%global _empty_manifest_terminate_build 0 Name: python-siuba Version: 0.4.2 Release: 1 Summary: A package for quick, scrappy analyses with pandas and SQL License: MIT URL: https://github.com/machow/siuba Source0: https://mirrors.nju.edu.cn/pypi/web/packages/85/ac/6e5c4407971bd1a01846334d0a8a2bb103e24b0ac5955fea3abdc6c834a4/siuba-0.4.2.tar.gz BuildArch: noarch Requires: python3-pandas Requires: python3-numpy Requires: python3-SQLAlchemy Requires: python3-PyYAML Requires: python3-plotnine Requires: python3-jupyter Requires: python3-nbval Requires: python3-sphinx Requires: python3-nbsphinx Requires: python3-jupytext Requires: python3-gapminder Requires: python3-pytest Requires: python3-hypothesis %description *scrappy data analysis, with seamless support for pandas and SQL* [![CI](https://github.com/machow/siuba/workflows/CI/badge.svg)](https://github.com/machow/siuba/actions?query=workflow%3ACI+branch%3Amain) [![Documentation Status](https://img.shields.io/badge/docs-siuba.org-blue.svg)](https://siuba.org) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/machow/siuba/master) siuba ([小巴](http://www.cantonese.sheik.co.uk/dictionary/words/9139/)) is a port of [dplyr](https://github.com/tidyverse/dplyr) and other R libraries. It supports a tabular data analysis workflow centered on 5 common actions: * `select()` - keep certain columns of data. * `filter()` - keep certain rows of data. * `mutate()` - create or modify an existing column of data. * `summarize()` - reduce one or more columns down to a single number. * `arrange()` - reorder the rows of data. These actions can be preceded by a `group_by()`, which causes them to be applied individually to grouped rows of data. Moreover, many SQL concepts, such as `distinct()`, `count()`, and joins are implemented. Inputs to these functions can be a pandas `DataFrame` or SQL connection (currently postgres, redshift, or sqlite). For more on the rationale behind tools like dplyr, see this [tidyverse paper](https://tidyverse.tidyverse.org/articles/paper.html). For examples of siuba in action, see the [siuba guide](https://siuba.org/guide). %package -n python3-siuba Summary: A package for quick, scrappy analyses with pandas and SQL Provides: python-siuba BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-siuba *scrappy data analysis, with seamless support for pandas and SQL* [![CI](https://github.com/machow/siuba/workflows/CI/badge.svg)](https://github.com/machow/siuba/actions?query=workflow%3ACI+branch%3Amain) [![Documentation Status](https://img.shields.io/badge/docs-siuba.org-blue.svg)](https://siuba.org) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/machow/siuba/master) siuba ([小巴](http://www.cantonese.sheik.co.uk/dictionary/words/9139/)) is a port of [dplyr](https://github.com/tidyverse/dplyr) and other R libraries. It supports a tabular data analysis workflow centered on 5 common actions: * `select()` - keep certain columns of data. * `filter()` - keep certain rows of data. * `mutate()` - create or modify an existing column of data. * `summarize()` - reduce one or more columns down to a single number. * `arrange()` - reorder the rows of data. These actions can be preceded by a `group_by()`, which causes them to be applied individually to grouped rows of data. Moreover, many SQL concepts, such as `distinct()`, `count()`, and joins are implemented. Inputs to these functions can be a pandas `DataFrame` or SQL connection (currently postgres, redshift, or sqlite). For more on the rationale behind tools like dplyr, see this [tidyverse paper](https://tidyverse.tidyverse.org/articles/paper.html). For examples of siuba in action, see the [siuba guide](https://siuba.org/guide). %package help Summary: Development documents and examples for siuba Provides: python3-siuba-doc %description help *scrappy data analysis, with seamless support for pandas and SQL* [![CI](https://github.com/machow/siuba/workflows/CI/badge.svg)](https://github.com/machow/siuba/actions?query=workflow%3ACI+branch%3Amain) [![Documentation Status](https://img.shields.io/badge/docs-siuba.org-blue.svg)](https://siuba.org) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/machow/siuba/master) siuba ([小巴](http://www.cantonese.sheik.co.uk/dictionary/words/9139/)) is a port of [dplyr](https://github.com/tidyverse/dplyr) and other R libraries. It supports a tabular data analysis workflow centered on 5 common actions: * `select()` - keep certain columns of data. * `filter()` - keep certain rows of data. * `mutate()` - create or modify an existing column of data. * `summarize()` - reduce one or more columns down to a single number. * `arrange()` - reorder the rows of data. These actions can be preceded by a `group_by()`, which causes them to be applied individually to grouped rows of data. Moreover, many SQL concepts, such as `distinct()`, `count()`, and joins are implemented. Inputs to these functions can be a pandas `DataFrame` or SQL connection (currently postgres, redshift, or sqlite). For more on the rationale behind tools like dplyr, see this [tidyverse paper](https://tidyverse.tidyverse.org/articles/paper.html). For examples of siuba in action, see the [siuba guide](https://siuba.org/guide). %prep %autosetup -n siuba-0.4.2 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-siuba -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Sun Apr 23 2023 Python_Bot - 0.4.2-1 - Package Spec generated