especially when its output is directly visible to users. Please read the rest of this README before using Unidecode in your project.** In most of examples listed above you could represent Unicode characters as ``???`` or ``\\15BA\\15A0\\1610``, to mention two extreme cases. But that's nearly useless to someone who actually wants to read what the text says. What Unidecode provides is a middle road: the function ``unidecode()`` takes Unicode data and tries to represent it in ASCII characters (i.e., the universally displayable characters between 0x00 and 0x7F), where the compromises taken when mapping between two character sets are chosen to be near what a human with a US keyboard would choose. The quality of resulting ASCII representation varies. For languages of western origin it should be between perfect and good. On the other hand transliteration (i.e., conveying, in Roman letters, the pronunciation expressed by the text in some other writing system) of languages like Chinese, Japanese or Korean is a very complex issue and this library does not even attempt to address it. It draws the line at context-free character-by-character mapping. So a good rule of thumb is that the further the script you are transliterating is from Latin alphabet, the worse the transliteration will be. Generally Unidecode produces better results than simply stripping accents from characters (which can be done in Python with built-in functions). It is based on hand-tuned character mappings that for example also contain ASCII approximations for symbols and non-Latin alphabets. **Note that some people might find certain transliterations offending.** Most common examples include characters that are used in multiple languages. A user expects a character to be transliterated in their language but Unidecode uses a transliteration for a different language. It's best to not use Unidecode for strings that are directly visible to users of your application. See also the *Frequently Asked Questions* section for more info on common problems. This is a Python port of ``Text::Unidecode`` Perl module by Sean M. Burke . %package help Summary: Development documents and examples for Unidecode Provides: python3-Unidecode-doc %description help It often happens that you have text data in Unicode, but you need to represent it in ASCII. For example when integrating with legacy code that doesn't support Unicode, or for ease of entry of non-Roman names on a US keyboard, or when constructing ASCII machine identifiers from human-readable Unicode strings that should still be somewhat intelligible. A popular example of this is when making an URL slug from an article title. **Unidecode is not a replacement for fully supporting Unicode for strings in your program. There are a number of caveats that come with its use, especially when its output is directly visible to users. Please read the rest of this README before using Unidecode in your project.** In most of examples listed above you could represent Unicode characters as ``???`` or ``\\15BA\\15A0\\1610``, to mention two extreme cases. But that's nearly useless to someone who actually wants to read what the text says. What Unidecode provides is a middle road: the function ``unidecode()`` takes Unicode data and tries to represent it in ASCII characters (i.e., the universally displayable characters between 0x00 and 0x7F), where the compromises taken when mapping between two character sets are chosen to be near what a human with a US keyboard would choose. The quality of resulting ASCII representation varies. For languages of western origin it should be between perfect and good. On the other hand transliteration (i.e., conveying, in Roman letters, the pronunciation expressed by the text in some other writing system) of languages like Chinese, Japanese or Korean is a very complex issue and this library does not even attempt to address it. It draws the line at context-free character-by-character mapping. So a good rule of thumb is that the further the script you are transliterating is from Latin alphabet, the worse the transliteration will be. Generally Unidecode produces better results than simply stripping accents from characters (which can be done in Python with built-in functions). It is based on hand-tuned character mappings that for example also contain ASCII approximations for symbols and non-Latin alphabets. **Note that some people might find certain transliterations offending.** Most common examples include characters that are used in multiple languages. A user expects a character to be transliterated in their language but Unidecode uses a transliteration for a different language. It's best to not use Unidecode for strings that are directly visible to users of your application. See also the *Frequently Asked Questions* section for more info on common problems. This is a Python port of ``Text::Unidecode`` Perl module by Sean M. Burke . %prep %autosetup -n Unidecode-1.3.6 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-Unidecode -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri Apr 21 2023 Python_Bot - 1.3.6-1 - Package Spec generated