%global _empty_manifest_terminate_build 0 Name: python-optuna Version: 3.1.1 Release: 1 Summary: A hyperparameter optimization framework License: MIT License URL: https://optuna.org/ Source0: https://mirrors.nju.edu.cn/pypi/web/packages/bc/7a/71669cf69272c09f3a918a9e0367f4d9c4455348448dc268d5fdd0a2d319/optuna-3.1.1.tar.gz BuildArch: noarch Requires: python3-alembic Requires: python3-cmaes Requires: python3-colorlog Requires: python3-numpy Requires: python3-packaging Requires: python3-sqlalchemy Requires: python3-tqdm Requires: python3-PyYAML Requires: python3-asv Requires: python3-botorch Requires: python3-cma Requires: python3-scikit-optimize Requires: python3-virtualenv Requires: python3-black Requires: python3-blackdoc Requires: python3-hacking Requires: python3-isort Requires: python3-mypy Requires: python3-types-PyYAML Requires: python3-types-redis Requires: python3-types-setuptools Requires: python3-typing-extensions Requires: python3-cma Requires: python3-distributed Requires: python3-fvcore Requires: python3-lightgbm Requires: python3-matplotlib Requires: python3-mlflow Requires: python3-pandas Requires: python3-pillow Requires: python3-plotly Requires: python3-scikit-learn Requires: python3-scikit-optimize Requires: python3-sphinx Requires: python3-sphinx-copybutton Requires: python3-sphinx-gallery Requires: python3-sphinx-plotly-directive Requires: python3-sphinx-rtd-theme Requires: python3-torch Requires: python3-torchaudio Requires: python3-torchvision Requires: python3-chainer Requires: python3-cma Requires: python3-distributed Requires: python3-mpi4py Requires: python3-pandas Requires: python3-scikit-learn Requires: python3-wandb Requires: python3-xgboost Requires: python3-allennlp Requires: python3-cached-path Requires: python3-botorch Requires: python3-catalyst Requires: python3-catboost Requires: python3-fastai Requires: python3-lightgbm Requires: python3-mlflow Requires: python3-mxnet Requires: python3-pytorch-ignite Requires: python3-pytorch-lightning Requires: python3-scikit-optimize Requires: python3-shap Requires: python3-skorch Requires: python3-tensorflow Requires: python3-tensorflow-datasets Requires: python3-torch Requires: python3-torchaudio Requires: python3-torchvision Requires: python3-matplotlib Requires: python3-pandas Requires: python3-plotly Requires: python3-redis Requires: python3-scikit-learn Requires: python3-codecov Requires: python3-fakeredis[lua] Requires: python3-kaleido Requires: python3-pytest Requires: python3-scipy %description
# Optuna: A hyperparameter optimization framework [![Python](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue)](https://www.python.org) [![pypi](https://img.shields.io/pypi/v/optuna.svg)](https://pypi.python.org/pypi/optuna) [![conda](https://img.shields.io/conda/vn/conda-forge/optuna.svg)](https://anaconda.org/conda-forge/optuna) [![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/optuna/optuna) [![Read the Docs](https://readthedocs.org/projects/optuna/badge/?version=stable)](https://optuna.readthedocs.io/en/stable/) [![Codecov](https://codecov.io/gh/optuna/optuna/branch/master/graph/badge.svg)](https://codecov.io/gh/optuna/optuna/branch/master) [**Website**](https://optuna.org/) | [**Docs**](https://optuna.readthedocs.io/en/stable/) | [**Install Guide**](https://optuna.readthedocs.io/en/stable/installation.html) | [**Tutorial**](https://optuna.readthedocs.io/en/stable/tutorial/index.html) | [**Examples**](https://github.com/optuna/optuna-examples) *Optuna* is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, *define-by-run* style user API. Thanks to our *define-by-run* API, the code written with Optuna enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters. ## Key Features Optuna has modern functionalities as follows: - [Lightweight, versatile, and platform agnostic architecture](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/001_first.html) - Handle a wide variety of tasks with a simple installation that has few requirements. - [Pythonic search spaces](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html) - Define search spaces using familiar Python syntax including conditionals and loops. - [Efficient optimization algorithms](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html) - Adopt state-of-the-art algorithms for sampling hyperparameters and efficiently pruning unpromising trials. - [Easy parallelization](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/004_distributed.html) - Scale studies to tens or hundreds or workers with little or no changes to the code. - [Quick visualization](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/005_visualization.html) - Inspect optimization histories from a variety of plotting functions. ## Basic Concepts We use the terms *study* and *trial* as follows: - Study: optimization based on an objective function - Trial: a single execution of the objective function Please refer to sample code below. The goal of a *study* is to find out the optimal set of hyperparameter values (e.g., `regressor` and `svr_c`) through multiple *trials* (e.g., `n_trials=100`). Optuna is a framework designed for the automation and the acceleration of the optimization *studies*. [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/optuna/optuna-examples/blob/main/quickstart.ipynb) ```python import ... # Define an objective function to be minimized. def objective(trial): # Invoke suggest methods of a Trial object to generate hyperparameters. regressor_name = trial.suggest_categorical('regressor', ['SVR', 'RandomForest']) if regressor_name == 'SVR': svr_c = trial.suggest_float('svr_c', 1e-10, 1e10, log=True) regressor_obj = sklearn.svm.SVR(C=svr_c) else: rf_max_depth = trial.suggest_int('rf_max_depth', 2, 32) regressor_obj = sklearn.ensemble.RandomForestRegressor(max_depth=rf_max_depth) X, y = sklearn.datasets.fetch_california_housing(return_X_y=True) X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split(X, y, random_state=0) regressor_obj.fit(X_train, y_train) y_pred = regressor_obj.predict(X_val) error = sklearn.metrics.mean_squared_error(y_val, y_pred) return error # An objective value linked with the Trial object. study = optuna.create_study() # Create a new study. study.optimize(objective, n_trials=100) # Invoke optimization of the objective function. ``` ## Examples Examples can be found in [optuna/optuna-examples](https://github.com/optuna/optuna-examples). ## Integrations [Integrations modules](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html#integration-modules-for-pruning), which allow pruning, or early stopping, of unpromising trials are available for the following libraries: * [AllenNLP](https://github.com/optuna/optuna-examples/tree/main/allennlp) * [Catalyst](https://github.com/optuna/optuna-examples/tree/main/pytorch/catalyst_simple.py) * [Catboost](https://github.com/optuna/optuna-examples/tree/main/catboost/catboost_pruning.py) * [Chainer](https://github.com/optuna/optuna-examples/tree/main/chainer/chainer_integration.py) * FastAI ([V1](https://github.com/optuna/optuna-examples/tree/main/fastai/fastaiv1_simple.py), [V2](https://github.com/optuna/optuna-examples/tree/main/fastai/fastaiv2_simple.py)) * [Keras](https://github.com/optuna/optuna-examples/tree/main/keras/keras_integration.py) * [LightGBM](https://github.com/optuna/optuna-examples/tree/main/lightgbm/lightgbm_integration.py) * [MXNet](https://github.com/optuna/optuna-examples/tree/main/mxnet/mxnet_integration.py) * [PyTorch](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_simple.py) * [PyTorch Ignite](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_ignite_simple.py) * [PyTorch Lightning](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_lightning_simple.py) * [TensorFlow](https://github.com/optuna/optuna-examples/tree/main/tensorflow/tensorflow_estimator_integration.py) * [tf.keras](https://github.com/optuna/optuna-examples/tree/main/tfkeras/tfkeras_integration.py) * [XGBoost](https://github.com/optuna/optuna-examples/tree/main/xgboost/xgboost_integration.py) ## Web Dashboard [Optuna Dashboard](https://github.com/optuna/optuna-dashboard) is a real-time web dashboard for Optuna. You can check the optimization history, hyperparameter importances, etc. in graphs and tables. You don't need to create a Python script to call [Optuna's visualization](https://optuna.readthedocs.io/en/stable/reference/visualization/index.html) functions. Feature requests and bug reports welcome! ![optuna-dashboard](https://user-images.githubusercontent.com/5564044/204975098-95c2cb8c-0fb5-4388-abc4-da32f56cb4e5.gif) Install `optuna-dashboard` via pip: ``` $ pip install optuna-dashboard $ optuna-dashboard sqlite:///db.sqlite3 ... Listening on http://localhost:8080/ Hit Ctrl-C to quit. ``` ## Installation Optuna is available at [the Python Package Index](https://pypi.org/project/optuna/) and on [Anaconda Cloud](https://anaconda.org/conda-forge/optuna). ```bash # PyPI $ pip install optuna ``` ```bash # Anaconda Cloud $ conda install -c conda-forge optuna ``` Optuna supports Python 3.7 or newer. Also, we also provide Optuna docker images on [DockerHub](https://hub.docker.com/r/optuna/optuna). ## Communication - [GitHub Discussions] for questions. - [GitHub Issues] for bug reports and feature requests. [GitHub Discussions]: https://github.com/optuna/optuna/discussions [GitHub issues]: https://github.com/optuna/optuna/issues ## Contribution Any contributions to Optuna are more than welcome! If you are new to Optuna, please check the [good first issues](https://github.com/optuna/optuna/labels/good%20first%20issue). They are relatively simple, well-defined and are often good starting points for you to get familiar with the contribution workflow and other developers. If you already have contributed to Optuna, we recommend the other [contribution-welcome issues](https://github.com/optuna/optuna/labels/contribution-welcome). For general guidelines how to contribute to the project, take a look at [CONTRIBUTING.md](./CONTRIBUTING.md). ## Reference Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Framework. In KDD ([arXiv](https://arxiv.org/abs/1907.10902)). %package -n python3-optuna Summary: A hyperparameter optimization framework Provides: python-optuna BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-optuna # Optuna: A hyperparameter optimization framework [![Python](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue)](https://www.python.org) [![pypi](https://img.shields.io/pypi/v/optuna.svg)](https://pypi.python.org/pypi/optuna) [![conda](https://img.shields.io/conda/vn/conda-forge/optuna.svg)](https://anaconda.org/conda-forge/optuna) [![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/optuna/optuna) [![Read the Docs](https://readthedocs.org/projects/optuna/badge/?version=stable)](https://optuna.readthedocs.io/en/stable/) [![Codecov](https://codecov.io/gh/optuna/optuna/branch/master/graph/badge.svg)](https://codecov.io/gh/optuna/optuna/branch/master) [**Website**](https://optuna.org/) | [**Docs**](https://optuna.readthedocs.io/en/stable/) | [**Install Guide**](https://optuna.readthedocs.io/en/stable/installation.html) | [**Tutorial**](https://optuna.readthedocs.io/en/stable/tutorial/index.html) | [**Examples**](https://github.com/optuna/optuna-examples) *Optuna* is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, *define-by-run* style user API. Thanks to our *define-by-run* API, the code written with Optuna enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters. ## Key Features Optuna has modern functionalities as follows: - [Lightweight, versatile, and platform agnostic architecture](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/001_first.html) - Handle a wide variety of tasks with a simple installation that has few requirements. - [Pythonic search spaces](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html) - Define search spaces using familiar Python syntax including conditionals and loops. - [Efficient optimization algorithms](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html) - Adopt state-of-the-art algorithms for sampling hyperparameters and efficiently pruning unpromising trials. - [Easy parallelization](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/004_distributed.html) - Scale studies to tens or hundreds or workers with little or no changes to the code. - [Quick visualization](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/005_visualization.html) - Inspect optimization histories from a variety of plotting functions. ## Basic Concepts We use the terms *study* and *trial* as follows: - Study: optimization based on an objective function - Trial: a single execution of the objective function Please refer to sample code below. The goal of a *study* is to find out the optimal set of hyperparameter values (e.g., `regressor` and `svr_c`) through multiple *trials* (e.g., `n_trials=100`). Optuna is a framework designed for the automation and the acceleration of the optimization *studies*. [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/optuna/optuna-examples/blob/main/quickstart.ipynb) ```python import ... # Define an objective function to be minimized. def objective(trial): # Invoke suggest methods of a Trial object to generate hyperparameters. regressor_name = trial.suggest_categorical('regressor', ['SVR', 'RandomForest']) if regressor_name == 'SVR': svr_c = trial.suggest_float('svr_c', 1e-10, 1e10, log=True) regressor_obj = sklearn.svm.SVR(C=svr_c) else: rf_max_depth = trial.suggest_int('rf_max_depth', 2, 32) regressor_obj = sklearn.ensemble.RandomForestRegressor(max_depth=rf_max_depth) X, y = sklearn.datasets.fetch_california_housing(return_X_y=True) X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split(X, y, random_state=0) regressor_obj.fit(X_train, y_train) y_pred = regressor_obj.predict(X_val) error = sklearn.metrics.mean_squared_error(y_val, y_pred) return error # An objective value linked with the Trial object. study = optuna.create_study() # Create a new study. study.optimize(objective, n_trials=100) # Invoke optimization of the objective function. ``` ## Examples Examples can be found in [optuna/optuna-examples](https://github.com/optuna/optuna-examples). ## Integrations [Integrations modules](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html#integration-modules-for-pruning), which allow pruning, or early stopping, of unpromising trials are available for the following libraries: * [AllenNLP](https://github.com/optuna/optuna-examples/tree/main/allennlp) * [Catalyst](https://github.com/optuna/optuna-examples/tree/main/pytorch/catalyst_simple.py) * [Catboost](https://github.com/optuna/optuna-examples/tree/main/catboost/catboost_pruning.py) * [Chainer](https://github.com/optuna/optuna-examples/tree/main/chainer/chainer_integration.py) * FastAI ([V1](https://github.com/optuna/optuna-examples/tree/main/fastai/fastaiv1_simple.py), [V2](https://github.com/optuna/optuna-examples/tree/main/fastai/fastaiv2_simple.py)) * [Keras](https://github.com/optuna/optuna-examples/tree/main/keras/keras_integration.py) * [LightGBM](https://github.com/optuna/optuna-examples/tree/main/lightgbm/lightgbm_integration.py) * [MXNet](https://github.com/optuna/optuna-examples/tree/main/mxnet/mxnet_integration.py) * [PyTorch](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_simple.py) * [PyTorch Ignite](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_ignite_simple.py) * [PyTorch Lightning](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_lightning_simple.py) * [TensorFlow](https://github.com/optuna/optuna-examples/tree/main/tensorflow/tensorflow_estimator_integration.py) * [tf.keras](https://github.com/optuna/optuna-examples/tree/main/tfkeras/tfkeras_integration.py) * [XGBoost](https://github.com/optuna/optuna-examples/tree/main/xgboost/xgboost_integration.py) ## Web Dashboard [Optuna Dashboard](https://github.com/optuna/optuna-dashboard) is a real-time web dashboard for Optuna. You can check the optimization history, hyperparameter importances, etc. in graphs and tables. You don't need to create a Python script to call [Optuna's visualization](https://optuna.readthedocs.io/en/stable/reference/visualization/index.html) functions. Feature requests and bug reports welcome! ![optuna-dashboard](https://user-images.githubusercontent.com/5564044/204975098-95c2cb8c-0fb5-4388-abc4-da32f56cb4e5.gif) Install `optuna-dashboard` via pip: ``` $ pip install optuna-dashboard $ optuna-dashboard sqlite:///db.sqlite3 ... Listening on http://localhost:8080/ Hit Ctrl-C to quit. ``` ## Installation Optuna is available at [the Python Package Index](https://pypi.org/project/optuna/) and on [Anaconda Cloud](https://anaconda.org/conda-forge/optuna). ```bash # PyPI $ pip install optuna ``` ```bash # Anaconda Cloud $ conda install -c conda-forge optuna ``` Optuna supports Python 3.7 or newer. Also, we also provide Optuna docker images on [DockerHub](https://hub.docker.com/r/optuna/optuna). ## Communication - [GitHub Discussions] for questions. - [GitHub Issues] for bug reports and feature requests. [GitHub Discussions]: https://github.com/optuna/optuna/discussions [GitHub issues]: https://github.com/optuna/optuna/issues ## Contribution Any contributions to Optuna are more than welcome! If you are new to Optuna, please check the [good first issues](https://github.com/optuna/optuna/labels/good%20first%20issue). They are relatively simple, well-defined and are often good starting points for you to get familiar with the contribution workflow and other developers. If you already have contributed to Optuna, we recommend the other [contribution-welcome issues](https://github.com/optuna/optuna/labels/contribution-welcome). For general guidelines how to contribute to the project, take a look at [CONTRIBUTING.md](./CONTRIBUTING.md). ## Reference Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Framework. In KDD ([arXiv](https://arxiv.org/abs/1907.10902)). %package help Summary: Development documents and examples for optuna Provides: python3-optuna-doc %description help # Optuna: A hyperparameter optimization framework [![Python](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue)](https://www.python.org) [![pypi](https://img.shields.io/pypi/v/optuna.svg)](https://pypi.python.org/pypi/optuna) [![conda](https://img.shields.io/conda/vn/conda-forge/optuna.svg)](https://anaconda.org/conda-forge/optuna) [![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/optuna/optuna) [![Read the Docs](https://readthedocs.org/projects/optuna/badge/?version=stable)](https://optuna.readthedocs.io/en/stable/) [![Codecov](https://codecov.io/gh/optuna/optuna/branch/master/graph/badge.svg)](https://codecov.io/gh/optuna/optuna/branch/master) [**Website**](https://optuna.org/) | [**Docs**](https://optuna.readthedocs.io/en/stable/) | [**Install Guide**](https://optuna.readthedocs.io/en/stable/installation.html) | [**Tutorial**](https://optuna.readthedocs.io/en/stable/tutorial/index.html) | [**Examples**](https://github.com/optuna/optuna-examples) *Optuna* is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, *define-by-run* style user API. Thanks to our *define-by-run* API, the code written with Optuna enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters. ## Key Features Optuna has modern functionalities as follows: - [Lightweight, versatile, and platform agnostic architecture](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/001_first.html) - Handle a wide variety of tasks with a simple installation that has few requirements. - [Pythonic search spaces](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html) - Define search spaces using familiar Python syntax including conditionals and loops. - [Efficient optimization algorithms](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html) - Adopt state-of-the-art algorithms for sampling hyperparameters and efficiently pruning unpromising trials. - [Easy parallelization](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/004_distributed.html) - Scale studies to tens or hundreds or workers with little or no changes to the code. - [Quick visualization](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/005_visualization.html) - Inspect optimization histories from a variety of plotting functions. ## Basic Concepts We use the terms *study* and *trial* as follows: - Study: optimization based on an objective function - Trial: a single execution of the objective function Please refer to sample code below. The goal of a *study* is to find out the optimal set of hyperparameter values (e.g., `regressor` and `svr_c`) through multiple *trials* (e.g., `n_trials=100`). Optuna is a framework designed for the automation and the acceleration of the optimization *studies*. [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/optuna/optuna-examples/blob/main/quickstart.ipynb) ```python import ... # Define an objective function to be minimized. def objective(trial): # Invoke suggest methods of a Trial object to generate hyperparameters. regressor_name = trial.suggest_categorical('regressor', ['SVR', 'RandomForest']) if regressor_name == 'SVR': svr_c = trial.suggest_float('svr_c', 1e-10, 1e10, log=True) regressor_obj = sklearn.svm.SVR(C=svr_c) else: rf_max_depth = trial.suggest_int('rf_max_depth', 2, 32) regressor_obj = sklearn.ensemble.RandomForestRegressor(max_depth=rf_max_depth) X, y = sklearn.datasets.fetch_california_housing(return_X_y=True) X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split(X, y, random_state=0) regressor_obj.fit(X_train, y_train) y_pred = regressor_obj.predict(X_val) error = sklearn.metrics.mean_squared_error(y_val, y_pred) return error # An objective value linked with the Trial object. study = optuna.create_study() # Create a new study. study.optimize(objective, n_trials=100) # Invoke optimization of the objective function. ``` ## Examples Examples can be found in [optuna/optuna-examples](https://github.com/optuna/optuna-examples). ## Integrations [Integrations modules](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html#integration-modules-for-pruning), which allow pruning, or early stopping, of unpromising trials are available for the following libraries: * [AllenNLP](https://github.com/optuna/optuna-examples/tree/main/allennlp) * [Catalyst](https://github.com/optuna/optuna-examples/tree/main/pytorch/catalyst_simple.py) * [Catboost](https://github.com/optuna/optuna-examples/tree/main/catboost/catboost_pruning.py) * [Chainer](https://github.com/optuna/optuna-examples/tree/main/chainer/chainer_integration.py) * FastAI ([V1](https://github.com/optuna/optuna-examples/tree/main/fastai/fastaiv1_simple.py), [V2](https://github.com/optuna/optuna-examples/tree/main/fastai/fastaiv2_simple.py)) * [Keras](https://github.com/optuna/optuna-examples/tree/main/keras/keras_integration.py) * [LightGBM](https://github.com/optuna/optuna-examples/tree/main/lightgbm/lightgbm_integration.py) * [MXNet](https://github.com/optuna/optuna-examples/tree/main/mxnet/mxnet_integration.py) * [PyTorch](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_simple.py) * [PyTorch Ignite](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_ignite_simple.py) * [PyTorch Lightning](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_lightning_simple.py) * [TensorFlow](https://github.com/optuna/optuna-examples/tree/main/tensorflow/tensorflow_estimator_integration.py) * [tf.keras](https://github.com/optuna/optuna-examples/tree/main/tfkeras/tfkeras_integration.py) * [XGBoost](https://github.com/optuna/optuna-examples/tree/main/xgboost/xgboost_integration.py) ## Web Dashboard [Optuna Dashboard](https://github.com/optuna/optuna-dashboard) is a real-time web dashboard for Optuna. You can check the optimization history, hyperparameter importances, etc. in graphs and tables. You don't need to create a Python script to call [Optuna's visualization](https://optuna.readthedocs.io/en/stable/reference/visualization/index.html) functions. Feature requests and bug reports welcome! ![optuna-dashboard](https://user-images.githubusercontent.com/5564044/204975098-95c2cb8c-0fb5-4388-abc4-da32f56cb4e5.gif) Install `optuna-dashboard` via pip: ``` $ pip install optuna-dashboard $ optuna-dashboard sqlite:///db.sqlite3 ... Listening on http://localhost:8080/ Hit Ctrl-C to quit. ``` ## Installation Optuna is available at [the Python Package Index](https://pypi.org/project/optuna/) and on [Anaconda Cloud](https://anaconda.org/conda-forge/optuna). ```bash # PyPI $ pip install optuna ``` ```bash # Anaconda Cloud $ conda install -c conda-forge optuna ``` Optuna supports Python 3.7 or newer. Also, we also provide Optuna docker images on [DockerHub](https://hub.docker.com/r/optuna/optuna). ## Communication - [GitHub Discussions] for questions. - [GitHub Issues] for bug reports and feature requests. [GitHub Discussions]: https://github.com/optuna/optuna/discussions [GitHub issues]: https://github.com/optuna/optuna/issues ## Contribution Any contributions to Optuna are more than welcome! If you are new to Optuna, please check the [good first issues](https://github.com/optuna/optuna/labels/good%20first%20issue). They are relatively simple, well-defined and are often good starting points for you to get familiar with the contribution workflow and other developers. If you already have contributed to Optuna, we recommend the other [contribution-welcome issues](https://github.com/optuna/optuna/labels/contribution-welcome). For general guidelines how to contribute to the project, take a look at [CONTRIBUTING.md](./CONTRIBUTING.md). ## Reference Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Framework. In KDD ([arXiv](https://arxiv.org/abs/1907.10902)). %prep %autosetup -n optuna-3.1.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-optuna -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri Apr 21 2023 Python_Bot