%global _empty_manifest_terminate_build 0 Name: python-gstools Version: 1.4.1 Release: 1 Summary: GSTools: A geostatistical toolbox. License: LGPL-3.0 URL: https://geostat-framework.org/#gstools Source0: https://mirrors.nju.edu.cn/pypi/web/packages/18/fb/9ac3d888a17109c61645021c797b3c2ea022626f62ee8e4a7351594eb9f8/gstools-1.4.1.tar.gz Requires: python3-emcee Requires: python3-hankel Requires: python3-meshio Requires: python3-numpy Requires: python3-pyevtk Requires: python3-scipy Requires: python3-m2r2 Requires: python3-matplotlib Requires: python3-meshzoo Requires: python3-numpydoc Requires: python3-pykrige Requires: python3-pyvista Requires: python3-sphinx Requires: python3-sphinx-gallery Requires: python3-sphinx-rtd-theme Requires: python3-sphinxcontrib-youtube Requires: python3-matplotlib Requires: python3-pyvista Requires: python3-gstools-core Requires: python3-pytest-cov %description # Welcome to GSTools [![GMD](https://img.shields.io/badge/GMD-10.5194%2Fgmd--15--3161--2022-orange)](https://doi.org/10.5194/gmd-15-3161-2022) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1313628.svg)](https://doi.org/10.5281/zenodo.1313628) [![PyPI version](https://badge.fury.io/py/gstools.svg)](https://badge.fury.io/py/gstools) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/gstools.svg)](https://anaconda.org/conda-forge/gstools) [![Build Status](https://github.com/GeoStat-Framework/GSTools/workflows/Continuous%20Integration/badge.svg?branch=main)](https://github.com/GeoStat-Framework/GSTools/actions) [![Coverage Status](https://coveralls.io/repos/github/GeoStat-Framework/GSTools/badge.svg?branch=main)](https://coveralls.io/github/GeoStat-Framework/GSTools?branch=main) [![Documentation Status](https://readthedocs.org/projects/gstools/badge/?version=latest)](https://geostat-framework.readthedocs.io/projects/gstools/en/stable/?badge=stable) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)

GSTools-LOGO

Get in Touch!

GH-Discussions Slack-Swung Gitter-GSTools Email Twitter Follow

Youtube Tutorial on GSTools

GSTools Transform 22 tutorial

## Purpose GeoStatTools provides geostatistical tools for various purposes: - random field generation - simple, ordinary, universal and external drift kriging - conditioned field generation - incompressible random vector field generation - (automated) variogram estimation and fitting - directional variogram estimation and modelling - data normalization and transformation - many readily provided and even user-defined covariance models - metric spatio-temporal modelling - plotting and exporting routines ## Installation ### conda GSTools can be installed via [conda][conda_link] on Linux, Mac, and Windows. Install the package by typing the following command in a command terminal: conda install gstools In case conda forge is not set up for your system yet, see the easy to follow instructions on [conda forge][conda_forge_link]. Using conda, the parallelized version of GSTools should be installed. ### pip GSTools can be installed via [pip][pip_link] on Linux, Mac, and Windows. On Windows you can install [WinPython][winpy_link] to get Python and pip running. Install the package by typing the following command in a command terminal: pip install gstools To install the latest development version via pip, see the [documentation][doc_install_link]. ## Citation If you are using GSTools in your publication please cite our paper: > Müller, S., Schüler, L., Zech, A., and Heße, F.: > GSTools v1.3: a toolbox for geostatistical modelling in Python, > Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, 2022. You can cite the Zenodo code publication of GSTools by: > Sebastian Müller & Lennart Schüler. GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628 If you want to cite a specific version, have a look at the [Zenodo site](https://doi.org/10.5281/zenodo.1313628). ## Documentation for GSTools You can find the documentation under [geostat-framework.readthedocs.io][doc_link]. ### Tutorials and Examples The documentation also includes some [tutorials][tut_link], showing the most important use cases of GSTools, which are - [Random Field Generation][tut1_link] - [The Covariance Model][tut2_link] - [Variogram Estimation][tut3_link] - [Random Vector Field Generation][tut4_link] - [Kriging][tut5_link] - [Conditioned random field generation][tut6_link] - [Field transformations][tut7_link] - [Geographic Coordinates][tut8_link] - [Spatio-Temporal Modelling][tut9_link] - [Normalizing Data][tut10_link] - [Miscellaneous examples][tut0_link] The associated python scripts are provided in the `examples` folder. ## Spatial Random Field Generation The core of this library is the generation of spatial random fields. These fields are generated using the randomisation method, described by [Heße et al. 2014][rand_link]. [rand_link]: https://doi.org/10.1016/j.envsoft.2014.01.013 ### Examples #### Gaussian Covariance Model This is an example of how to generate a 2 dimensional spatial random field with a gaussian covariance model. ```python import gstools as gs # structured field with a size 100x100 and a grid-size of 1x1 x = y = range(100) model = gs.Gaussian(dim=2, var=1, len_scale=10) srf = gs.SRF(model) srf((x, y), mesh_type='structured') srf.plot() ```

Random field

GSTools also provides support for [geographic coordinates](https://en.wikipedia.org/wiki/Geographic_coordinate_system). This works perfectly well with [cartopy](https://scitools.org.uk/cartopy/docs/latest/index.html). ```python import matplotlib.pyplot as plt import cartopy.crs as ccrs import gstools as gs # define a structured field by latitude and longitude lat = lon = range(-80, 81) model = gs.Gaussian(latlon=True, len_scale=777, rescale=gs.EARTH_RADIUS) srf = gs.SRF(model, seed=12345) field = srf.structured((lat, lon)) # Orthographic plotting with cartopy ax = plt.subplot(projection=ccrs.Orthographic(-45, 45)) cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree()) ax.coastlines() ax.set_global() plt.colorbar(cont) ```

lat-lon random field

A similar example but for a three dimensional field is exported to a [VTK](https://vtk.org/) file, which can be visualized with [ParaView](https://www.paraview.org/) or [PyVista](https://docs.pyvista.org) in Python: ```python import gstools as gs # structured field with a size 100x100x100 and a grid-size of 1x1x1 x = y = z = range(100) model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2)) srf = gs.SRF(model) srf((x, y, z), mesh_type='structured') srf.vtk_export('3d_field') # Save to a VTK file for ParaView mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python mesh.contour(isosurfaces=8).plot() ```

3d Random field

## Estimating and Fitting Variograms The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function. All covariance models can be used to fit given variogram data by a simple interface. ### Example This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance model again. ```python import numpy as np import gstools as gs # generate a synthetic field with an exponential model x = np.random.RandomState(19970221).rand(1000) * 100. y = np.random.RandomState(20011012).rand(1000) * 100. model = gs.Exponential(dim=2, var=2, len_scale=8) srf = gs.SRF(model, mean=0, seed=19970221) field = srf((x, y)) # estimate the variogram of the field bin_center, gamma = gs.vario_estimate((x, y), field) # fit the variogram with a stable model. (no nugget fitted) fit_model = gs.Stable(dim=2) fit_model.fit_variogram(bin_center, gamma, nugget=False) # output ax = fit_model.plot(x_max=max(bin_center)) ax.scatter(bin_center, gamma) print(fit_model) ``` Which gives: ```python Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], alpha=1.09) ```

Variogram

## Kriging and Conditioned Random Fields An important part of geostatistics is Kriging and conditioning spatial random fields to measurements. With conditioned random fields, an ensemble of field realizations with their variability depending on the proximity of the measurements can be generated. ### Example For better visualization, we will condition a 1d field to a few "measurements", generate 100 realizations and plot them: ```python import numpy as np import matplotlib.pyplot as plt import gstools as gs # conditions cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7] cond_val = [0.47, 0.56, 0.74, 1.47, 1.74] # conditioned spatial random field class model = gs.Gaussian(dim=1, var=0.5, len_scale=2) krige = gs.krige.Ordinary(model, cond_pos, cond_val) cond_srf = gs.CondSRF(krige) # same output positions for all ensemble members grid_pos = np.linspace(0.0, 15.0, 151) cond_srf.set_pos(grid_pos) # seeded ensemble generation seed = gs.random.MasterRNG(20170519) for i in range(100): field = cond_srf(seed=seed(), store=f"field_{i}") plt.plot(grid_pos, field, color="k", alpha=0.1) plt.scatter(cond_pos, cond_val, color="k") plt.show() ```

Conditioned

## User Defined Covariance Models One of the core-features of GSTools is the powerful [CovModel][cov_link] class, which allows to easy define covariance models by the user. ### Example Here we re-implement the Gaussian covariance model by defining just a [correlation][cor_link] function, which takes a non-dimensional distance ``h = r/l``: ```python import numpy as np import gstools as gs # use CovModel as the base-class class Gau(gs.CovModel): def cor(self, h): return np.exp(-h**2) ``` And that's it! With ``Gau`` you now have a fully working covariance model, which you could use for field generation or variogram fitting as shown above. Have a look at the [documentation ][doc_link] for further information on incorporating optional parameters and optimizations. ## Incompressible Vector Field Generation Using the original [Kraichnan method][kraichnan_link], incompressible random spatial vector fields can be generated. ### Example ```python import numpy as np import gstools as gs x = np.arange(100) y = np.arange(100) model = gs.Gaussian(dim=2, var=1, len_scale=10) srf = gs.SRF(model, generator='VectorField', seed=19841203) srf((x, y), mesh_type='structured') srf.plot() ``` yielding

vector field

[kraichnan_link]: https://doi.org/10.1063/1.1692799 ## VTK/PyVista Export After you have created a field, you may want to save it to file, so we provide a handy [VTK][vtk_link] export routine using the `.vtk_export()` or you could create a VTK/PyVista dataset for use in Python with to `.to_pyvista()` method: ```python import gstools as gs x = y = range(100) model = gs.Gaussian(dim=2, var=1, len_scale=10) srf = gs.SRF(model) srf((x, y), mesh_type='structured') srf.vtk_export("field") # Saves to a VTK file mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory mesh.plot() ``` Which gives a RectilinearGrid VTK file ``field.vtr`` or creates a PyVista mesh in memory for immediate 3D plotting in Python.

pyvista export

## Requirements: - [NumPy >= 1.14.5](https://www.numpy.org) - [SciPy >= 1.1.0](https://www.scipy.org/scipylib) - [hankel >= 1.0.0](https://github.com/steven-murray/hankel) - [emcee >= 3.0.0](https://github.com/dfm/emcee) - [pyevtk >= 1.1.1](https://github.com/pyscience-projects/pyevtk) - [meshio >= 5.1.0](https://github.com/nschloe/meshio) ### Optional - [GSTools-Core >= 0.2.0](https://github.com/GeoStat-Framework/GSTools-Core) - [matplotlib](https://matplotlib.org) - [pyvista](https://docs.pyvista.org/) ## Contact You can contact us via . ## License [LGPLv3][license_link] © 2018-2021 [pip_link]: https://pypi.org/project/gstools [conda_link]: https://docs.conda.io/en/latest/miniconda.html [conda_forge_link]: https://github.com/conda-forge/gstools-feedstock#installing-gstools [conda_pip]: https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html#installing-non-conda-packages [pipiflag]: https://pip-python3.readthedocs.io/en/latest/reference/pip_install.html?highlight=i#cmdoption-i [winpy_link]: https://winpython.github.io/ [license_link]: https://github.com/GeoStat-Framework/GSTools/blob/main/LICENSE [cov_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/generated/gstools.covmodel.CovModel.html#gstools.covmodel.CovModel [stable_link]: https://en.wikipedia.org/wiki/Stable_distribution [doc_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/ [doc_install_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/#pip [tut_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/tutorials.html [tut1_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/01_random_field/index.html [tut2_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/02_cov_model/index.html [tut3_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/03_variogram/index.html [tut4_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/04_vector_field/index.html [tut5_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/05_kriging/index.html [tut6_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/06_conditioned_fields/index.html [tut7_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/07_transformations/index.html [tut8_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/08_geo_coordinates/index.html [tut9_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/09_spatio_temporal/index.html [tut10_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/10_normalizer/index.html [tut0_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/00_misc/index.html [cor_link]: https://en.wikipedia.org/wiki/Autocovariance#Normalization [vtk_link]: https://www.vtk.org/ %package -n python3-gstools Summary: GSTools: A geostatistical toolbox. Provides: python-gstools BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip BuildRequires: python3-cffi BuildRequires: gcc BuildRequires: gdb %description -n python3-gstools # Welcome to GSTools [![GMD](https://img.shields.io/badge/GMD-10.5194%2Fgmd--15--3161--2022-orange)](https://doi.org/10.5194/gmd-15-3161-2022) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1313628.svg)](https://doi.org/10.5281/zenodo.1313628) [![PyPI version](https://badge.fury.io/py/gstools.svg)](https://badge.fury.io/py/gstools) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/gstools.svg)](https://anaconda.org/conda-forge/gstools) [![Build Status](https://github.com/GeoStat-Framework/GSTools/workflows/Continuous%20Integration/badge.svg?branch=main)](https://github.com/GeoStat-Framework/GSTools/actions) [![Coverage Status](https://coveralls.io/repos/github/GeoStat-Framework/GSTools/badge.svg?branch=main)](https://coveralls.io/github/GeoStat-Framework/GSTools?branch=main) [![Documentation Status](https://readthedocs.org/projects/gstools/badge/?version=latest)](https://geostat-framework.readthedocs.io/projects/gstools/en/stable/?badge=stable) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)

GSTools-LOGO

Get in Touch!

GH-Discussions Slack-Swung Gitter-GSTools Email Twitter Follow

Youtube Tutorial on GSTools

GSTools Transform 22 tutorial

## Purpose GeoStatTools provides geostatistical tools for various purposes: - random field generation - simple, ordinary, universal and external drift kriging - conditioned field generation - incompressible random vector field generation - (automated) variogram estimation and fitting - directional variogram estimation and modelling - data normalization and transformation - many readily provided and even user-defined covariance models - metric spatio-temporal modelling - plotting and exporting routines ## Installation ### conda GSTools can be installed via [conda][conda_link] on Linux, Mac, and Windows. Install the package by typing the following command in a command terminal: conda install gstools In case conda forge is not set up for your system yet, see the easy to follow instructions on [conda forge][conda_forge_link]. Using conda, the parallelized version of GSTools should be installed. ### pip GSTools can be installed via [pip][pip_link] on Linux, Mac, and Windows. On Windows you can install [WinPython][winpy_link] to get Python and pip running. Install the package by typing the following command in a command terminal: pip install gstools To install the latest development version via pip, see the [documentation][doc_install_link]. ## Citation If you are using GSTools in your publication please cite our paper: > Müller, S., Schüler, L., Zech, A., and Heße, F.: > GSTools v1.3: a toolbox for geostatistical modelling in Python, > Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, 2022. You can cite the Zenodo code publication of GSTools by: > Sebastian Müller & Lennart Schüler. GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628 If you want to cite a specific version, have a look at the [Zenodo site](https://doi.org/10.5281/zenodo.1313628). ## Documentation for GSTools You can find the documentation under [geostat-framework.readthedocs.io][doc_link]. ### Tutorials and Examples The documentation also includes some [tutorials][tut_link], showing the most important use cases of GSTools, which are - [Random Field Generation][tut1_link] - [The Covariance Model][tut2_link] - [Variogram Estimation][tut3_link] - [Random Vector Field Generation][tut4_link] - [Kriging][tut5_link] - [Conditioned random field generation][tut6_link] - [Field transformations][tut7_link] - [Geographic Coordinates][tut8_link] - [Spatio-Temporal Modelling][tut9_link] - [Normalizing Data][tut10_link] - [Miscellaneous examples][tut0_link] The associated python scripts are provided in the `examples` folder. ## Spatial Random Field Generation The core of this library is the generation of spatial random fields. These fields are generated using the randomisation method, described by [Heße et al. 2014][rand_link]. [rand_link]: https://doi.org/10.1016/j.envsoft.2014.01.013 ### Examples #### Gaussian Covariance Model This is an example of how to generate a 2 dimensional spatial random field with a gaussian covariance model. ```python import gstools as gs # structured field with a size 100x100 and a grid-size of 1x1 x = y = range(100) model = gs.Gaussian(dim=2, var=1, len_scale=10) srf = gs.SRF(model) srf((x, y), mesh_type='structured') srf.plot() ```

Random field

GSTools also provides support for [geographic coordinates](https://en.wikipedia.org/wiki/Geographic_coordinate_system). This works perfectly well with [cartopy](https://scitools.org.uk/cartopy/docs/latest/index.html). ```python import matplotlib.pyplot as plt import cartopy.crs as ccrs import gstools as gs # define a structured field by latitude and longitude lat = lon = range(-80, 81) model = gs.Gaussian(latlon=True, len_scale=777, rescale=gs.EARTH_RADIUS) srf = gs.SRF(model, seed=12345) field = srf.structured((lat, lon)) # Orthographic plotting with cartopy ax = plt.subplot(projection=ccrs.Orthographic(-45, 45)) cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree()) ax.coastlines() ax.set_global() plt.colorbar(cont) ```

lat-lon random field

A similar example but for a three dimensional field is exported to a [VTK](https://vtk.org/) file, which can be visualized with [ParaView](https://www.paraview.org/) or [PyVista](https://docs.pyvista.org) in Python: ```python import gstools as gs # structured field with a size 100x100x100 and a grid-size of 1x1x1 x = y = z = range(100) model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2)) srf = gs.SRF(model) srf((x, y, z), mesh_type='structured') srf.vtk_export('3d_field') # Save to a VTK file for ParaView mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python mesh.contour(isosurfaces=8).plot() ```

3d Random field

## Estimating and Fitting Variograms The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function. All covariance models can be used to fit given variogram data by a simple interface. ### Example This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance model again. ```python import numpy as np import gstools as gs # generate a synthetic field with an exponential model x = np.random.RandomState(19970221).rand(1000) * 100. y = np.random.RandomState(20011012).rand(1000) * 100. model = gs.Exponential(dim=2, var=2, len_scale=8) srf = gs.SRF(model, mean=0, seed=19970221) field = srf((x, y)) # estimate the variogram of the field bin_center, gamma = gs.vario_estimate((x, y), field) # fit the variogram with a stable model. (no nugget fitted) fit_model = gs.Stable(dim=2) fit_model.fit_variogram(bin_center, gamma, nugget=False) # output ax = fit_model.plot(x_max=max(bin_center)) ax.scatter(bin_center, gamma) print(fit_model) ``` Which gives: ```python Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], alpha=1.09) ```

Variogram

## Kriging and Conditioned Random Fields An important part of geostatistics is Kriging and conditioning spatial random fields to measurements. With conditioned random fields, an ensemble of field realizations with their variability depending on the proximity of the measurements can be generated. ### Example For better visualization, we will condition a 1d field to a few "measurements", generate 100 realizations and plot them: ```python import numpy as np import matplotlib.pyplot as plt import gstools as gs # conditions cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7] cond_val = [0.47, 0.56, 0.74, 1.47, 1.74] # conditioned spatial random field class model = gs.Gaussian(dim=1, var=0.5, len_scale=2) krige = gs.krige.Ordinary(model, cond_pos, cond_val) cond_srf = gs.CondSRF(krige) # same output positions for all ensemble members grid_pos = np.linspace(0.0, 15.0, 151) cond_srf.set_pos(grid_pos) # seeded ensemble generation seed = gs.random.MasterRNG(20170519) for i in range(100): field = cond_srf(seed=seed(), store=f"field_{i}") plt.plot(grid_pos, field, color="k", alpha=0.1) plt.scatter(cond_pos, cond_val, color="k") plt.show() ```

Conditioned

## User Defined Covariance Models One of the core-features of GSTools is the powerful [CovModel][cov_link] class, which allows to easy define covariance models by the user. ### Example Here we re-implement the Gaussian covariance model by defining just a [correlation][cor_link] function, which takes a non-dimensional distance ``h = r/l``: ```python import numpy as np import gstools as gs # use CovModel as the base-class class Gau(gs.CovModel): def cor(self, h): return np.exp(-h**2) ``` And that's it! With ``Gau`` you now have a fully working covariance model, which you could use for field generation or variogram fitting as shown above. Have a look at the [documentation ][doc_link] for further information on incorporating optional parameters and optimizations. ## Incompressible Vector Field Generation Using the original [Kraichnan method][kraichnan_link], incompressible random spatial vector fields can be generated. ### Example ```python import numpy as np import gstools as gs x = np.arange(100) y = np.arange(100) model = gs.Gaussian(dim=2, var=1, len_scale=10) srf = gs.SRF(model, generator='VectorField', seed=19841203) srf((x, y), mesh_type='structured') srf.plot() ``` yielding

vector field

[kraichnan_link]: https://doi.org/10.1063/1.1692799 ## VTK/PyVista Export After you have created a field, you may want to save it to file, so we provide a handy [VTK][vtk_link] export routine using the `.vtk_export()` or you could create a VTK/PyVista dataset for use in Python with to `.to_pyvista()` method: ```python import gstools as gs x = y = range(100) model = gs.Gaussian(dim=2, var=1, len_scale=10) srf = gs.SRF(model) srf((x, y), mesh_type='structured') srf.vtk_export("field") # Saves to a VTK file mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory mesh.plot() ``` Which gives a RectilinearGrid VTK file ``field.vtr`` or creates a PyVista mesh in memory for immediate 3D plotting in Python.

pyvista export

## Requirements: - [NumPy >= 1.14.5](https://www.numpy.org) - [SciPy >= 1.1.0](https://www.scipy.org/scipylib) - [hankel >= 1.0.0](https://github.com/steven-murray/hankel) - [emcee >= 3.0.0](https://github.com/dfm/emcee) - [pyevtk >= 1.1.1](https://github.com/pyscience-projects/pyevtk) - [meshio >= 5.1.0](https://github.com/nschloe/meshio) ### Optional - [GSTools-Core >= 0.2.0](https://github.com/GeoStat-Framework/GSTools-Core) - [matplotlib](https://matplotlib.org) - [pyvista](https://docs.pyvista.org/) ## Contact You can contact us via . ## License [LGPLv3][license_link] © 2018-2021 [pip_link]: https://pypi.org/project/gstools [conda_link]: https://docs.conda.io/en/latest/miniconda.html [conda_forge_link]: https://github.com/conda-forge/gstools-feedstock#installing-gstools [conda_pip]: https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html#installing-non-conda-packages [pipiflag]: https://pip-python3.readthedocs.io/en/latest/reference/pip_install.html?highlight=i#cmdoption-i [winpy_link]: https://winpython.github.io/ [license_link]: https://github.com/GeoStat-Framework/GSTools/blob/main/LICENSE [cov_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/generated/gstools.covmodel.CovModel.html#gstools.covmodel.CovModel [stable_link]: https://en.wikipedia.org/wiki/Stable_distribution [doc_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/ [doc_install_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/#pip [tut_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/tutorials.html [tut1_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/01_random_field/index.html [tut2_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/02_cov_model/index.html [tut3_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/03_variogram/index.html [tut4_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/04_vector_field/index.html [tut5_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/05_kriging/index.html [tut6_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/06_conditioned_fields/index.html [tut7_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/07_transformations/index.html [tut8_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/08_geo_coordinates/index.html [tut9_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/09_spatio_temporal/index.html [tut10_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/10_normalizer/index.html [tut0_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/00_misc/index.html [cor_link]: https://en.wikipedia.org/wiki/Autocovariance#Normalization [vtk_link]: https://www.vtk.org/ %package help Summary: Development documents and examples for gstools Provides: python3-gstools-doc %description help # Welcome to GSTools [![GMD](https://img.shields.io/badge/GMD-10.5194%2Fgmd--15--3161--2022-orange)](https://doi.org/10.5194/gmd-15-3161-2022) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1313628.svg)](https://doi.org/10.5281/zenodo.1313628) [![PyPI version](https://badge.fury.io/py/gstools.svg)](https://badge.fury.io/py/gstools) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/gstools.svg)](https://anaconda.org/conda-forge/gstools) [![Build Status](https://github.com/GeoStat-Framework/GSTools/workflows/Continuous%20Integration/badge.svg?branch=main)](https://github.com/GeoStat-Framework/GSTools/actions) [![Coverage Status](https://coveralls.io/repos/github/GeoStat-Framework/GSTools/badge.svg?branch=main)](https://coveralls.io/github/GeoStat-Framework/GSTools?branch=main) [![Documentation Status](https://readthedocs.org/projects/gstools/badge/?version=latest)](https://geostat-framework.readthedocs.io/projects/gstools/en/stable/?badge=stable) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)

GSTools-LOGO

Get in Touch!

GH-Discussions Slack-Swung Gitter-GSTools Email Twitter Follow

Youtube Tutorial on GSTools

GSTools Transform 22 tutorial

## Purpose GeoStatTools provides geostatistical tools for various purposes: - random field generation - simple, ordinary, universal and external drift kriging - conditioned field generation - incompressible random vector field generation - (automated) variogram estimation and fitting - directional variogram estimation and modelling - data normalization and transformation - many readily provided and even user-defined covariance models - metric spatio-temporal modelling - plotting and exporting routines ## Installation ### conda GSTools can be installed via [conda][conda_link] on Linux, Mac, and Windows. Install the package by typing the following command in a command terminal: conda install gstools In case conda forge is not set up for your system yet, see the easy to follow instructions on [conda forge][conda_forge_link]. Using conda, the parallelized version of GSTools should be installed. ### pip GSTools can be installed via [pip][pip_link] on Linux, Mac, and Windows. On Windows you can install [WinPython][winpy_link] to get Python and pip running. Install the package by typing the following command in a command terminal: pip install gstools To install the latest development version via pip, see the [documentation][doc_install_link]. ## Citation If you are using GSTools in your publication please cite our paper: > Müller, S., Schüler, L., Zech, A., and Heße, F.: > GSTools v1.3: a toolbox for geostatistical modelling in Python, > Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, 2022. You can cite the Zenodo code publication of GSTools by: > Sebastian Müller & Lennart Schüler. GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628 If you want to cite a specific version, have a look at the [Zenodo site](https://doi.org/10.5281/zenodo.1313628). ## Documentation for GSTools You can find the documentation under [geostat-framework.readthedocs.io][doc_link]. ### Tutorials and Examples The documentation also includes some [tutorials][tut_link], showing the most important use cases of GSTools, which are - [Random Field Generation][tut1_link] - [The Covariance Model][tut2_link] - [Variogram Estimation][tut3_link] - [Random Vector Field Generation][tut4_link] - [Kriging][tut5_link] - [Conditioned random field generation][tut6_link] - [Field transformations][tut7_link] - [Geographic Coordinates][tut8_link] - [Spatio-Temporal Modelling][tut9_link] - [Normalizing Data][tut10_link] - [Miscellaneous examples][tut0_link] The associated python scripts are provided in the `examples` folder. ## Spatial Random Field Generation The core of this library is the generation of spatial random fields. These fields are generated using the randomisation method, described by [Heße et al. 2014][rand_link]. [rand_link]: https://doi.org/10.1016/j.envsoft.2014.01.013 ### Examples #### Gaussian Covariance Model This is an example of how to generate a 2 dimensional spatial random field with a gaussian covariance model. ```python import gstools as gs # structured field with a size 100x100 and a grid-size of 1x1 x = y = range(100) model = gs.Gaussian(dim=2, var=1, len_scale=10) srf = gs.SRF(model) srf((x, y), mesh_type='structured') srf.plot() ```

Random field

GSTools also provides support for [geographic coordinates](https://en.wikipedia.org/wiki/Geographic_coordinate_system). This works perfectly well with [cartopy](https://scitools.org.uk/cartopy/docs/latest/index.html). ```python import matplotlib.pyplot as plt import cartopy.crs as ccrs import gstools as gs # define a structured field by latitude and longitude lat = lon = range(-80, 81) model = gs.Gaussian(latlon=True, len_scale=777, rescale=gs.EARTH_RADIUS) srf = gs.SRF(model, seed=12345) field = srf.structured((lat, lon)) # Orthographic plotting with cartopy ax = plt.subplot(projection=ccrs.Orthographic(-45, 45)) cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree()) ax.coastlines() ax.set_global() plt.colorbar(cont) ```

lat-lon random field

A similar example but for a three dimensional field is exported to a [VTK](https://vtk.org/) file, which can be visualized with [ParaView](https://www.paraview.org/) or [PyVista](https://docs.pyvista.org) in Python: ```python import gstools as gs # structured field with a size 100x100x100 and a grid-size of 1x1x1 x = y = z = range(100) model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2)) srf = gs.SRF(model) srf((x, y, z), mesh_type='structured') srf.vtk_export('3d_field') # Save to a VTK file for ParaView mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python mesh.contour(isosurfaces=8).plot() ```

3d Random field

## Estimating and Fitting Variograms The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function. All covariance models can be used to fit given variogram data by a simple interface. ### Example This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance model again. ```python import numpy as np import gstools as gs # generate a synthetic field with an exponential model x = np.random.RandomState(19970221).rand(1000) * 100. y = np.random.RandomState(20011012).rand(1000) * 100. model = gs.Exponential(dim=2, var=2, len_scale=8) srf = gs.SRF(model, mean=0, seed=19970221) field = srf((x, y)) # estimate the variogram of the field bin_center, gamma = gs.vario_estimate((x, y), field) # fit the variogram with a stable model. (no nugget fitted) fit_model = gs.Stable(dim=2) fit_model.fit_variogram(bin_center, gamma, nugget=False) # output ax = fit_model.plot(x_max=max(bin_center)) ax.scatter(bin_center, gamma) print(fit_model) ``` Which gives: ```python Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], alpha=1.09) ```

Variogram

## Kriging and Conditioned Random Fields An important part of geostatistics is Kriging and conditioning spatial random fields to measurements. With conditioned random fields, an ensemble of field realizations with their variability depending on the proximity of the measurements can be generated. ### Example For better visualization, we will condition a 1d field to a few "measurements", generate 100 realizations and plot them: ```python import numpy as np import matplotlib.pyplot as plt import gstools as gs # conditions cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7] cond_val = [0.47, 0.56, 0.74, 1.47, 1.74] # conditioned spatial random field class model = gs.Gaussian(dim=1, var=0.5, len_scale=2) krige = gs.krige.Ordinary(model, cond_pos, cond_val) cond_srf = gs.CondSRF(krige) # same output positions for all ensemble members grid_pos = np.linspace(0.0, 15.0, 151) cond_srf.set_pos(grid_pos) # seeded ensemble generation seed = gs.random.MasterRNG(20170519) for i in range(100): field = cond_srf(seed=seed(), store=f"field_{i}") plt.plot(grid_pos, field, color="k", alpha=0.1) plt.scatter(cond_pos, cond_val, color="k") plt.show() ```

Conditioned

## User Defined Covariance Models One of the core-features of GSTools is the powerful [CovModel][cov_link] class, which allows to easy define covariance models by the user. ### Example Here we re-implement the Gaussian covariance model by defining just a [correlation][cor_link] function, which takes a non-dimensional distance ``h = r/l``: ```python import numpy as np import gstools as gs # use CovModel as the base-class class Gau(gs.CovModel): def cor(self, h): return np.exp(-h**2) ``` And that's it! With ``Gau`` you now have a fully working covariance model, which you could use for field generation or variogram fitting as shown above. Have a look at the [documentation ][doc_link] for further information on incorporating optional parameters and optimizations. ## Incompressible Vector Field Generation Using the original [Kraichnan method][kraichnan_link], incompressible random spatial vector fields can be generated. ### Example ```python import numpy as np import gstools as gs x = np.arange(100) y = np.arange(100) model = gs.Gaussian(dim=2, var=1, len_scale=10) srf = gs.SRF(model, generator='VectorField', seed=19841203) srf((x, y), mesh_type='structured') srf.plot() ``` yielding

vector field

[kraichnan_link]: https://doi.org/10.1063/1.1692799 ## VTK/PyVista Export After you have created a field, you may want to save it to file, so we provide a handy [VTK][vtk_link] export routine using the `.vtk_export()` or you could create a VTK/PyVista dataset for use in Python with to `.to_pyvista()` method: ```python import gstools as gs x = y = range(100) model = gs.Gaussian(dim=2, var=1, len_scale=10) srf = gs.SRF(model) srf((x, y), mesh_type='structured') srf.vtk_export("field") # Saves to a VTK file mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory mesh.plot() ``` Which gives a RectilinearGrid VTK file ``field.vtr`` or creates a PyVista mesh in memory for immediate 3D plotting in Python.

pyvista export

## Requirements: - [NumPy >= 1.14.5](https://www.numpy.org) - [SciPy >= 1.1.0](https://www.scipy.org/scipylib) - [hankel >= 1.0.0](https://github.com/steven-murray/hankel) - [emcee >= 3.0.0](https://github.com/dfm/emcee) - [pyevtk >= 1.1.1](https://github.com/pyscience-projects/pyevtk) - [meshio >= 5.1.0](https://github.com/nschloe/meshio) ### Optional - [GSTools-Core >= 0.2.0](https://github.com/GeoStat-Framework/GSTools-Core) - [matplotlib](https://matplotlib.org) - [pyvista](https://docs.pyvista.org/) ## Contact You can contact us via . ## License [LGPLv3][license_link] © 2018-2021 [pip_link]: https://pypi.org/project/gstools [conda_link]: https://docs.conda.io/en/latest/miniconda.html [conda_forge_link]: https://github.com/conda-forge/gstools-feedstock#installing-gstools [conda_pip]: https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html#installing-non-conda-packages [pipiflag]: https://pip-python3.readthedocs.io/en/latest/reference/pip_install.html?highlight=i#cmdoption-i [winpy_link]: https://winpython.github.io/ [license_link]: https://github.com/GeoStat-Framework/GSTools/blob/main/LICENSE [cov_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/generated/gstools.covmodel.CovModel.html#gstools.covmodel.CovModel [stable_link]: https://en.wikipedia.org/wiki/Stable_distribution [doc_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/ [doc_install_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/#pip [tut_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/tutorials.html [tut1_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/01_random_field/index.html [tut2_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/02_cov_model/index.html [tut3_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/03_variogram/index.html [tut4_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/04_vector_field/index.html [tut5_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/05_kriging/index.html [tut6_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/06_conditioned_fields/index.html [tut7_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/07_transformations/index.html [tut8_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/08_geo_coordinates/index.html [tut9_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/09_spatio_temporal/index.html [tut10_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/10_normalizer/index.html [tut0_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/stable/examples/00_misc/index.html [cor_link]: https://en.wikipedia.org/wiki/Autocovariance#Normalization [vtk_link]: https://www.vtk.org/ %prep %autosetup -n gstools-1.4.1 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-gstools -f filelist.lst %dir %{python3_sitearch}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Apr 25 2023 Python_Bot - 1.4.1-1 - Package Spec generated