%global _empty_manifest_terminate_build 0 Name: python-distfit Version: 1.6.10 Release: 1 Summary: distfit is a python library for probability density fitting. License: MIT License URL: https://erdogant.github.io/distfit Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b6/f9/cf5ea4b3912f22db6593254c0ef4a0e68eb20116502c112954afa3d6f539/distfit-1.6.10.tar.gz BuildArch: noarch Requires: python3-packaging Requires: python3-matplotlib Requires: python3-numpy Requires: python3-pandas Requires: python3-tqdm Requires: python3-statsmodels Requires: python3-scipy Requires: python3-pypickle Requires: python3-colourmap %description

[![Python](https://img.shields.io/pypi/pyversions/distfit)](https://img.shields.io/pypi/pyversions/distfit) [![Pypi](https://img.shields.io/pypi/v/distfit)](https://pypi.org/project/distfit/) [![Docs](https://img.shields.io/badge/Sphinx-Docs-Green)](https://erdogant.github.io/distfit/) [![LOC](https://sloc.xyz/github/erdogant/distfit/?category=code)](https://github.com/erdogant/distfit/) [![Downloads](https://static.pepy.tech/personalized-badge/distfit?period=month&units=international_system&left_color=grey&right_color=brightgreen&left_text=PyPI%20downloads/month)](https://pepy.tech/project/distfit) [![Downloads](https://static.pepy.tech/personalized-badge/distfit?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=Downloads)](https://pepy.tech/project/distfit) [![License](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/erdogant/distfit/blob/master/LICENSE) [![Forks](https://img.shields.io/github/forks/erdogant/distfit.svg)](https://github.com/erdogant/distfit/network) [![Issues](https://img.shields.io/github/issues/erdogant/distfit.svg)](https://github.com/erdogant/distfit/issues) [![Project Status](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![DOI](https://zenodo.org/badge/231843440.svg)](https://zenodo.org/badge/latestdoi/231843440) [![Medium](https://img.shields.io/badge/Medium-Blog-black)](https://erdogant.github.io/distfit/pages/html/Documentation.html#medium-blog) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://erdogant.github.io/distfit/pages/html/Documentation.html#colab-notebook) [![Donate](https://img.shields.io/badge/Support%20this%20project-grey.svg?logo=github%20sponsors)](https://erdogant.github.io/distfit/pages/html/Documentation.html#) # ### [Read the Medium Blog for more information](https://erdogant.github.io/distfit/pages/html/Documentation.html#medium-blog) # ``distfit`` is a python package for probability density fitting of univariate distributions for random variables. With the random variable as an input, distfit can find the best fit for parametric, non-parametric, and discrete distributions. * For the parametric approach, the distfit library can determine the best fit across 89 theoretical distributions. To score the fit, one of the scoring statistics for the good-of-fitness test can be used used, such as RSS/SSE, Wasserstein, Kolmogorov-Smirnov (KS), or Energy. After finding the best-fitted theoretical distribution, the loc, scale, and arg parameters are returned, such as mean and standard deviation for normal distribution. * For the non-parametric approach, the distfit library contains two methods, the quantile and percentile method. Both methods assume that the data does not follow a specific probability distribution. In the case of the quantile method, the quantiles of the data are modeled whereas for the percentile method, the percentiles are modeled. * In case the dataset contains discrete values, the distift library contains the option for discrete fitting. The best fit is then derived using the binomial distribution. # **⭐️ Star this repo if you like it ⭐️** # ### [Documentation pages](https://erdogant.github.io/distfit/) On the [documentation pages](https://erdogant.github.io/distfit/) you can find detailed information about the ``distfit`` library with many examples. # ### Installation ##### Install distfit from PyPI ```bash pip install distfit ``` ##### Install from github source (beta version) ```bash install git+https://github.com/erdogant/distfit ``` ##### Check version ```python import distfit print(distfit.__version__) ``` ##### The following functions are available after installation: ```python # Import library from distfit import distfit dfit = distfit() # Initialize dfit.fit_transform(X) # Fit distributions on empirical data X dfit.predict(y) # Predict the probability of the resonse variables dfit.plot() # Plot the best fitted distribution (y is included if prediction is made) ```
### Examples # ##### [Example: Quick start to find best fit for your input data](https://erdogant.github.io/distfit/pages/html/Examples.html#) ```python # [distfit] >INFO> fit # [distfit] >INFO> transform # [distfit] >INFO> [norm ] [0.00 sec] [RSS: 0.00108326] [loc=-0.048 scale=1.997] # [distfit] >INFO> [expon ] [0.00 sec] [RSS: 0.404237] [loc=-6.897 scale=6.849] # [distfit] >INFO> [pareto ] [0.00 sec] [RSS: 0.404237] [loc=-536870918.897 scale=536870912.000] # [distfit] >INFO> [dweibull ] [0.06 sec] [RSS: 0.0115552] [loc=-0.031 scale=1.722] # [distfit] >INFO> [t ] [0.59 sec] [RSS: 0.00108349] [loc=-0.048 scale=1.997] # [distfit] >INFO> [genextreme] [0.17 sec] [RSS: 0.00300806] [loc=-0.806 scale=1.979] # [distfit] >INFO> [gamma ] [0.05 sec] [RSS: 0.00108459] [loc=-1862.903 scale=0.002] # [distfit] >INFO> [lognorm ] [0.32 sec] [RSS: 0.00121597] [loc=-110.597 scale=110.530] # [distfit] >INFO> [beta ] [0.10 sec] [RSS: 0.00105629] [loc=-16.364 scale=32.869] # [distfit] >INFO> [uniform ] [0.00 sec] [RSS: 0.287339] [loc=-6.897 scale=14.437] # [distfit] >INFO> [loggamma ] [0.12 sec] [RSS: 0.00109042] [loc=-370.746 scale=55.722] # [distfit] >INFO> Compute confidence intervals [parametric] # [distfit] >INFO> Compute significance for 9 samples. # [distfit] >INFO> Multiple test correction method applied: [fdr_bh]. # [distfit] >INFO> Create PDF plot for the parametric method. # [distfit] >INFO> Mark 5 significant regions # [distfit] >INFO> Estimated distribution: beta [loc:-16.364265, scale:32.868811] ```

# ##### [Example: Plot summary of the tested distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#plot-rss) After we have a fitted model, we can make some predictions using the theoretical distributions. After making some predictions, we can plot again but now the predictions are automatically included.

# ##### [Example: Make predictions using the fitted distribution](https://erdogant.github.io/distfit/pages/html/Examples.html#make-predictions)

# ##### [Example: Test for one specific distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-one-specific-distribution) The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html

# ##### [Example: Test for multiple distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-multiple-distributions) The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html

# ##### [Example: Fit discrete distribution](https://erdogant.github.io/distfit/pages/html/Discrete.html) ```python from scipy.stats import binom # Generate random numbers # Set parameters for the test-case n = 8 p = 0.5 # Generate 10000 samples of the distribution of (n, p) X = binom(n, p).rvs(10000) print(X) # [5 1 4 5 5 6 2 4 6 5 4 4 4 7 3 4 4 2 3 3 4 4 5 1 3 2 7 4 5 2 3 4 3 3 2 3 5 # 4 6 7 6 2 4 3 3 5 3 5 3 4 4 4 7 5 4 5 3 4 3 3 4 3 3 6 3 3 5 4 4 2 3 2 5 7 # 5 4 8 3 4 3 5 4 3 5 5 2 5 6 7 4 5 5 5 4 4 3 4 5 6 2...] # Import distfit from distfit import distfit # Initialize for discrete distribution fitting dfit = distfit(method='discrete') # Run distfit to and determine whether we can find the parameters from the data. dfit.fit_transform(X) # [distfit] >fit.. # [distfit] >transform.. # [distfit] >Fit using binomial distribution.. # [distfit] >[binomial] [SSE: 7.79] [n: 8] [p: 0.499959] [chi^2: 1.11] # [distfit] >Compute confidence interval [discrete] ```

# ##### [Example: Make predictions on unseen data for discrete distribution](https://erdogant.github.io/distfit/pages/html/Discrete.html#make-predictions)

# ##### [Example: Generate samples based on the fitted distribution](https://erdogant.github.io/distfit/pages/html/Generate.html)
### Contributors Setting up and maintaining distfit has been possible thanks to users and contributors. Thanks:

### Citation Please cite ``distfit`` in your publications if this is useful for your research. See column right for citation information. ### Maintainer * Erdogan Taskesen, github: [erdogant](https://github.com/erdogant) * Contributions are welcome. * If you wish to buy me a Coffee for this work, it is very appreciated :) %package -n python3-distfit Summary: distfit is a python library for probability density fitting. Provides: python-distfit BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-distfit

[![Python](https://img.shields.io/pypi/pyversions/distfit)](https://img.shields.io/pypi/pyversions/distfit) [![Pypi](https://img.shields.io/pypi/v/distfit)](https://pypi.org/project/distfit/) [![Docs](https://img.shields.io/badge/Sphinx-Docs-Green)](https://erdogant.github.io/distfit/) [![LOC](https://sloc.xyz/github/erdogant/distfit/?category=code)](https://github.com/erdogant/distfit/) [![Downloads](https://static.pepy.tech/personalized-badge/distfit?period=month&units=international_system&left_color=grey&right_color=brightgreen&left_text=PyPI%20downloads/month)](https://pepy.tech/project/distfit) [![Downloads](https://static.pepy.tech/personalized-badge/distfit?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=Downloads)](https://pepy.tech/project/distfit) [![License](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/erdogant/distfit/blob/master/LICENSE) [![Forks](https://img.shields.io/github/forks/erdogant/distfit.svg)](https://github.com/erdogant/distfit/network) [![Issues](https://img.shields.io/github/issues/erdogant/distfit.svg)](https://github.com/erdogant/distfit/issues) [![Project Status](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![DOI](https://zenodo.org/badge/231843440.svg)](https://zenodo.org/badge/latestdoi/231843440) [![Medium](https://img.shields.io/badge/Medium-Blog-black)](https://erdogant.github.io/distfit/pages/html/Documentation.html#medium-blog) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://erdogant.github.io/distfit/pages/html/Documentation.html#colab-notebook) [![Donate](https://img.shields.io/badge/Support%20this%20project-grey.svg?logo=github%20sponsors)](https://erdogant.github.io/distfit/pages/html/Documentation.html#) # ### [Read the Medium Blog for more information](https://erdogant.github.io/distfit/pages/html/Documentation.html#medium-blog) # ``distfit`` is a python package for probability density fitting of univariate distributions for random variables. With the random variable as an input, distfit can find the best fit for parametric, non-parametric, and discrete distributions. * For the parametric approach, the distfit library can determine the best fit across 89 theoretical distributions. To score the fit, one of the scoring statistics for the good-of-fitness test can be used used, such as RSS/SSE, Wasserstein, Kolmogorov-Smirnov (KS), or Energy. After finding the best-fitted theoretical distribution, the loc, scale, and arg parameters are returned, such as mean and standard deviation for normal distribution. * For the non-parametric approach, the distfit library contains two methods, the quantile and percentile method. Both methods assume that the data does not follow a specific probability distribution. In the case of the quantile method, the quantiles of the data are modeled whereas for the percentile method, the percentiles are modeled. * In case the dataset contains discrete values, the distift library contains the option for discrete fitting. The best fit is then derived using the binomial distribution. # **⭐️ Star this repo if you like it ⭐️** # ### [Documentation pages](https://erdogant.github.io/distfit/) On the [documentation pages](https://erdogant.github.io/distfit/) you can find detailed information about the ``distfit`` library with many examples. # ### Installation ##### Install distfit from PyPI ```bash pip install distfit ``` ##### Install from github source (beta version) ```bash install git+https://github.com/erdogant/distfit ``` ##### Check version ```python import distfit print(distfit.__version__) ``` ##### The following functions are available after installation: ```python # Import library from distfit import distfit dfit = distfit() # Initialize dfit.fit_transform(X) # Fit distributions on empirical data X dfit.predict(y) # Predict the probability of the resonse variables dfit.plot() # Plot the best fitted distribution (y is included if prediction is made) ```
### Examples # ##### [Example: Quick start to find best fit for your input data](https://erdogant.github.io/distfit/pages/html/Examples.html#) ```python # [distfit] >INFO> fit # [distfit] >INFO> transform # [distfit] >INFO> [norm ] [0.00 sec] [RSS: 0.00108326] [loc=-0.048 scale=1.997] # [distfit] >INFO> [expon ] [0.00 sec] [RSS: 0.404237] [loc=-6.897 scale=6.849] # [distfit] >INFO> [pareto ] [0.00 sec] [RSS: 0.404237] [loc=-536870918.897 scale=536870912.000] # [distfit] >INFO> [dweibull ] [0.06 sec] [RSS: 0.0115552] [loc=-0.031 scale=1.722] # [distfit] >INFO> [t ] [0.59 sec] [RSS: 0.00108349] [loc=-0.048 scale=1.997] # [distfit] >INFO> [genextreme] [0.17 sec] [RSS: 0.00300806] [loc=-0.806 scale=1.979] # [distfit] >INFO> [gamma ] [0.05 sec] [RSS: 0.00108459] [loc=-1862.903 scale=0.002] # [distfit] >INFO> [lognorm ] [0.32 sec] [RSS: 0.00121597] [loc=-110.597 scale=110.530] # [distfit] >INFO> [beta ] [0.10 sec] [RSS: 0.00105629] [loc=-16.364 scale=32.869] # [distfit] >INFO> [uniform ] [0.00 sec] [RSS: 0.287339] [loc=-6.897 scale=14.437] # [distfit] >INFO> [loggamma ] [0.12 sec] [RSS: 0.00109042] [loc=-370.746 scale=55.722] # [distfit] >INFO> Compute confidence intervals [parametric] # [distfit] >INFO> Compute significance for 9 samples. # [distfit] >INFO> Multiple test correction method applied: [fdr_bh]. # [distfit] >INFO> Create PDF plot for the parametric method. # [distfit] >INFO> Mark 5 significant regions # [distfit] >INFO> Estimated distribution: beta [loc:-16.364265, scale:32.868811] ```

# ##### [Example: Plot summary of the tested distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#plot-rss) After we have a fitted model, we can make some predictions using the theoretical distributions. After making some predictions, we can plot again but now the predictions are automatically included.

# ##### [Example: Make predictions using the fitted distribution](https://erdogant.github.io/distfit/pages/html/Examples.html#make-predictions)

# ##### [Example: Test for one specific distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-one-specific-distribution) The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html

# ##### [Example: Test for multiple distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-multiple-distributions) The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html

# ##### [Example: Fit discrete distribution](https://erdogant.github.io/distfit/pages/html/Discrete.html) ```python from scipy.stats import binom # Generate random numbers # Set parameters for the test-case n = 8 p = 0.5 # Generate 10000 samples of the distribution of (n, p) X = binom(n, p).rvs(10000) print(X) # [5 1 4 5 5 6 2 4 6 5 4 4 4 7 3 4 4 2 3 3 4 4 5 1 3 2 7 4 5 2 3 4 3 3 2 3 5 # 4 6 7 6 2 4 3 3 5 3 5 3 4 4 4 7 5 4 5 3 4 3 3 4 3 3 6 3 3 5 4 4 2 3 2 5 7 # 5 4 8 3 4 3 5 4 3 5 5 2 5 6 7 4 5 5 5 4 4 3 4 5 6 2...] # Import distfit from distfit import distfit # Initialize for discrete distribution fitting dfit = distfit(method='discrete') # Run distfit to and determine whether we can find the parameters from the data. dfit.fit_transform(X) # [distfit] >fit.. # [distfit] >transform.. # [distfit] >Fit using binomial distribution.. # [distfit] >[binomial] [SSE: 7.79] [n: 8] [p: 0.499959] [chi^2: 1.11] # [distfit] >Compute confidence interval [discrete] ```

# ##### [Example: Make predictions on unseen data for discrete distribution](https://erdogant.github.io/distfit/pages/html/Discrete.html#make-predictions)

# ##### [Example: Generate samples based on the fitted distribution](https://erdogant.github.io/distfit/pages/html/Generate.html)
### Contributors Setting up and maintaining distfit has been possible thanks to users and contributors. Thanks:

### Citation Please cite ``distfit`` in your publications if this is useful for your research. See column right for citation information. ### Maintainer * Erdogan Taskesen, github: [erdogant](https://github.com/erdogant) * Contributions are welcome. * If you wish to buy me a Coffee for this work, it is very appreciated :) %package help Summary: Development documents and examples for distfit Provides: python3-distfit-doc %description help

[![Python](https://img.shields.io/pypi/pyversions/distfit)](https://img.shields.io/pypi/pyversions/distfit) [![Pypi](https://img.shields.io/pypi/v/distfit)](https://pypi.org/project/distfit/) [![Docs](https://img.shields.io/badge/Sphinx-Docs-Green)](https://erdogant.github.io/distfit/) [![LOC](https://sloc.xyz/github/erdogant/distfit/?category=code)](https://github.com/erdogant/distfit/) [![Downloads](https://static.pepy.tech/personalized-badge/distfit?period=month&units=international_system&left_color=grey&right_color=brightgreen&left_text=PyPI%20downloads/month)](https://pepy.tech/project/distfit) [![Downloads](https://static.pepy.tech/personalized-badge/distfit?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=Downloads)](https://pepy.tech/project/distfit) [![License](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/erdogant/distfit/blob/master/LICENSE) [![Forks](https://img.shields.io/github/forks/erdogant/distfit.svg)](https://github.com/erdogant/distfit/network) [![Issues](https://img.shields.io/github/issues/erdogant/distfit.svg)](https://github.com/erdogant/distfit/issues) [![Project Status](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![DOI](https://zenodo.org/badge/231843440.svg)](https://zenodo.org/badge/latestdoi/231843440) [![Medium](https://img.shields.io/badge/Medium-Blog-black)](https://erdogant.github.io/distfit/pages/html/Documentation.html#medium-blog) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://erdogant.github.io/distfit/pages/html/Documentation.html#colab-notebook) [![Donate](https://img.shields.io/badge/Support%20this%20project-grey.svg?logo=github%20sponsors)](https://erdogant.github.io/distfit/pages/html/Documentation.html#) # ### [Read the Medium Blog for more information](https://erdogant.github.io/distfit/pages/html/Documentation.html#medium-blog) # ``distfit`` is a python package for probability density fitting of univariate distributions for random variables. With the random variable as an input, distfit can find the best fit for parametric, non-parametric, and discrete distributions. * For the parametric approach, the distfit library can determine the best fit across 89 theoretical distributions. To score the fit, one of the scoring statistics for the good-of-fitness test can be used used, such as RSS/SSE, Wasserstein, Kolmogorov-Smirnov (KS), or Energy. After finding the best-fitted theoretical distribution, the loc, scale, and arg parameters are returned, such as mean and standard deviation for normal distribution. * For the non-parametric approach, the distfit library contains two methods, the quantile and percentile method. Both methods assume that the data does not follow a specific probability distribution. In the case of the quantile method, the quantiles of the data are modeled whereas for the percentile method, the percentiles are modeled. * In case the dataset contains discrete values, the distift library contains the option for discrete fitting. The best fit is then derived using the binomial distribution. # **⭐️ Star this repo if you like it ⭐️** # ### [Documentation pages](https://erdogant.github.io/distfit/) On the [documentation pages](https://erdogant.github.io/distfit/) you can find detailed information about the ``distfit`` library with many examples. # ### Installation ##### Install distfit from PyPI ```bash pip install distfit ``` ##### Install from github source (beta version) ```bash install git+https://github.com/erdogant/distfit ``` ##### Check version ```python import distfit print(distfit.__version__) ``` ##### The following functions are available after installation: ```python # Import library from distfit import distfit dfit = distfit() # Initialize dfit.fit_transform(X) # Fit distributions on empirical data X dfit.predict(y) # Predict the probability of the resonse variables dfit.plot() # Plot the best fitted distribution (y is included if prediction is made) ```
### Examples # ##### [Example: Quick start to find best fit for your input data](https://erdogant.github.io/distfit/pages/html/Examples.html#) ```python # [distfit] >INFO> fit # [distfit] >INFO> transform # [distfit] >INFO> [norm ] [0.00 sec] [RSS: 0.00108326] [loc=-0.048 scale=1.997] # [distfit] >INFO> [expon ] [0.00 sec] [RSS: 0.404237] [loc=-6.897 scale=6.849] # [distfit] >INFO> [pareto ] [0.00 sec] [RSS: 0.404237] [loc=-536870918.897 scale=536870912.000] # [distfit] >INFO> [dweibull ] [0.06 sec] [RSS: 0.0115552] [loc=-0.031 scale=1.722] # [distfit] >INFO> [t ] [0.59 sec] [RSS: 0.00108349] [loc=-0.048 scale=1.997] # [distfit] >INFO> [genextreme] [0.17 sec] [RSS: 0.00300806] [loc=-0.806 scale=1.979] # [distfit] >INFO> [gamma ] [0.05 sec] [RSS: 0.00108459] [loc=-1862.903 scale=0.002] # [distfit] >INFO> [lognorm ] [0.32 sec] [RSS: 0.00121597] [loc=-110.597 scale=110.530] # [distfit] >INFO> [beta ] [0.10 sec] [RSS: 0.00105629] [loc=-16.364 scale=32.869] # [distfit] >INFO> [uniform ] [0.00 sec] [RSS: 0.287339] [loc=-6.897 scale=14.437] # [distfit] >INFO> [loggamma ] [0.12 sec] [RSS: 0.00109042] [loc=-370.746 scale=55.722] # [distfit] >INFO> Compute confidence intervals [parametric] # [distfit] >INFO> Compute significance for 9 samples. # [distfit] >INFO> Multiple test correction method applied: [fdr_bh]. # [distfit] >INFO> Create PDF plot for the parametric method. # [distfit] >INFO> Mark 5 significant regions # [distfit] >INFO> Estimated distribution: beta [loc:-16.364265, scale:32.868811] ```

# ##### [Example: Plot summary of the tested distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#plot-rss) After we have a fitted model, we can make some predictions using the theoretical distributions. After making some predictions, we can plot again but now the predictions are automatically included.

# ##### [Example: Make predictions using the fitted distribution](https://erdogant.github.io/distfit/pages/html/Examples.html#make-predictions)

# ##### [Example: Test for one specific distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-one-specific-distribution) The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html

# ##### [Example: Test for multiple distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-multiple-distributions) The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html

# ##### [Example: Fit discrete distribution](https://erdogant.github.io/distfit/pages/html/Discrete.html) ```python from scipy.stats import binom # Generate random numbers # Set parameters for the test-case n = 8 p = 0.5 # Generate 10000 samples of the distribution of (n, p) X = binom(n, p).rvs(10000) print(X) # [5 1 4 5 5 6 2 4 6 5 4 4 4 7 3 4 4 2 3 3 4 4 5 1 3 2 7 4 5 2 3 4 3 3 2 3 5 # 4 6 7 6 2 4 3 3 5 3 5 3 4 4 4 7 5 4 5 3 4 3 3 4 3 3 6 3 3 5 4 4 2 3 2 5 7 # 5 4 8 3 4 3 5 4 3 5 5 2 5 6 7 4 5 5 5 4 4 3 4 5 6 2...] # Import distfit from distfit import distfit # Initialize for discrete distribution fitting dfit = distfit(method='discrete') # Run distfit to and determine whether we can find the parameters from the data. dfit.fit_transform(X) # [distfit] >fit.. # [distfit] >transform.. # [distfit] >Fit using binomial distribution.. # [distfit] >[binomial] [SSE: 7.79] [n: 8] [p: 0.499959] [chi^2: 1.11] # [distfit] >Compute confidence interval [discrete] ```

# ##### [Example: Make predictions on unseen data for discrete distribution](https://erdogant.github.io/distfit/pages/html/Discrete.html#make-predictions)

# ##### [Example: Generate samples based on the fitted distribution](https://erdogant.github.io/distfit/pages/html/Generate.html)
### Contributors Setting up and maintaining distfit has been possible thanks to users and contributors. Thanks:

### Citation Please cite ``distfit`` in your publications if this is useful for your research. See column right for citation information. ### Maintainer * Erdogan Taskesen, github: [erdogant](https://github.com/erdogant) * Contributions are welcome. * If you wish to buy me a Coffee for this work, it is very appreciated :) %prep %autosetup -n distfit-1.6.10 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-distfit -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Fri May 05 2023 Python_Bot - 1.6.10-1 - Package Spec generated